ORGANIC CHEMISTRY II CHM 2211 STUDY UNION SPRING 2021

This mock exam covers all of the chapters that you will be tested on.

Please do not rely on this document as your only study resource. There will be other review sessions so be sure to attend those for further help. The answers and recording will be posted on the Study Union website after the session on Saturday, April 24th 12:30-2:30pm.

Best of luck, Sofiana

Klein, David. Organic Chemistry. Third ed., Wiley, 2016.

1) What is the region called that contains all signals that arise from double, triple, as bonds?		arise from double, triple, and X-H
	a. Diagnostic region	b. Fingerprint region
2)	What is the region called that contains signals resulting most single bonds (stretching and bending)?	ng from the vibrational excitation of
	a. Diagnostic region	b. Fingerprint region
3)	A conjugated C=O bond will produce a higher energy bond.	y signal than an unconjugated C=O
	a. True	b. False
4)	Fill in the blank: Useful information can be obtained	by comparing the relative heights of
	the $(M+2)^{+\bullet}$ peak and the $(M)^{+\bullet}$ peak.	
	The structure likely contains a atom if the la	tter peak is approximately one-third
	as tall as the former peak. The presence of a	atom is indicated when these two
	peaks are similar in height.	
5)	What does a signal at M-15 indicate the loss of?	
	a. Alcohol group	c. Methyl group
	b. Ethyl group	d. Propyl group
6)	What does a signal at M-29 indicate the loss of?	
	a. Alcohol group	c. Methyl group
	b. Ethyl group	d. Propyl group
7)	A compound possessing a π bond is unsaturated and unsaturation.	represents one degree of
	a. True	b. False
8)	Calculate the HDI for a compound with the molecula the structural information provided by the HDI.	r formula C ₄ H ₈ ClNO ₂ and identify

Fill in the blank: all protons do not absorb the same frequency because of, a weak magnetic effect due to the motion of surrounding electrons that either or		
10) Chemically equivalent protons occupy id multiple signals.	lentical electronic environments and produce	
a. True	b. False	
When two protons are interchangeable by a. Diastereotopic	y rotational symmetry, the protons are said to be? c. Homotopic	
b. Enantiotopic	d. None of the above	
be?	y reflectional symmetry, the protons are said to	
a. Diastereotopic	c. Homotopic	
b. Enantiotopic	d. None of the above	
13) How can you determine if two protons as a. IR spectrum	re neither homotopic nor enantiotopic? c. A and B	
b. Proton NMR	d. Replacement test	
14) Fill in the blank: the left side of an NMR right side is described as	spectrum is described as, and the	
15) What does the area under each proton signature a. Ratio of protons giving rise to each		
b. Number of protons giving rise to the	he signal	
c. A, B		
16) In order for protons to split each other, the many sigma bonds?	ney must be separated by no more than how	
a. 1	c. 3	
b. 2	d. 4	

17) Select all that apply: what are the characteristics of th	e major product?
□ 1,2-adduct H-Br	☐ Thermodynamic product
□ 1,4-adduct	☐ Low temperature
☐ Kinetic product	☐ High temperature
18) Select all that apply: what are the characteristics of th	e major product?
□ 1,2-adduct	☐ Thermodynamic product
□ 1,4-adduct	☐ Low temperature
☐ Kinetic product	☐ High temperature
19) How can dienes be classified? (Most stable?)	
a. Cumulated	c. Isolated
b. Conjugated	d. A, B, C
20) Why do conjugated dienes exhibit special properties a	and reactivity?
a. Contain one continuous system	c. Contain one continuous system
of overlapping s orbitals	of overlapping sp orbitals
b. Contain one continuous system	d. A, B
of overlapping p orbitals	e. B, C
21) Conjugated dienes experience free rotation about the	C2–C3 bond, giving rise to two
important conformations: s-cis and s-trans. The <i>s-tran</i>	
a. True	b. False
XXXI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 11 11
22) Which molecular orbital contains the π electrons mos reaction?	t readily available to participate in a
a. HOMO	b. LUMO
23) What are the different classifications for pericyclic re	
a. Cycloaddition reactions	c. Sigmatropic rearrangements
b. Electrocyclic reactions	d. All of the above

24) Select all that apply: what are the necessary c reactions to occur?☐ Presence of diene and dienophile	onditions required for Diels-Alder [4+2]
☐ Electron-withdrawing substituent on di	enophile
☐ <i>S-cis</i> conformation on diene	
25) Fill in the blank: an electrocyclic reaction is a	pericyclic process in which a conjugated
polyene undergoes cyclization. In the process	, one_bond is converted into a_bond,
while the remaining_bonds all change their	locations.
26) What is the name for a [3,3] sigmatropic rearrecyclic transition state are carbon atoms?	rangement when all six atoms of the
a. Claisen rearrangement	b. Cope rearrangement
27) Compounds that possess a conjugated π syste promote an electronic excitation called which a. $\sigma \to \sigma$ transition	_
b. $\sigma \rightarrow \sigma^*$ transition	d. $\pi \to \pi^*$ transition
28) Compounds with a greater extent of conjugati a. True	ion will have a longer λ_{max} . b. False
29) What is the oxidation progression of primary	alcohols? Secondary alcohols?
30) Which reagent would you use to brominate at	the benzylic position?
a. Br ₂ /heat	c. NBS/heat
b. HBr/heat	d. None of the above
31) Explain why benzene exhibits great stability.	

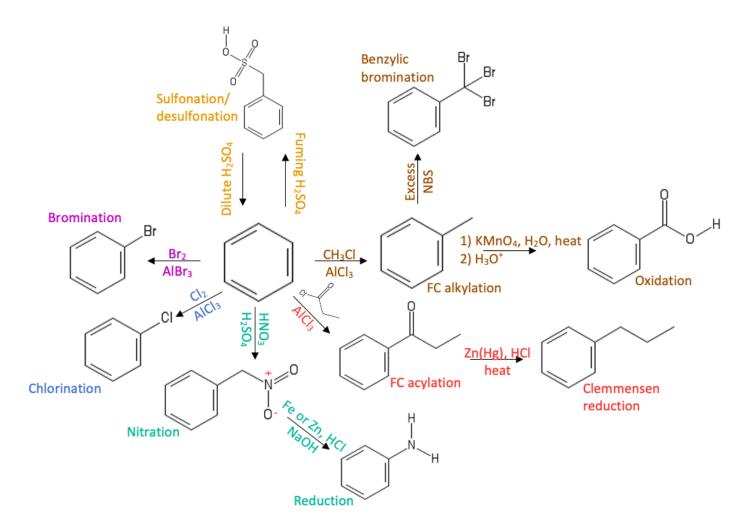
32)		t all that apply: what are the requirements for a Even number of electron pairs		cture to be aromatic? Sp2 hybridized atoms
		Odd number of electron pairs		Sp3 hybridized atoms
33)		the blank: the lone pair in is localized ance, while the lone pair in is delocalized		
34)	What	is the purpose of a Birch reduction?		
35)	How	could you distinguish ¹ H NMR signals of benzy	ylic	versus aromatic protons?
36)	a.	step is involved in electrophilic aromatic substruction of an arenium ion Protonation	c.	on? Loss of a leaving group All of the above
37)		the blank: a Friedel–Crafts alkylation is only e cannot occur. When choosing an alky halogen must be hybridized.		
38)		etivators are ortho-para directors. True	b.	False
39)		eactivators are meta directors. True	b.	False
40)		characterizes strong activators in electrophilic Presence of an EWG		natic substitution? Lone pair adjacent to the ring
	b.	Delocalized electrons outside of	d.	None of the above
		the ring		

	t characterizes strong deactivators in electrophil Powerful EWG	ic aromatic substitution? c. Delocalized electrons outside of
b	Conjugated π bond to an	the ring
	electronegative atom	d. All of the above
42) Fill i	n the blank: when multiple substituents are pres	ent, the more powerful ———
	_dominates the directing effects. A	can be used to control the
regio	ochemical outcome of an electrophilic aromatic	substitution.
43) List	the requirements needed for nucleophilic aroma	tic substitution.
	t intermediate does an elimination-addition reac Arynes	tion occur via? c. Alkynes
b	Benzynes	d. A, B
	n the blank: the suffixindicates an aldehyo	lic group, and the suffix is
	hydes can be prepared via which reactions? Oxidation of primary alcohols	c. Hydroboration-oxidation of
b	Ozonolysis of alkenes	terminal alkynes
		d. All of the above
	nes can be prepared via which reactions? Oxidation of secondary	d. Friedel-crafts acylation
a.	alcohols	e. All of the above
h	Ozonolysis of alkenes	f. A, B, C
	Acid-catalyzed hydration of	1. 11, 2, 0
•	terminal alkynes	
48) Why	are aldehydes more reactive than ketones?	

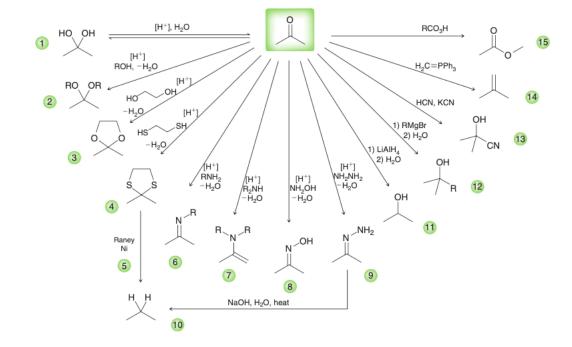
49) What is the general mechanism for nucleophilic addition under basic conditions? a. Nucleophilic attack and protonation		
b. Nucleophilic attack and deprotonation		
c. Nucleophilic attack and proton transfer		
50) Under acidic conditions, a mechanism will on formation of strong acids. a. True	aly be reasonable if it avoids the use or b. False	
51) The reversibility of acetal formation enables a aldehydes?	acetals to function as what for ketones or	
a. Hydrates	c. Strong base	
b. Alcohol group	d. Protecting group	
52) Fill in the blank: in acidic conditions, an aldel		
53) The reduction of a carbonyl group with LiAlF because hydride does not function as a leaving a. True	-	
54) Grignard reactions are reversible, because car a. True	banions function as leaving groups. b. False	
55) What is the Wittig reagent that accomplishes	a ketone to an alkene transformation?	
56) For a Wittig reagent generated from a simple generally the major product? a. (E)	alkyl halide, what alkene configuration is b. (Z)	
57) For a stabilized Wittig reagent, what alkene c a. (E)	onfiguration is generally the major product? b. (Z)	

formed?	
59) List the C-C bond-forming and bond-breaking reaction	ons discussed in this chapter
60) What ¹ H NMR signal is produced by an aldehydic pr a. 6.5-8 ppm	oton? c. 9-10 ppm
b. 10-12 ppm	d. 2-2.5 ppm
61) Fill in the blank: Compounds containing a carboxylic	e acid group are named with the
suffixAcid halides are named by replacin	g the suffix "ic acid" with
Acid anhydrides are named by replacing the	suffix "ic acid" with
Esters are named by first indicating	atom,
followed by the carboxylic acid, for which the suffix	"ic acid" is replaced with
Amides are named by replacing the suffix "ic acid" of	or "oic acid" with Nitriles
are named by replacing the suffix "ic acid" with	
62) Treatment of a carboxylic acid with a strong base, su product?	ch as sodium hydroxide, yields what
a. Carboxylic acid	c. Acid chloride
b. Ester	d. Carboxylate salt
63) What is the pK_a of most carboxylic acids?	
64) Determine the most acidic carboxylic acid structure. a. 2,2-dimethylbutanoic acid	c. 2,2-dinitrobutanoic acid
b. 3-methoxybutanoic acid	d. 2,2-dichlorobutanoic acid
65) What is the order of reactivity for carboxylic acid den	rivatives?

58) When an unsymmetrical ketone is treated with a peroxy acid, how will the product be


66)	What is the general mechanism name for derivative?	when a nucleophile attacks a carboxylic acid	
	a. Nucleophilic acyl addition	c. Nucleophilic acyl elimination	
	b. Nucleophilic acyl substitution	d. None of the above	
67)	Fill in the blank: when a nucleophile attach	cks a carbonyl group to form a	
	, always re-form the	group if possible but avoid expelling H ⁻ or C ⁻ .	
68)	What is the purpose for two equivalents of	of ammonia when treated with acid chlorides?	
69)	Name the process when carboxylic acids alcohol in the presence of an acid catalys a. Saponification	are converted into esters when treated with an t and is reversible. c. A, B	
	b. Fischer esterification		
70)	Fill in the blank: in the presence of cataly	tic acid or base, a ketone will exist in	
	equilibrium with an		
	The_position of an enol can function as	a nucleophile.	
71)	into an enolate.	and completely convert an aldehyde or ketone	
	a. True	b. False	
72)	Elimination of water in an aldol condensa	ation reaction occurs via what mechanism?	
73)	What is the name of the product formed i	n a Claisen condensation reaction?	
74)	Select all that apply: for unsymmetrical k with NaH?	etones, what features are specific to reactions	
	☐ Low temperature	☐ Thermodynamic enolate	
	☐ Room temperature	☐ Less hindered position	
	☐ Kinetic enolate	☐ More hindered position	

75)		ry the products form Carboxylic acid	ned in malonic ester and aceto c	acetic ester synthesis. . A, B
	b. 1	Methyl ketone		
76)	What i	s the nucleophile in	a Michael reaction? Electrop	hile?
77)	Fill in	the blank: regular e	nolates do not serve as Micha	el donors, but the desired Michael
	reactio	n can be achieved v	vith a	•
78)		nechanisms are inve Aldol and Claisen	olved in a Robinson annulatio	n?
	b.]	Intramolecular aldo	l and Michael addition	
	c.]	Intramolecular aldo	l and Dieckmann	
79)		can the lone pair on Acid	the nitrogen atom of an amino	e function as? . Nucleophile
	b. 1	Base	e	. A, C
	c.]	Electrophile	f	. B, D
80)	Fill in	the blank: amines w	vith fewer than five carbon ato	oms per functional group will
	typical	ly be	The boiling point of an amin	e increases as a function of its
	capacit	ty to form	bonds. Aryl amines are less l	basic than alkyl amines, because
	the lon	e pair is	groups sl	ightly increase the basicity of aryl
	amines	s, while	groups significantly	y decrease the basicity of aryl
	amines	S.		
81)	Betwee	en pyridine and pyr	role, which is the stronger bas	e? Weakest base?


undergoes exhaustive alkylation? a. Tertiary amine	c. Primary amine
·	·
b. Quaternary ammonium salt	d. Ketone or aldehyde
83) What is the intermediate structure prepared a. Amide	l via reductive amination in amines? c. Imine
b. Nitrile	d. Enamine
84) How is the alkene formed in the Hofmann	elimination process?
85) Select all that apply: what reactions are use aryldiazonium salts?	
☐ Sandmeyer	☐ Aqueous treatment
□ Schiemann	☐ Azo coupling
86) What compounds are considered strong basesa. R-Lib. R-MgIc. R₂CuLi	ses and strong nucleophiles? d. All of the above e. A, B
87) What is a similarity between all of the coup mentioned in this chapter?	
observed to be highly regioselective, with t	
89) How are simple sugars generally classified	?

82) What is the desired product when an excess of alkyl halide is used and ammonia

90)	Fill in the blank: For all $_{\rm D}$ sugars, the chiral center farthest from the carbonyl group has theconfiguration. An $_{\rm L}$ sugar is the of the corresponding $_{\rm D}$ sugar and is not necessarily levorotatory.
91)	What is the most abundant D aldohexose in nature?
92)	In the α anomer the hydroxyl group at the anomeric position is what to the CH ₂ OH group? a. Cis b. Trans
93)	In the β anomer the hydroxyl group at the anomeric position is what to the CH ₂ OH group? a. Cis b. Trans
94)	What is the reduced form of an aldose or ketose? Oxidized form?
95)	How does RNA differ from DNA?
96)	Fill in the blank: For fatty acids, the melting point with increasing molecular weight. The presence of a double bond causes a decrease in the melting point. Triglycerides with fatty acid residues generally have melting points than triglycerides with fatty acid residues.
97)	What is the ring fusion conformation in most steroids, giving their rigid geometry?

- 1. Hydrate Formation
- 2. Acetal Formation
- 3. Cyclic Acetal Formation
- **4.** Cyclic Thioacetal Formation
- 5. Desulfurization
- 6. Imine Formation
- 7. Enamine Formation
- 8. Oxime Formation
- 9. Hydrazone Formation
- 10. Wolff-Kishner Reduction
- **11.** Reduction of a Ketone
- 12. Grignard Reaction
- 13. Cyanohydrin Formation
- 14. Wittig Reaction
- 15. Baeyer-Villiger Oxidation

Preparation of Carboxylic Acids

Preparation and Reactions of Acid Chlorides

Preparation of Esters

Preparation of Amides

Reactions of Carboxylic Acids

$$\begin{array}{c|c} O & \xrightarrow{1) \text{ xs LiAlH}_4} & H & H \\ OH & \xrightarrow{2) \text{ H}_3 \text{O}^+} & R & OH \\ \hline & \text{BH}_3 \cdot \text{THF} & \end{array}$$

Preparation and Reactions of Acid Anhydrides

Reactions of Esters

Reactions of Amides

Preparation of Nitriles

Reactions of Nitriles

$$H_3O^+$$
 $R-C \equiv N$

1) NaOH, heat

2) H_3O^+
 $R-C \equiv N$

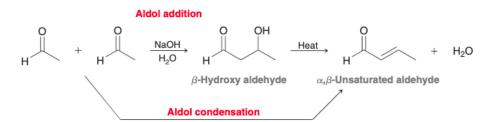
1) RMgBr

 $R = R$
 $R = R$
 $R = R$
 $R = R$

Alpha Halogenation

Of Ketones

$$\begin{array}{c} O \\ \hline \\ Br_2 \\ \end{array} \begin{array}{c} O \\ Br \\ \end{array} \begin{array}{c} H_3O^+] \\ \end{array}$$


Of Carboxylic Acids (Hell-Volhard-Zelinsky Reaction)

Haloform Reaction

$$\begin{array}{c}
0 \\
\hline
1) \text{ NaOH, Br}_2 \\
\hline
2) \text{ H}_3\text{O}^+
\end{array}$$

Aldol Reactions

Aldol Addition and Condensation

Crossed Aldol Condensation

Intramolecular Aldol Condensation

The Malonic Ester Synthesis

Michael Additions

Stabilized Carbon Nucleophiles

The Acetoacetic Ester Synthesis

The Stork Enamine Synthesis

The Robinson Annulation

Claisen Condensation

Claisen Condensation

Crossed Claisen Condensations

Intramolecular Claisen Condensation (Dieckmann Cyclization)

Alkylation

Via Enolate Ions

Preparation of Amines

From Alkyl Halides

Br
$$\xrightarrow{\text{NaCN}}$$
 $\xrightarrow{\text{S}_{\text{N}}2}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{1)}}$ xs LiAlH₄ $\xrightarrow{\text{P}}$ $\xrightarrow{\text{P}}$ $\xrightarrow{\text{P}}$

From Carboxylic Acids

From Benzene

The Azide Synthesis

The Gabriel Synthesis

Via Reductive Amination

Reactions of Amines

Acylation

$$R-N: H \longrightarrow R \longrightarrow H \longrightarrow H$$

Hofmann Elimination

Reactions with Nitrous Acid

Reactions of Aryldiazonium Salts

Sandmeyer Reactions

Fluorination (Schiemann Reaction)

Azo Coupling

$$R = \text{Azo group}$$

$$R = \text{In activating group}$$

$$R = \text{In activating group}$$

Reactions of Nitrogen Heterocycles

Organolithium and Organomagnesium Compounds

Preparation

$$R - X \xrightarrow{\text{Li (2 eq.)}} R - \text{Li } + \text{LiX} \qquad \qquad R - X \xrightarrow{\text{Mg}} R - \text{Mg} - X$$

Organocuprates

Preparation of Gilman Reagents

Coupling Reaction of a Gilman Reagent with an Organohalide

Simmons-Smith Reaction

Stille Coupling

Preparation of Organostannanes

$$R{-}X \xrightarrow{\begin{subarray}{c} Mg\\ Et_2O\end{subarray}} RMgX \xrightarrow{\begin{subarray}{c} Bu_3SnCI\end{subarray}} R{-}SnBu_3$$

Coupling Reaction of an Organostannane with an Organohalide

Coupling Reaction of an Organoboron Compound with an Organohalide

Negishi Coupling

Preparation of Organozinc Compounds

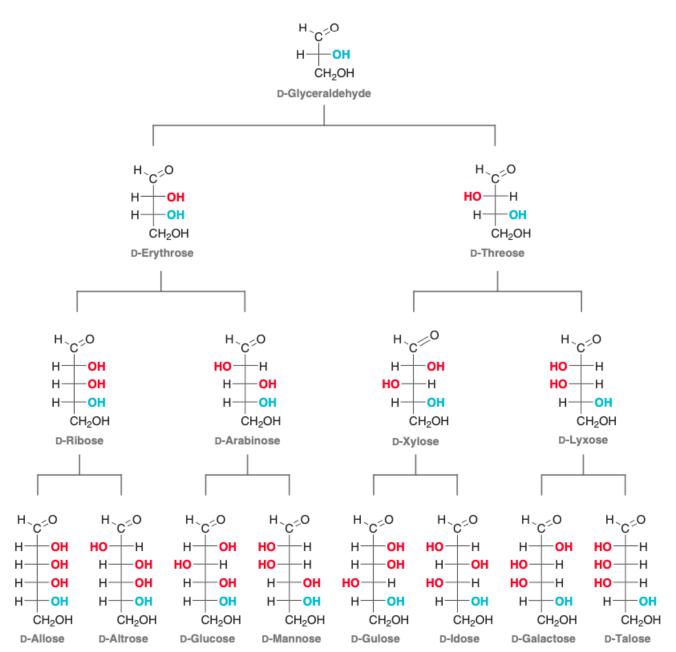
Coupling Reaction of an Organozinc Compound with an Organohalide

Coupling Reaction of an Organoaluminum Compound with an Organohalide

The Heck Reaction

Alkene Metathesis

Catalyst
$$(E + Z \text{ isomers})$$

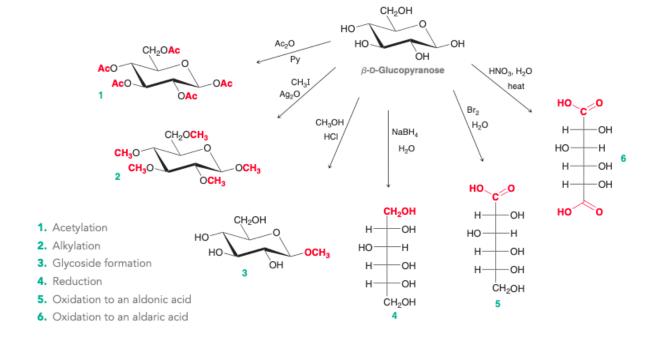

$$+ CH_2 \\ CH_2$$

$$+ CH_2 \\ CH_2$$

$$(E + Z \text{ isomers})$$

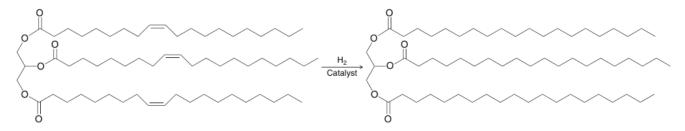
Ring-Closing Metathesis

Ring-Opening Metathesis

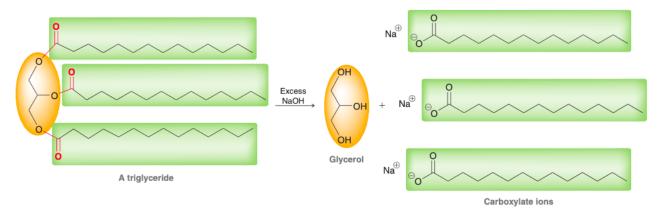

Hemiacetal Formation

Pyranose Rings

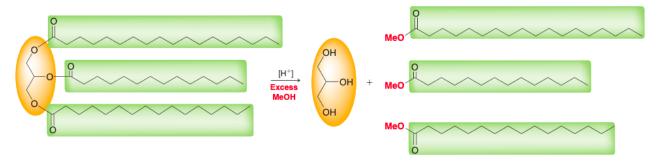
Furanose Rings



Reactions of Monosaccharides



Reactions of Triglycerides


Hydrogenation (production of margarine)

Saponification (production of soap)

Transesterification (production of biodiesel)

Klein, David. Organic Chemistry. Third ed., Wiley, 2016.