
Organic Chemistry 3rd Edition Klein Test Bank

Full Download: http://alibabadownload.com/product/organic-chemistry-3rd-edition-klein-test-bank/

Klein, Organic Chemistry 3e Chapter 2

1. What is the molecular formula for the following compound?

- Α. C_2H_6O
- C₄H₆O Β.
- C. C₄H₁₀O
- C_2H_4O D.
- E. None of these

Answer: C

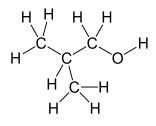
Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas

Difficulty: Easy

2. Which of the following compounds have a molecular formula of C₂H₆O?

CH ₃ OCH ₃	$CH_3CH_2OCH_3$	CH ₃ CH ₂ OH	CH ₃ CHOHCH ₃
I	II	III	IV

Α.

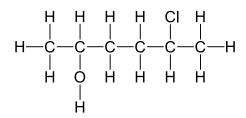

- Β. Ш
- C. Ш
- IV D.

Ε. Both I and III

Answer: E

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Easy

3. Which of the following is the correct condensed structure for the following compound?

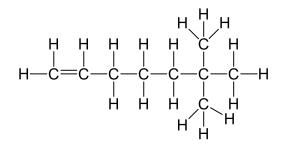

- A. CH₃CHCH₃CH₂OH
- B. CH₃CH₂CH₂OH
- C. $(CH_3)_2CHCH_2OH$
- D. $CH_3CH_2CH_2OCH_3$
- E. CH₃CH₃CHCH₂OH

Answer: C

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas

Difficulty: Easy

4. Which of the following is the correct condensed structure for the following compound?

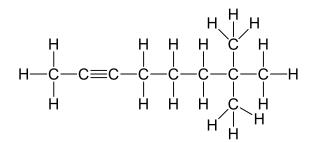


- A. CH₃CHOHCH₂CHCICH₃
- B. $CH_3CHOH(CH_2)_2CHCICH_3$
- C. (CH₃)₂CHOHCH₂CH₂Cl
- D. HOCH₃CHCH₂CH₂CH₃CHCI
- E. CH₃C₂H₄CH₃OHCI

Answer: B

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Easy

5. Which of the following is the correct condensed structure for the following compound?

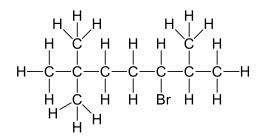


- A. $CH_2=CH(CH_2)_3C(CH_3)_3$
- B. CH(CH₂)₄C(CH₃)₃
- C. $(CH_3)_2CH(CH_2)_4CH_3$
- D. $CH_2CH(CH_2)_3C(CH_3)_3$
- E. $(CH)_3(CH_2)_3C(CH_3)_3$

Answer: A

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Medium

6. Which of the following is the correct condensed structure for the following compound?

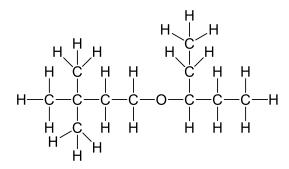


- A. $CH_3C_2(CH_2)_3C(CH_3)_3$
- $\mathsf{B}. \qquad \mathsf{CH}_3\mathsf{CC}(\mathsf{CH}_2)_3\mathsf{C}(\mathsf{CH}_3)_2\mathsf{CH}_3$
- C. $(CH_3)_3C_2(CH_2)_3CH_3$
- D. $CH_3C\equiv C(CH_2)_3C(CH_3)_3$
- E. $CH_3CC(CH_2)_3C(CH_3)_3$

Answer: D

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Medium

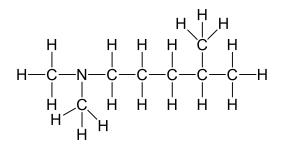
7. Which of the following is the correct condensed structure for the following compound?


- A. CH₃C(CH₃)₂(CH₂)₂(CH)BrC(CH₃)₂
- B. $CH_3CH_3CH_3C(CH_2)_2C(CH_3)_2CHBr$
- C. $(CH_3)_3C(CH_2)_3BrCHCH_3CH_3$
- D. CH₃CH₃CH₃C(CH₂)₂CHBrCHCH₃CH₃
- E. $(CH_3)_3C(CH_2)_2CHBrCH(CH_3)_2$

Answer: E

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas

Difficulty: Medium


8. Provide the correct condensed structure for the following compound.

Answer: $(CH_3)_3C(CH_2)_2OCH(CH_2CH_3)_2$

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Hard

9. Provide the correct condensed structure for the following compound.

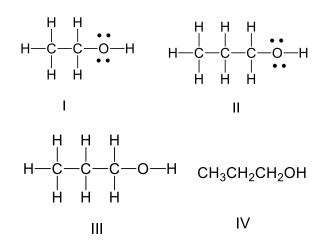
Answer: (CH₃)₂N(CH₂)₃CH(CH₃)₂ Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Hard

- 10. Which of the following is the correct molecular formula for (CH₃CH₂)₄C?
- A. C₈H₂₀
- B. C₅H₂₀
- C. C₉H₂₀
- D. C₆H₅
- E. C₃H₂₀

Answer: C

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Easy

11. Which of the following is the correct Lewis structure for CH₃(CH₂)₂NH₂?

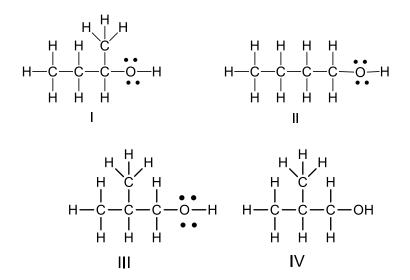


- A. I
- B. II
- C. III
- D. IV
- E. Both II and III

Answer: C

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Easy

12. Which of the following is the correct Lewis structure for CH₃(CH₂)₂OH?

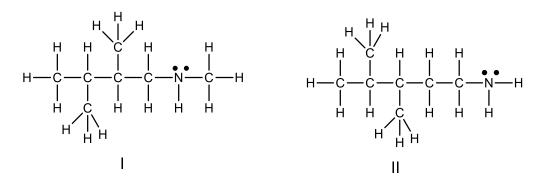


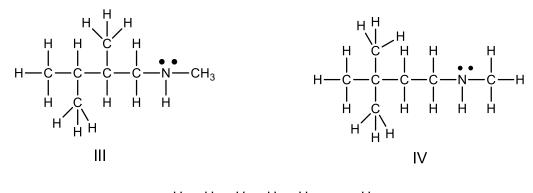
- A. I
- B. II
- C. III
- D. IV
- E. Both II and III

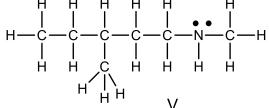
Answer: B

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Easy

13. Which of the following is the correct Lewis structure for (CH₃)₂CHCH₂OH?

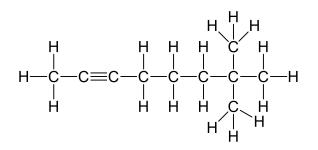



- A. I
- B. II
- C. III
- D. IV
- E. Both III and IV


Answer: C

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Easy

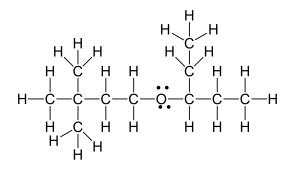
14. Which of the following is the correct Lewis structure for $(CH_3)_3C(CH_2)_2NHCH_3$?


- A. I
- B. II
- C. III
- D. IV
- E. V

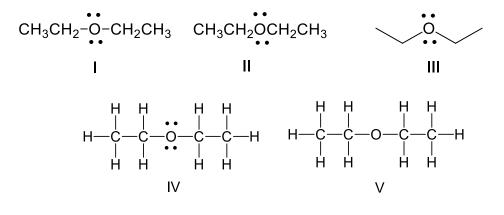
Answer: D

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Medium

15. Draw the Lewis structure for $CH_3C\equiv C(CH_2)_3C(CH_3)_3$.


Answer:

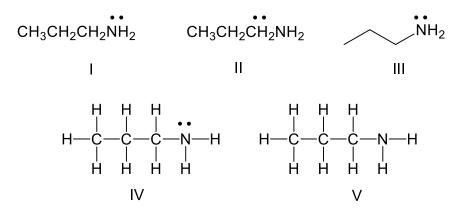
Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Medium


16. Draw the Lewis structure for (CH₃)₃C(CH₂)₂OCH(CH₂CH₃)₂.

Answer:

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Hard

17. Identify the partially condensed structure for CH₃CH₂OCH₂CH₃.

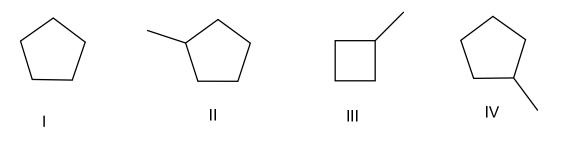


- A. I
- B. II
- C. III
- D. IV
- E. V

Answer: A

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas Difficulty: Easy

18. Identify the partially condensed structure for CH₃CH₂CH₂NH₂.

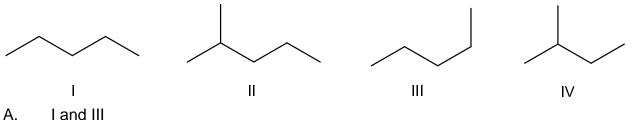


Answer: A

Learning Objective: 2.1 Convert molecular representations from one drawing style to another, including Lewis structures, partially condensed structures, condensed structures, and molecular formulas

Difficulty: Easy

Which of the following bond-line structures are of the same compound? 19.

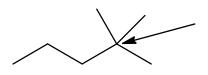

- I and II Α.
- Β. II and III
- C. III and IV
- II and IV D.
- Ε. None of these

Answer: D

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

20. Which of the following bond-line structures are of the same compound?


- Β. II and III C. III and IV
- D. II and IV
- F. None of these

Answer: A

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

21. How many hydrogen atoms are connected to the indicated carbon atom?

- Α. one
- Β. two
- C. three
- D. four
- E. none

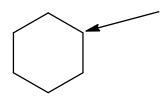
Answer: E

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

22. How many hydrogen atoms are connected to the indicated carbon atom?

Α. one Β. two


- C. three
- D. four
- E. none

Answer: A

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

23. How many hydrogen atoms are connected to the indicated carbon atom?

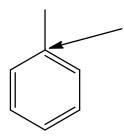
- A. one
- B. two
- C. three
- D. four
- E. none

Answer: B

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

24. How many hydrogen atoms are connected to the indicated carbon atom?

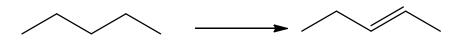

- A. one
- B. two
- C. three
- D. four
- E. none

Answer: A

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

25. How many hydrogen atoms are connected to the indicated carbon atom?

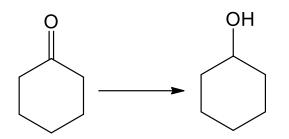

- A. one
- B. two
- C. three
- D. four
- E. none

Answer: E

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

26. For the following equation, how many hydrogen atoms are added or lost?


- A. added one
- B. added two
- C. lost one
- D. lost two
- E. no change

Answer: D

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

27. For the following equation, how many hydrogen atoms are added or lost?

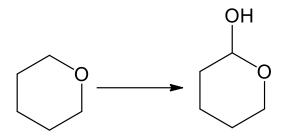
- A. added one
- B. added two
- C. lost one
- D. lost two
- E. no change

Answer: B

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

28. For the following equation, how many hydrogen atoms are added or lost?

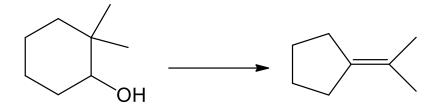

- A. added one
- B. added two
- C. lost one
- D. lost two
- E. no change

Answer: E

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

29. For the following equation, how many hydrogen atoms are added or lost?

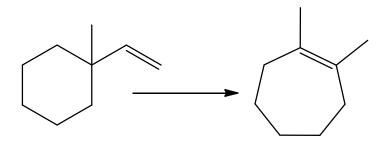

- A. added one
- B. added two
- C. lost one
- D. lost two
- E. no change

Answer: E

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

30. For the following equation, how many hydrogen atoms are added or lost?

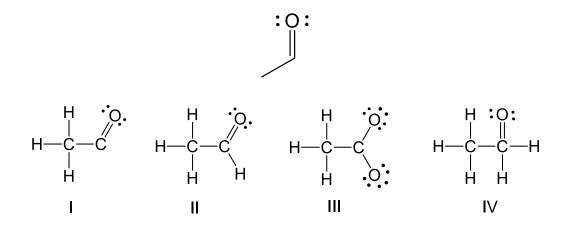

- A. added one
- B. added two
- C. lost one
- D. lost two
- E. no change

Answer: D

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Medium

31. For the following equation, how many hydrogen atoms are added or lost?

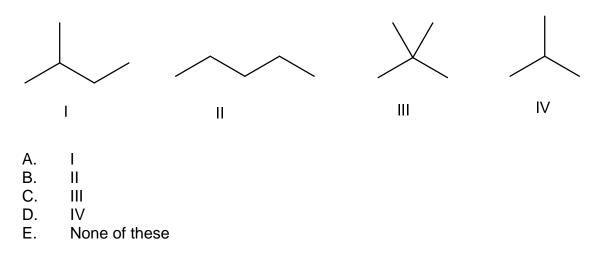

- Α. added one
- Β. added two
- C. lost one
- D. lost two
- Ε. no change

Answer: E

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Medium

32. Which of the following is the correct Lewis structure for the following compound?

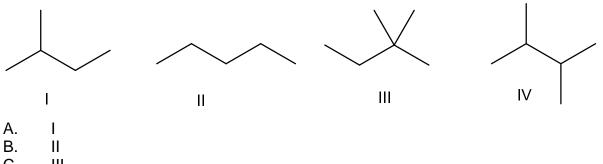

- A. L
- Β. П
- C. Ш
- D. IV
- Ε. none of these

Answer: B

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

33. Which of the following is the correct bond-line structure for (CH₃)₄C?

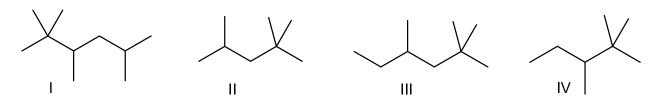


Answer: C

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

34. Which of the following is the correct bond-line structure for (CH₃)₂CHCH₂CH₃?


- C. III
- D. IV
- E. None of these

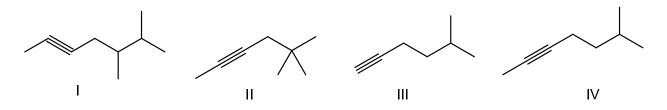
Answer: A

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Easy

35. Which of the following is the correct bond-line structure for $(CH_3)_2CHCH_2C(CH_3)_3$?

- A. I
- B. II
- C. III
- D. IV

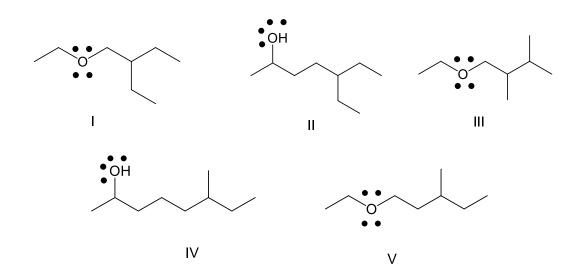

E. None of these

Answer: B

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Medium

36. Which of the following is the correct bond-line structure for $CH_3C\equiv C(CH_2)_2CH(CH_3)_2$?


- A. I
- B. II
- C. III
- D. IV
- E. None of these

Answer: D

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Medium

37. Which of the following is the correct bond-line structure for CH₃CHOH(CH₂)₂CH(CH₂CH₃)₂?

- A. I
- B. II
- C. III
- D. IV
- E. V

Answer: B

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

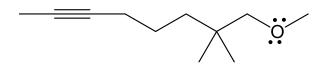
Difficulty: Medium

38. Draw a bond-line structure for CH₃CH₂O(CH₂)₂CH(CH₃)₂.

Answer:

Õ

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa Difficulty: Hard


39. Draw a bond-line structure for $(CH_3)_2N(CH_2)_3CH(CH_3)_2$.

Answer:

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa Difficulty: Hard

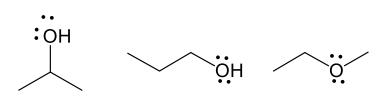
40. Draw a bond-line structure for $CH_3C\equiv C(CH_2)_3C(CH_3)_2CH_2OCH_3$.

Answer:

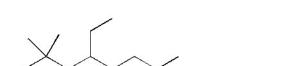
Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Hard

41. Draw a bond-line structure for each constitutional isomer with a molecular formula of C_2H_4O .


Answer:

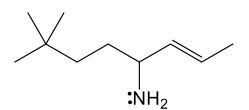
Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa Difficulty: Hard


42. Draw a bond-line structure for each constitutional isomer with a molecular formula of C_3H_8O .

Answer:

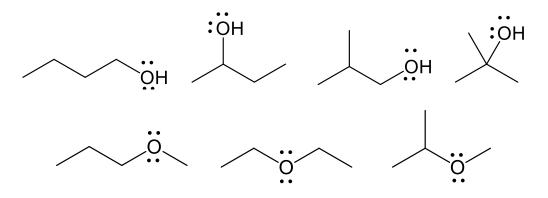
Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa Difficulty: Hard

43. Provide a condensed structure for the following compound.



Answer: (CH₃)₃CCH₂CH(CH₂CH₃)(CH₂)₂CH(CH₃)CH₂CH₃ Learning Objective: 2.2 Demonstrate how to read and draw

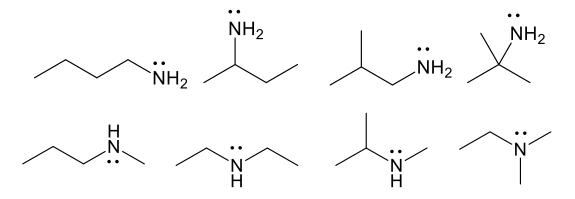
Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa


Difficulty: Hard

44. Provide a condensed structure for the following compound.

Answer: (CH₃)₃C(CH₂)₂CH(NH₂)CH=CHCH₃ Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa Difficulty: Hard 45. Draw a bond-line structure for each constitutional isomer with molecular formula $C_4H_{10}O$.

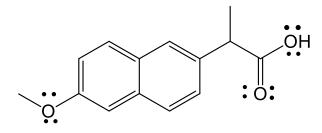
Answer:



Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

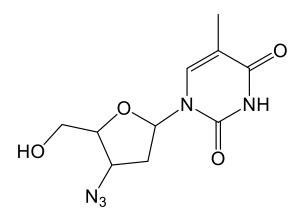
Difficulty: Hard

46. Draw a bond-line structure for each constitutional isomer with molecular formula $C_4H_{11}N$.


Answer:

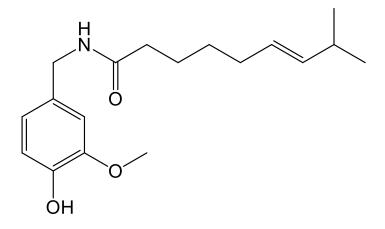
Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Medium


47. Naproxen, sold under the trade name Aleve, has the following structure. What is the molecular formula for naproxen?

Answer: C₁₄H₁₄O₃ Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa Difficulty: Hard

Difficulty: Hard


48. AZT, used in the treatment of AIDS, has the following structure. What is the molecular formula for AZT?

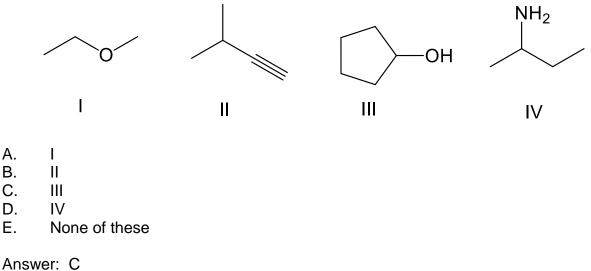
Answer: $C_{10}H_{13}N_5O_4$

Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

- Difficulty: Hard
- 49. Capsaicin, found in peppers, has the following structure. What is the molecular formula for capsaicin?

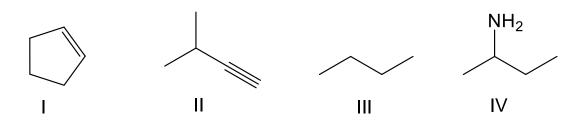
Answer: C₁₈H₂₇NO₃ Learning Objective: 2.2 Demonstrate how to read and draw bond-line structures through converting other styles of molecular representation into bond-line structures and vice versa

Difficulty: Hard


Α. Β.

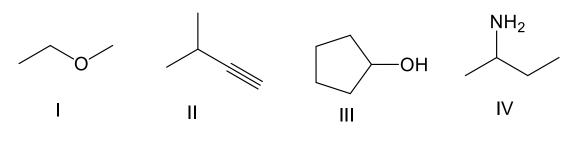
C.

D.


E.

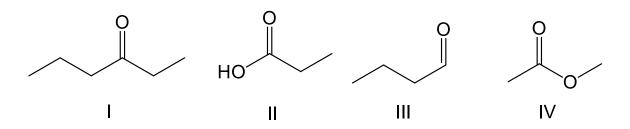
50. Which of the following compounds contain an alcohol functional group?

Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy


Which of the following compounds contain an alkene functional group? 51.

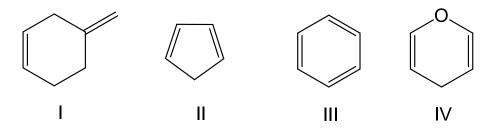
- A. I
- B. II
- C. III
- D. IV
- E. None of these

Answer: A Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy


52. Which of the following compounds contain an amine functional group?

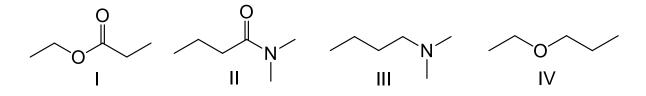
- A. I
- B. II
- C. III
- D. IV
- E. None of these

Answer: D Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy


53. Which of the following compounds contain a ketone functional group?

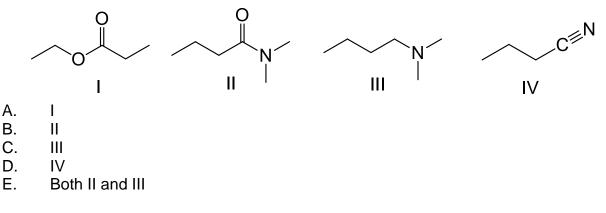
- A. I
- B. II
- C. III
- D. IV
- E. All of these

Answer: A Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy

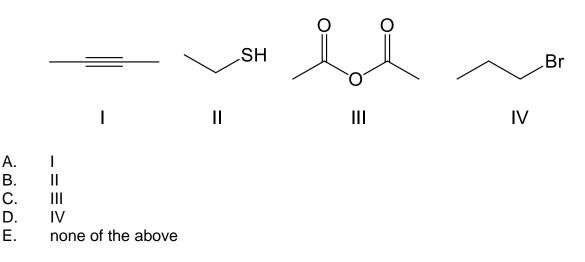

54. Which of the following compounds contain an aromatic ring?

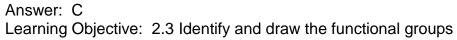
- A. I
- B. II
- C. III
- D. IV
- E. Both III and IV

Answer: C Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy

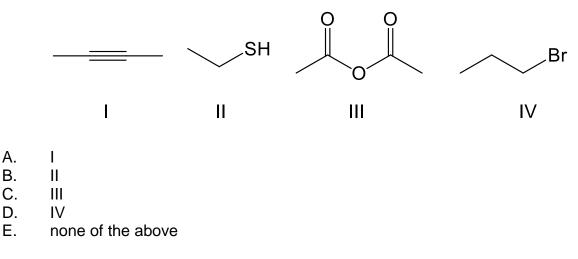

55. Which of the following compounds contain an ester functional group?

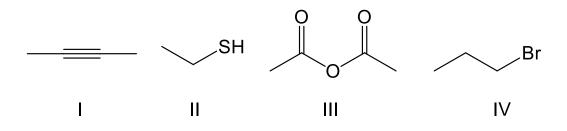
- A. I
- B. II
- C. III
- D. IV
- E. Both I and IV


Answer: A Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy


56. Which of the following compounds contain an amide functional group?

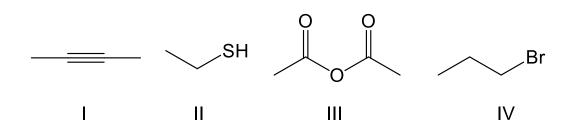
Answer: B Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy


57. Which of the following compounds contain an anhydride functional group?


Difficulty: Easy

58. Which of the following compounds contain an alkyne functional group?

Answer: A Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy


59. Which of the following compounds contain a thiol functional group?

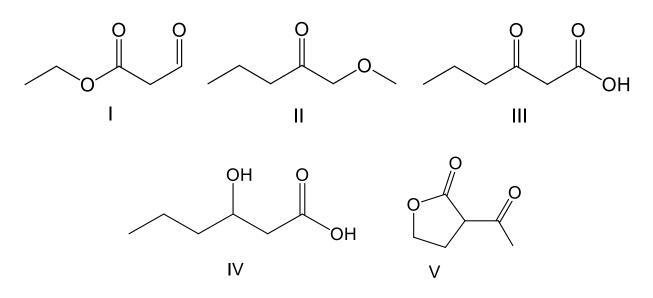
- A. I
- B. II
- C. III
- D. IV
- E. none of the above

Answer: B Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy

60. Which of the following compounds contain an alkyl halide functional group?

- A. I
- B. II
- C. III
- D. IV
- E. none of the above

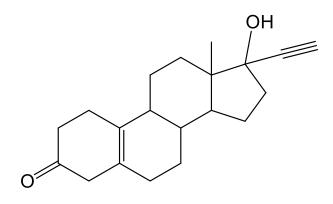
Answer: D Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Easy


61. What functional group(s) is (are) present in the following compound?

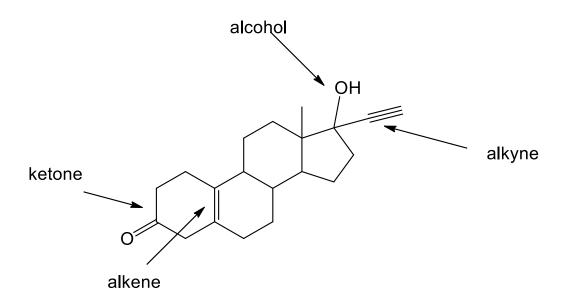
- A. ketone and alkene
- B. ketone and alkyne
- C. aldehyde and alkene
- D. aldehyde and alkyne
- E. ester and alkene

Answer: C Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Medium

62. Which of the following compounds have both a ketone and an ester functional group?

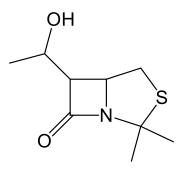


- A. I
- B. II
- C. III
- D. IV E. V

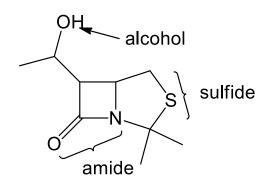

Answer: E

Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Medium

63. Norethynodrel, a component of the first combined oral contraceptive, has the following structure. Identify the functional groups in Norethynodrel.

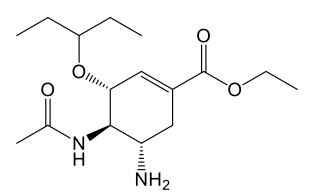


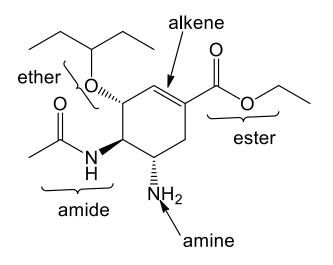
Answer:



Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Medium

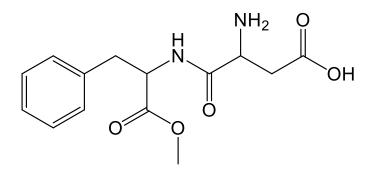
64. Identify the functional groups in the following compound.


Answer:

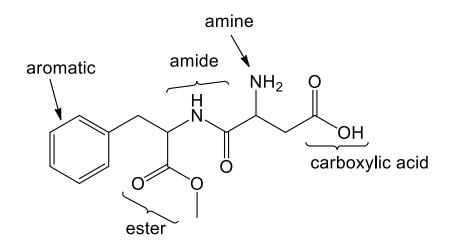

Learning Objective: 2.3 Identify and draw the functional groups

Difficulty: Medium

65. Tamiflu[®], the most effective antiviral drug used to treat avian influenza, has the following structure. Identify the functional groups in Tamiflu[®].

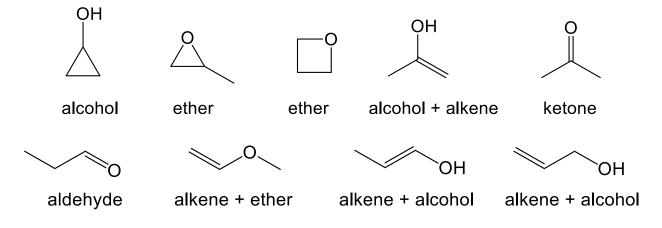


Answer:

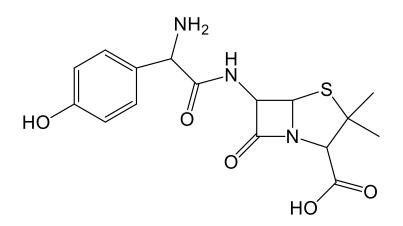


Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Hard

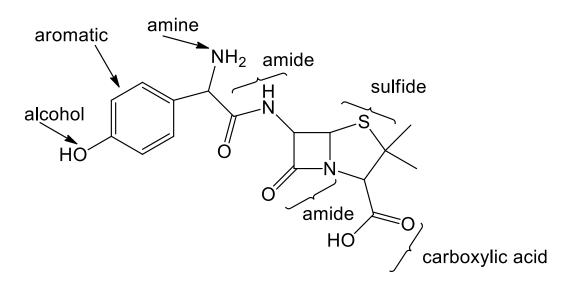
66. Aspartame, an artificial sweetener used in Equal[®] and diet beverages, has the following structure. Identify the functional groups in Aspartame.


Answer:

Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Hard

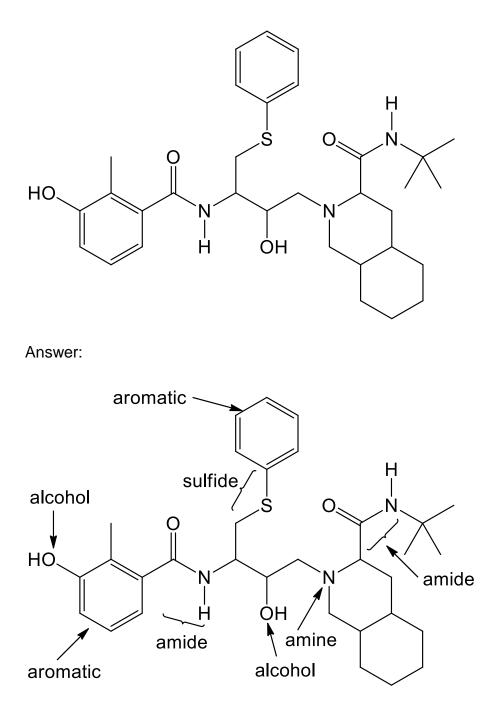

67. Draw all the constitutional isomers with a molecular formula of C₃H₆O and label the functional groups in each isomer.

Answer:

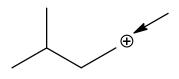


Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Hard

68. Amoxicillin, an antibiotic, has the following structure. Identify the functional groups in amoxicillin.

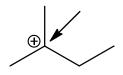


Answer:


Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Hard

69. Viracept, used in the treatment of HIV, has the following structure. Identify the functional groups in Viracept.

Learning Objective: 2.3 Identify and draw the functional groups Difficulty: Hard


70. How many hydrogen atoms are connected to the indicated carbon atom?

- A. one
- B. two
- C. three
- D. four
- E. none

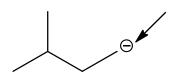
Answer: B Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy

71. How many hydrogen atoms are connected to the indicated carbon atom?

- A. one
- B. two
- C. three
- D. four
- E. none

Answer: E Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy

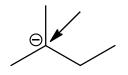
72. How many hydrogen atoms are connected to the indicated carbon atom?



- A. one
- B. two
- C. three
- D. four
- E. none

Answer: A Learning Objective: 2.4 Identify formal charges on carbon

Difficulty: Easy


73. How many hydrogen atoms are connected to the indicated carbon atom?

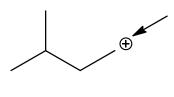
- A. one
- B. two
- C. three
- D. four
- E. none

Answer: B Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy

74. How many hydrogen atoms are connected to the indicated carbon atom?

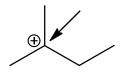
- A. one
- B. two
- C. three
- D. four
- E. none

Answer: E Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy


75. How many hydrogen atoms are connected to the indicated carbon atom?

- A. one
- B. two
- C. three
- D. four
- E. none

Answer: A Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy


76. What is the formal charge on the indicated carbon atom?

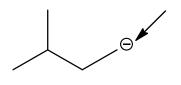
A. -2 B. -1 C. 0 D. +1 E. +2

Answer: D Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy

77. What is the formal charge on the indicated carbon atom?

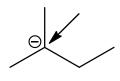
A. -2 B. -1 C. 0 D. +1 E. +2

Answer: D Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy


78. What is the formal charge on the indicated carbon atom?

A. -2 B. -1 C. 0 D. +1 E. +2

Answer: D Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy

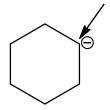

79. What is the formal charge on the indicated carbon atom?

- A. -2
- B. -1 C. 0
- D. +1
- E. +2

Answer: B Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy

80. What is the formal charge on the indicated carbon atom?

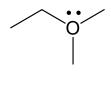
A. -2


B. -1

C. 0

D. +1 E. +2

Answer: B Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy


81. What is the formal charge on the indicated carbon atom?

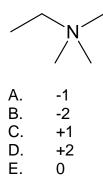
A. -2 B. -1 C. 0 D. +1 E. +2

Answer: B Learning Objective: 2.4 Identify formal charges on carbon Difficulty: Easy

82. What is the formal charge on the oxygen atom in the following compound?

A. +1 B. +2

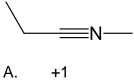
D. +2 C. -1


D. -2

E. 0

Answer: A

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy


83. What is the formal charge on the nitrogen atom in the following compound?

Answer: C

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

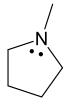
84. What is the formal charge on the nitrogen atom in the following compound?

- B. +2
- C. -1 D. -2
- E. 0

Answer: A

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

85. What is the formal charge on the indicated oxygen atom in the following compound?

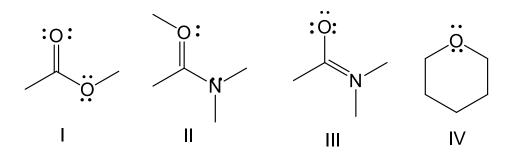

:0:

A. +1 B. +2 C. -1 D. -2 E. 0

Answer: E

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

86. What is the formal charge on the nitrogen atom in the following compound?

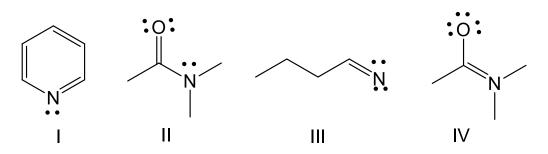


A. +1 B. +2 C. -1 D. -2 E. 0

Answer: E

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

87. Which of the following compounds have +1 as a formal charge on an oxygen atom?

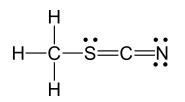

A. I B. II

- C. III
- D. IV
- E. Both I and IV

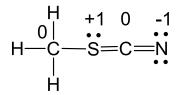
Answer: B

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Medium

88. Which of the following compounds have +1 as a formal charge on the nitrogen atom?



- A. I
- B. II
- C. III
- D. IV
- E. Both I and II

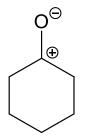

Answer: D

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Medium

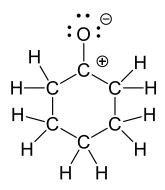
89. Determine the formal charges on each atom except hydrogen.

Answer:

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Medium

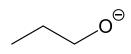

90. Diazomethane has the molecular formula CH₂N₂. Draw the preferred Lewis structure for diazomethane and assign formal charges to all atoms except hydrogen.

Answer:


$$\begin{array}{ccc} 0 & +1 & -1 \\ H - C = N = N \\ I & \cdots \\ H \end{array}$$

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Hard

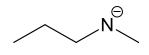
91. Draw Lewis structure for the following compound.



Answer:

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Medium

92. How many lone pairs of electrons are on the oxygen atom?



- A. one
- B. two
- C. three
- D. four
- E. none

Answer: C

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

93. How many lone pairs of electrons are on the nitrogen atom?

- A. one
- B. two
- C. three
- D. four
- E. none

Answer: B

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

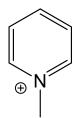
94. How many lone pairs of electrons are on the oxygen atom?

Ν

- A. one
- B. two
- C. three
- D. four
- E. none

Answer: B

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

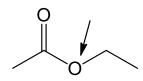

95. How many lone pairs of electrons are on the nitrogen atom?

- A. one
- B. two
- C. three
- D. four
- E. none

Answer: A

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

96. How many lone pairs of electrons are on the nitrogen atom?

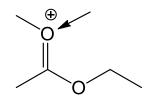


- A. oneB. twoC. threeD. four
- E. none

Answer: E

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

97. How many lone pairs of electrons are on the indicated oxygen atom?

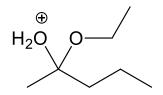


- A. one
- B. two
- C. three
- D. four E. none

Answer: B

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

98. How many lone pairs of electrons are on the indicated oxygen atom?

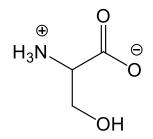


- A. one
- B. two
- C. three
- D. four
- E. none

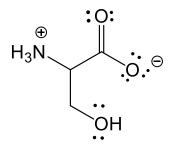
Answer: A

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Medium

99. How many total lone pairs of electrons are in the following compound?

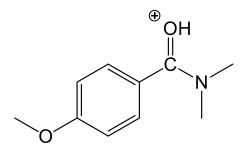


- A. one
- B. two
- C. three
- D. four
- E. none

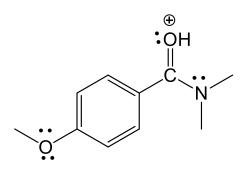

Answer: C

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Easy

100. Draw all lone pairs of electrons for the following compound.

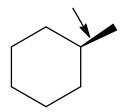


Answer:



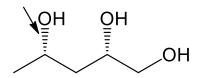
Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Medium

101. Draw all lone pairs of electrons for the following compound.



Answer:

Learning Objective: 2.5 Describe the relationship between the number of bonds, the number of lone pairs, and formal charge for oxygen and nitrogen atoms Difficulty: Medium


102. The indicated bond in the following compound is _____ of the paper.

- A. in the plane
- B. out of the plane
- C. behind the plane
- D. None of these

Answer: B Learning Objective: 2.6 Describe how wedges and dashes are used to indicate threedimensional molecular structure Difficulty: Easy

103. The indicated bond in the following compound is_____ of the paper.

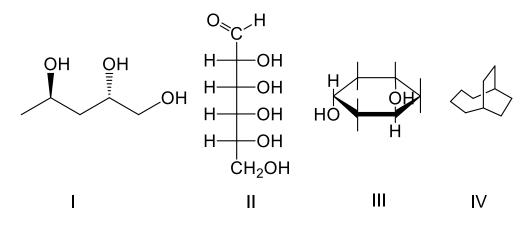


- A. in the plane
- B. out of the plane
- C. behind the plane
- D. None of these

Answer: C

Learning Objective: 2.6 Describe how wedges and dashes are used to indicate threedimensional molecular structure Difficulty: Easy

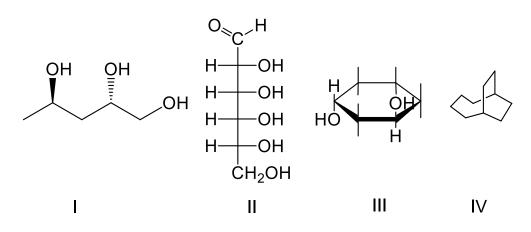
104. The indicated bond in the following compound is_____ of the paper.



- A. in the plane
- B. out of the plane
- C. behind the plane
- D. None of these

Answer: C

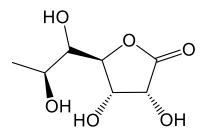
Learning Objective: 2.6 Describe how wedges and dashes are used to indicate threedimensional molecular structure Difficulty: Easy


105. Which of the following is a Fischer projection?

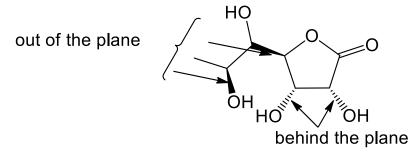
- A. I
- B. II
- C. III
- D. IV
- E. Both III and IV

Answer: B

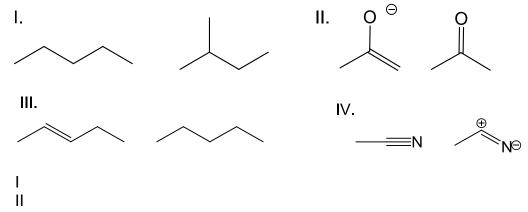
Learning Objective: 2.6 Describe how wedges and dashes are used to indicate threedimensional molecular structure Difficulty: Easy 106. Which of the following is a Haworth projection?



- A. I
- B. II
- C. III
- D. IV
- E. Both III and IV

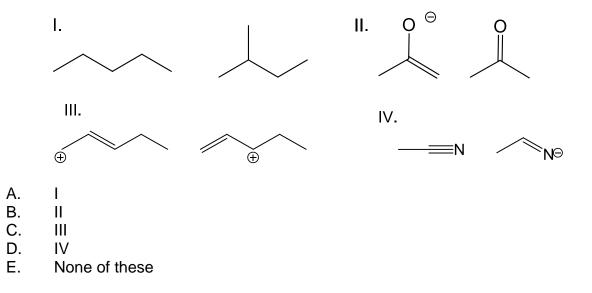

Answer: C

Learning Objective: 2.6 Describe how wedges and dashes are used to indicate threedimensional molecular structure Difficulty: Easy


107. Label the bonds that are out of the plane and behind the plane of the paper.

Answer:

Learning Objective: 2.6 Describe how wedges and dashes are used to indicate threedimensional molecular structure Difficulty: Medium


108. Which of the following pairs are resonance structures of each other?

- A. I
- B. II
- C. III
- D. IV
- E. None of these

Answer: D

Learning Objective: 2.7 Define "resonance," describing the relationship between resonance and molecular orbital theory Difficulty: Easy

109. Which of the following pairs are resonance structures of each other?

Answer: C

Learning Objective: 2.7 Define "resonance," describing the relationship between resonance and molecular orbital theory Difficulty: Easy

- 110. The spreading of positive or negative charge over two or more atoms in a compound is called_____.
- A. isomerism
- B. delocalization
- C. stereoisomerism
- D. localization
- E. None of these

Answer: B

Learning Objective: 2.7 Define "resonance," describing the relationship between resonance and molecular orbital theory Difficulty: Easy

111. Delocalization of charge over two or more atoms ______ a molecule.

- A. destabilizes
- B. delocalizes
- C. localizes
- D. stabilizes
- E. None of these

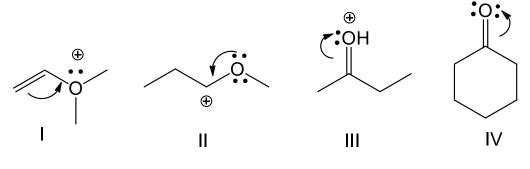
Answer: D Learning Objective: 2.7 Define "resonance," describing the relationship between resonance and molecular orbital theory Difficulty: Easy

- 112. Resonance structures have _____ connectivity of atoms and _____ distribution of electrons.
- A. different, same
- B. same, same
- C. different, different
- D. same, different
- E. None of these

Answer: D

Learning Objective: 2.7 Define "resonance," describing the relationship between resonance and molecular orbital theory

Difficulty: Medium

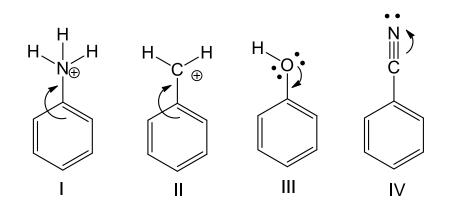

113. What is a resonance hybrid?

Answer: A molecule that can be represented by drawing two or more resonance structures is viewed as a resonance hybrid.

Learning Objective: 2.7 Define "resonance," describing the relationship between resonance and molecular orbital theory

Difficulty: Medium

114. Which of the following violates the rules for curved arrows?

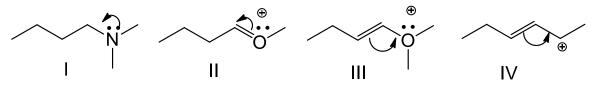


- A. I
- B. II
- C. III
- D. IV
- E. none of these

Answer: A

Learning Objective: 2.8 Demonstrate the used of curved arrows in drawing resonance structures, stating the two rules to be applied when drawing curved arrows Difficulty: Easy

115. Which of the following violates the rules for curved arrows?



- A. I
- B. II and IV
- C. I and III
- D. III and IV
- E. None of these

Answer: C

Learning Objective: 2.8 Demonstrate the used of curved arrows in drawing resonance structures, stating the two rules to be applied when drawing curved arrows Difficulty: Easy

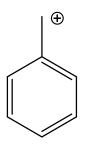
116. Which of the following violates the rules for curved arrows?

- A. I and II
- B. III and IV
- C. I, and III
- D. II, III and IV
- E. all of these

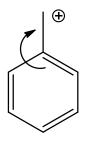
Answer: C

Learning Objective: 2.8 Demonstrate the used of curved arrows in drawing resonance structures, stating the two rules to be applied when drawing curved arrows Difficulty: Easy

117. Provide the curved arrow(s) to draw a resonance structure for the following compound.

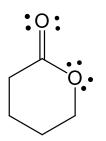


Answer:

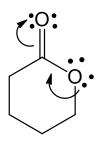


Learning Objective: 2.8 Demonstrate the used of curved arrows in drawing resonance structures, stating the two rules to be applied when drawing curved arrows Difficulty: Medium

118. Provide the curved arrow(s) to draw a resonance structure for the following compound.

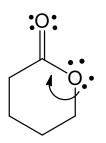


Answer:

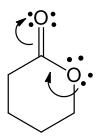


Learning Objective: 2.8 Demonstrate the used of curved arrows in drawing resonance structures, stating the two rules to be applied when drawing curved arrows Difficulty: Medium

119. Provide the curved arrow(s) to draw a resonance structure for the following compound.



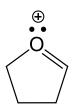
Answer:



Learning Objective: 2.8 Demonstrate the used of curved arrows in drawing resonance structures, stating the two rules to be applied when drawing curved arrows Difficulty: Hard

120. Explain using words as well as structural drawings, if the single curved arrow shown is sufficient to draw the resonance structure.

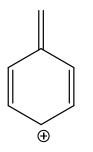
Answer: The single arrow shown will violate the octet rule. Drawing another curved arrow will remove the violation.



Learning Objective: 2.8 Demonstrate the used of curved arrows in drawing resonance structures, stating the two rules to be applied when drawing curved arrows Difficulty: Hard

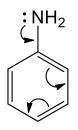
121. Draw the resonance structure indicated by the curved arrows.

Answer:

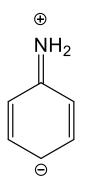


Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Medium

122. Draw the resonance structure indicated by the curved arrows.

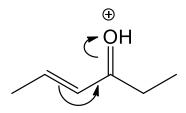


Answer:



Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Medium

123. Draw the resonance structure indicated by the curved arrows.

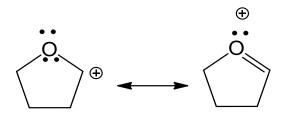


Answer:

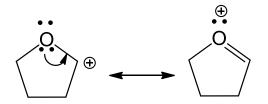


Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Medium

124. Draw the resonance structure indicated by the curved arrows.

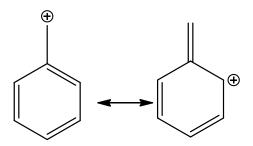


Answer:

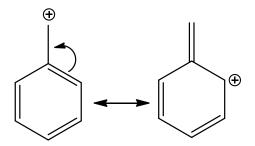


Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Medium

125. Draw the curved arrow(s) for converting the first resonance structure into the second resonance structure.

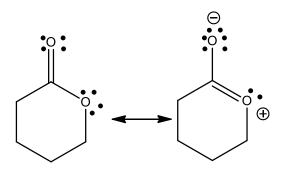


Answer:

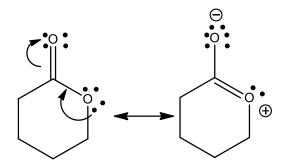


Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Medium

126. Draw the curved arrow(s) for converting the first resonance structure into the second resonance structure.

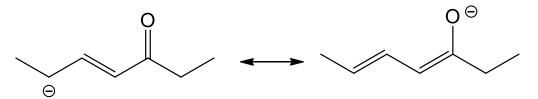


Answer:

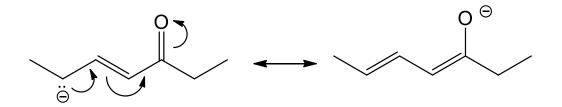


Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Hard

127. Draw the curved arrow(s) for converting the first resonance structure into the second resonance structure.

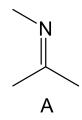


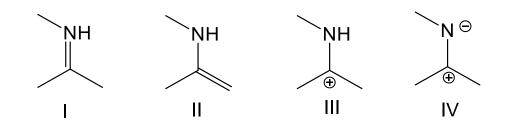
Answer:



Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Hard

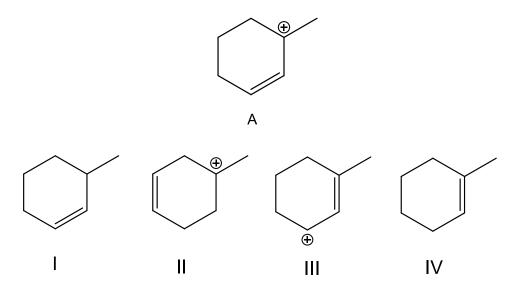
128. Draw the curved arrow(s) for converting the first resonance structure into the second resonance structure.




Answer:

Learning Objective: 2.9 Describe the use of arrow pushing and formal charges in resonance structures Difficulty: Hard

129. Which of the following is a correct resonance structure for compound A?

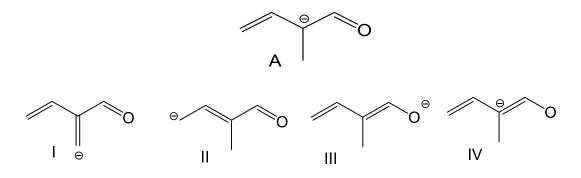


- A. I
- B. II
- C. III
- D. IV
- E. none of these

Answer: D

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Easy

130. Which of the following is a correct resonance structure for compound A?

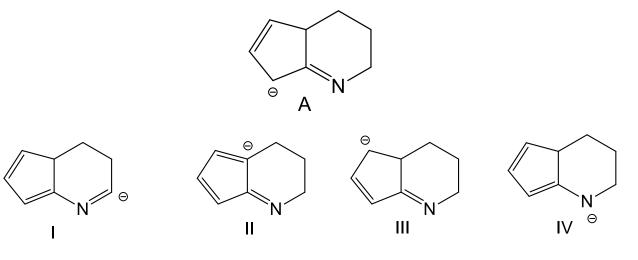


- A. I
- B. II
- C. III
- D. IV
- E. None of these

Answer: C

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Medium

131. Which of the following is/are correct resonance structure(s) for compound A?

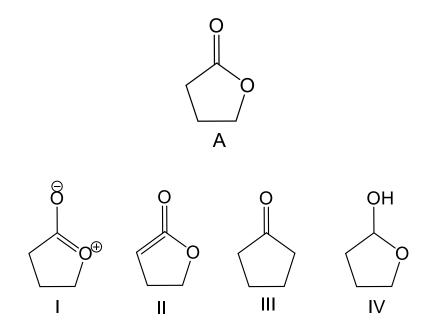


- A. I
- B. II and III
- C. III and IV
- D. I and III
- E. I and IV

Answer: B

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Easy

132. Which of the following is/are correct resonance structure(s) for compound A?

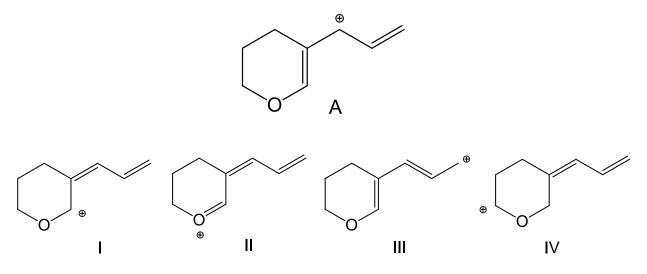


- A. I and II
- B. II and III
- C. III and IV
- D. I and III

E. I and IV

Answer: C Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Medium

133. Which of the following is a correct resonance structure for compound A?

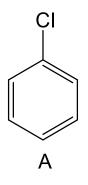


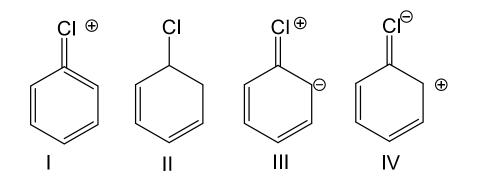
- A. I
- B. II
- C. III
- D. IV
- E. none of these

Answer: A

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Easy

134. Which of the following is/are correct resonance structure(s) for compound A?

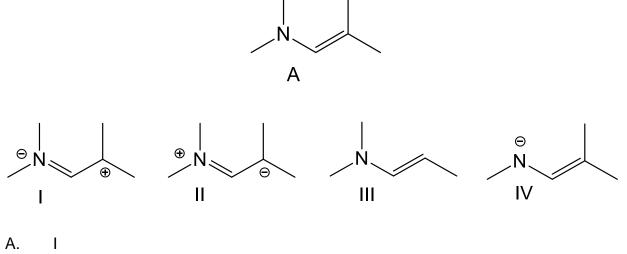



- A. I and II
- B. II and III
- C. III and IV
- D. I, II and III
- E. I and IV

Answer: D

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Medium

135. Which of the following is a correct resonance structure for compound A?

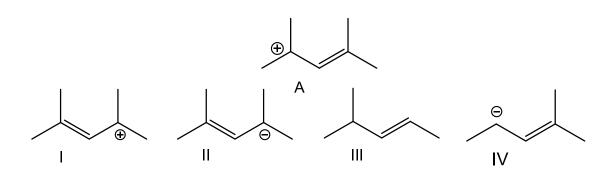

- A. I
- B. II
- C. III
- D. IV

E. None of these

Answer: C

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Easy

136. Which of the following is a correct resonance structure for compound A?


- B. II
- C. III
- D. IV
- E. None of these

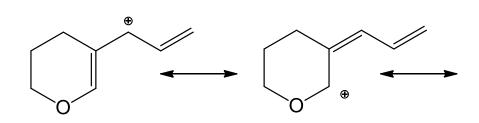
Answer: B

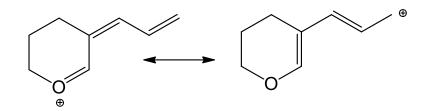
Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules

Difficulty: Easy

137. Which of the following is a correct resonance structure for compound A?

- A. I
- B. II
- C. III
- D. IV
- E. none of these


Answer: A

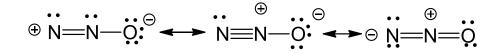

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Medium

138. Draw resonance structures for the following compound.

Answer:

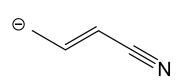
Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Medium

139. Draw two resonance structures for HN₃.

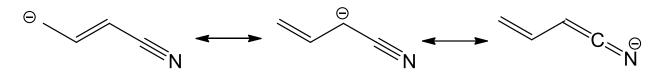

Answer:

$$\stackrel{\ominus}{H} \stackrel{\oplus}{\longrightarrow} H \stackrel{\longrightarrow}{N} \stackrel{\longrightarrow}{\longrightarrow} H \stackrel{\longrightarrow}{\longrightarrow} N \stackrel{\oplus}{\longrightarrow} N \stackrel{\oplus}{\longrightarrow} N$$

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Hard

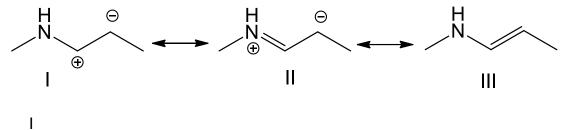

140. Draw two additional resonance structures for the following compound. $\ddot{W} = \ddot{N} = \ddot{N} - \dot{Q}$

Answer:



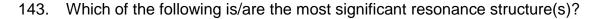
Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Hard

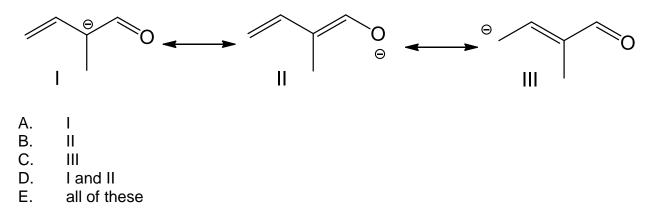
141. Draw two additional resonance structures for the following compound.



Answer:

Learning Objective: 2.10 Identify resonance structures by naming the five different structural patterns in molecules Difficulty: Hard

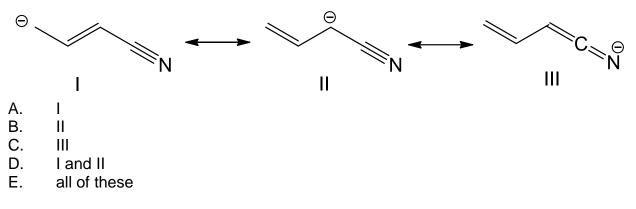

142. Which of the following is/are the most significant resonance structure(s)?



- A. I B. II
- C. III
- D. II and III
- E. all of these

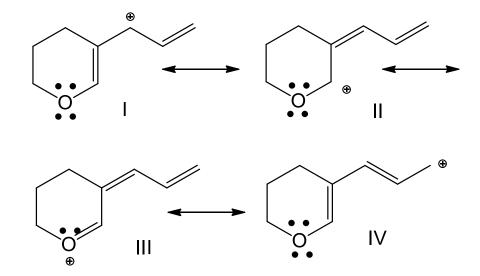
Answer: C

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Easy



Answer: B

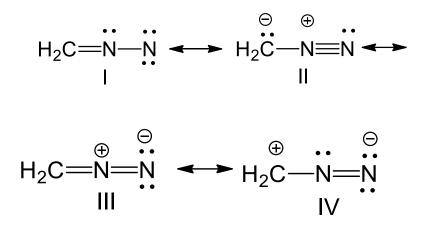
Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Easy


144. Which of the following is/are the most significant resonance structure(s)?

Answer: C

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Medium

145. Which of the following is/are the most significant resonance structure(s)?

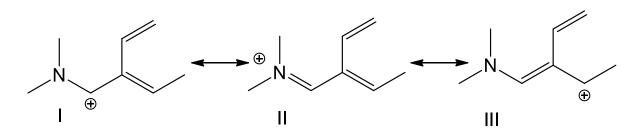

- A. I
- B. II
- C. III
- D. I and II

E. I and IV

Answer: C

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Medium

146. Which of the following is the most significant resonance structure?



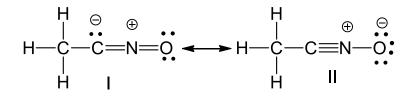
- A. I
- B. II
- C. III
- D. IV
- E. None of these

Answer: C

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Medium

147. Which of the following is/are the most significant resonance structure(s)?

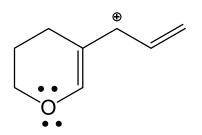
A. I B. II

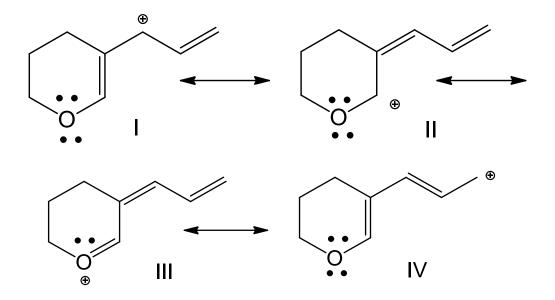

- C. III
- D. I and III
- E. all of these

Answer: B

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Medium

148. Draw significant resonance structures for the following compound, CH₃CNO. Which of these is/are the most significant resonance structure(s)? Explain why.

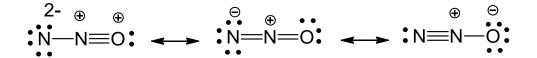

Answer:



Resonance structure II is most significant, because the more electronegative oxygen atom carries a negative formal charge.

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Hard

149. Draw significant resonance structures for the following compound. Which of these is/are the most significant resonance structure(s)? Explain why.



Resonance structure III is most significant, because all atoms have octet of electrons.

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Hard

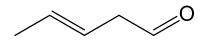
150. Draw significant resonance structures for N₂O. Which of these is/are the most significant resonance structure(s)? Explain why.

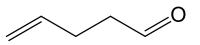
Answer:

Resonance structure III is most significant, because the more electronegative oxygen atom carries a negative formal charge.

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Hard

151. What is the relationship between the following compounds?

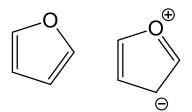

$$H = O = N = O$$
 $H = O = N = O$


- A. constitutional isomers
- B. resonance structures
- C. conformers
- D. identical compounds

Answer: B

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Easy

152. What is the relationship between the following compounds?



- A. constitutional isomers
- B. resonance structures
- C. conformers
- D. identical compounds

Answer: A

Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Easy

153. What is the relationship between the following compounds?

- A. constitutional isomers
- B. resonance structures
- C. conformers
- D. identical compounds
- E. different compounds

Answer: B

Learning Objective: Assessing Importance Section: 2.11

Difficulty: Easy

154. What is the relationship between the following compounds?

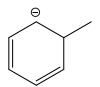
- A. constitutional isomers
- B. resonance structures
- C. conformers
- D. identical compounds
- E. different compounds

Answer: B

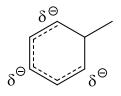
Learning Objective: 2.11 Distinguish between significant and insignificant resonance structures, describing how the significance of resonance is determined Difficulty: Easy

155. Draw the resonance hybrid of C_6H_6 .

Answer:


Learning Objective: 2.12 Draw a resonance hybrid using partial bonds and partial charges, reflecting the combination of individual resonance structures Difficulty: Medium

156. Draw the resonance hybrid of $CH_2CHCHCHCH_2^+$.


δĐ δ⊕ δ⊕

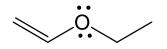
Learning Objective: 2.12 Draw a resonance hybrid using partial bonds and partial charges, reflecting the combination of individual resonance structures Difficulty: Medium

157. Draw the resonance hybrid for the following structure.

Answer:

Learning Objective: 2.12 Draw a resonance hybrid using partial bonds and partial charges, reflecting the combination of individual resonance structures Difficulty: Medium

158. The lone pair on nitrogen in the following compound is _____.


A. localized

B. delocalized

Answer: A

Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Easy

159. The lone pair on oxygen in the following compound is _____.

- A. both localized
- B. both delocalized
- C. one localized and one delocalized

Answer: C

Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Easy

160. The lone pair on nitrogen in the following compound is _____.

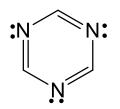
A. localized

B. delocalized

Answer: A

Learning Objective: 2.12 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Easy

161. The lone pairs on oxygen in the following compound are _____.

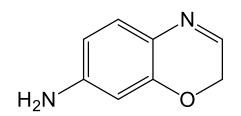

A. both localizedB. both delocalized

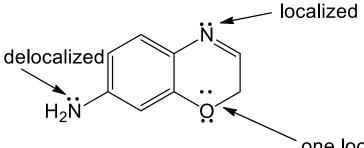
C. one localized and one delocalized

Answer: C

Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Easy

162. The lone pairs on nitrogen in the following compound are _____.

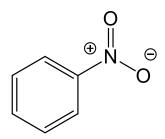


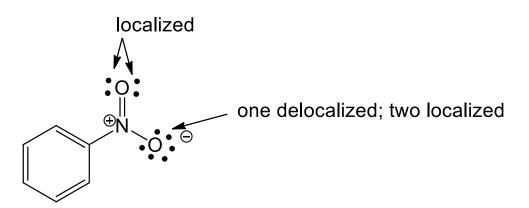

- A. three localized
- B. three delocalized
- C. two localized and one delocalized
- D. one localized and two delocalized

Answer: A

Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Easy

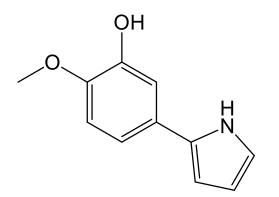
163. For the following compound identify the lone pairs and indicate if each lone pair is localized or delocalized.



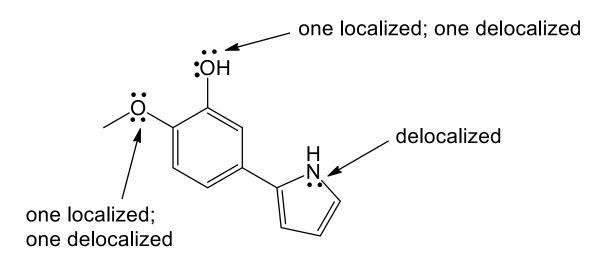

one localized and one delocalized

Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Medium

164. For the following compound identify the lone pairs and indicate if each lone pair is localized or delocalized.

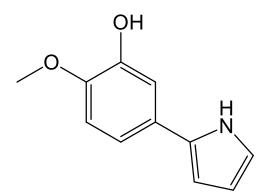


Answer:

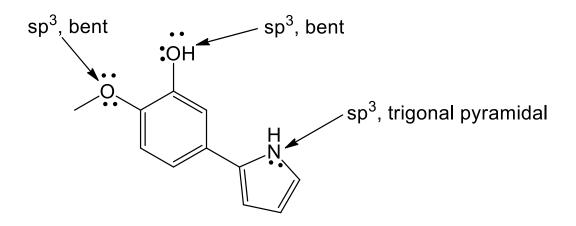


Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Medium

165. For the following compound identify the lone pairs and indicate if each lone pair is localized or delocalized.

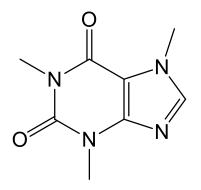


Answer:

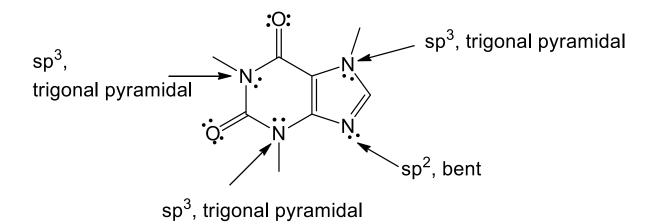


Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Medium

166. For the following compound what is the hybridization state and molecular geometry at each oxygen and nitrogen atom.

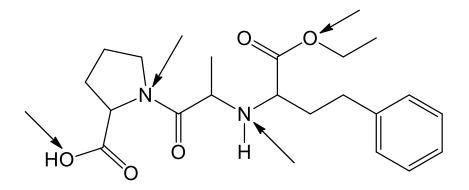


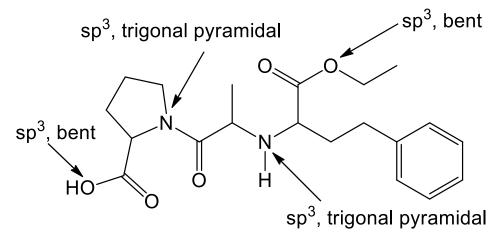
Answer:



Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Hard

167. Caffeine has the following structure. What is the hybridization state and molecular geometry at each nitrogen atom in caffeine?





Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Hard

168. Enalapril, is a drug used in the treatment of heart disease. What is the hybridization state and molecular geometry at the indicated atoms in Enalapril?

Organic Chemistry 3rd Edition Klein Test Bank

Full Download: http://alibabadownload.com/product/organic-chemistry-3rd-edition-klein-test-bank/

Learning Objective: 2.13 Distinguish between delocalized and localized lone pairs and describe how delocalized lone pairs participate in resonance and why localized lone pairs do not participate in resonance Difficulty: Hard