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1. Introduction 

General spectral range of electromagnetic radiation with a wavelength greater than 750 nm 

(i.e. with the number of wavelength below 13000 cm-1) bears the name of the domain 

infrared (IR). In this field samples absorb electromagnetic radiation due to transitions of 

vibration of the structure of molecules, molecular transitions in vibrations crystalline 

network (if the sample is in the solid state of aggregation) or due to transitions of molecular 

rotation. Subdomain of spectral wavelengths between 2500 - 50000 nm (respectively the 

wave numbers 4000 to 200 cm-1) bears the name of the middle infrared domain. 

From the point of view of analytical control of medicinal products, this domain is the most 

used. At the base of absorption is being generated electromagnetic radiation in this area 

spectral transitions are the vibrations of individual molecules or of crystalline network (if 

the sample examined is solid). Show effects such transitions caused by the vibrations of 

individual molecules provides information about molecular structure of the sample 

examined, and show effects such crystalline network to identify a particular forms of 

crystallization of the substance of interest.  

The most frequent use of the absorption spectrophototometry in the middle infrared field 

lies in the identification of substances through molecular vibration. The wavelength (i.e, the 

wave numbers) of the of the absorption band are characteristic chemical identity of the 

substance in question. The intensity of the absorption bands allows quantitative analysis of 

the samples but, unlike in the ultraviolet and visible, in the infrared field diffuse radiation is 

much more refreshing, and for this reason quantitative determination infrared, are affected 

by notable errors. 

From the standpoint of analytical use, the spectra of molecular vibration is enjoying 

increased popularity in comparison to the study of the crystal latice’s vibrations. A molecule 

may be considered to be a vibrator with more than one degree of freedom, able to execute 

more modes of vibration. In each mode of vibration every atom in the molecule oscillates 

about their own position of equilibrium. Such oscillations have different amplitudes for 
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different atoms of the molecule, but at a certain mode of vibration, each atom in the 

molecule oscillates with the same frequency. In other words, the frequency of oscillations of 

the atoms in molecule is characteristic of a particular mode of oscillation of the molecule. 

A molecule composed of N atoms has several possible modes of oscillation. In each mode of 

oscillation (in principle) all the atoms of molecule perform periodic shifts around level 

position with a frequency of oscillation mode which is a feature of the assembly. Because 

each of the N atoms can run periodic shifts in 3 perpendicular directions each other, the 

assembly of N atoms can have 3N ways of motion. But, those displacements that correspond 

to moving molecule as a whole (not deform the geometry of the molecule) and movements, 

which correspond to entire molecules rotation about an axis (also without deforming the 

molecule’s geometry), do not represent actual oscillation (associated with actual 

deformation of the molecule).  

These displacements (3 in number) and rotations around the three orthogonal axis (also 3 in 

number) are eliminated of the total number of atomic movements possible. Therefore, a 

molecule is, in general, (3N - 6) distinct modes of oscillation and in each of these (3N - 6) 

modes of oscillation each atom oscillates with frequencies characteristic individual modes of 

vibration. A special case represents molecules whose structures are linear, because in these 

cases the inertia of the molecule, in relation to the axis flush by molecule, it is practically 

zero. For this reason, in the case of a linear molecules consisting of N atoms, the number of 

modes of vibration is 3N - 5. 

2. The vibration of a diatomic molecule  

For an understanding of the vibrations of a polyatomic molecule, should be first a 

preliminary analysis of the oscillations of a molecule composed of two atoms linked by 

covalent binding. Such a molecule, with N= 2 atoms, shows N = 3x2 - 5 = 1 modes of 

vibration. The steering as defined by the covalent binding of the two atoms is the only 

special steering, it is ordinary to accept that atoms will move (in a periodic motion) after 

direction of the covalent connection. Assembly oscillation may be considered in relation to 

several systems of reference. It may choose as origin of the system of reference the center of 

gravity of the diatomic assembly.  

In this case the both atoms perform periodic shifts in relation to this reference point. The 

mathematical analysis of oscillations is advantageous to place the reference origin in one of 

atoms. In this case, however, in the place of mass mA and mB of the atoms of the molecule A-

B are used reduced mass ( noted with µ ) of the assembly dimolecule. Reduced mass is 

calculated from the mA and mB of atoms of the dimolecule assembly in accordance with 

following relationship. 

 
1 1 1

A Bm mµ
= +  (1) 

Rigorous deduction of the relationship (1) can be found in literature on the subject. During 

the oscillation, the kinetic energy, Ec, and potential energy Ep of the assembly are varying, 

periodically. If the system does not radiate energy to environment, or do not accept energy 
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from the environment, then the amount of Ec and Ep remains constant during oscillation. 

Potential energy is dependent on the single variable of the diatomic system (namely, the 

deviation of the Δr inter-atomic distance to r0) which is variable in time. Potential energy 

dependence of the Δr (i.e. lengthening the deformation of the diatomic molecule) is 

expressed, in the harmonic approximation, of the relationship (2). 

 2 2
0

1 1
( )

2 2
pE k r k r r= ⋅ ⋅ Δ = ⋅ ⋅ −  (2) 

In the relationship (2) the coefficient 'k' is constant of force, size that characterises the strength 

of inter-atomic connection in the molecule. On the basis of expression (2) the potential 

energy of the diatomic assembly, using the mechanics in this quantum mechanics, may 

deduct quantified values ( 'allowed') of diatomic oscillator.  

These values of energy 'allowed' shall be calculated on the basis of the expression (3) by 

substituting for the number of quantum vibration (nvib) integers numbers (0, 1, 2, . . 

 0

1
( )

2
vib vib c p vibE n E E h nν

 
= + = ⋅ ⋅ +    (3) 

The expression (3) shows that the energy Evib (the sume of the kinetic energy Ec and 

potential energy Ep) has a state of vibration allowed to diatomic system depends on the 

number of vibration quantum nvib. 

The lower value of energy (in the fundamental vibration’s state diatomic system) is obtained 
by replacing nvib= 0 in the relationship (3). In the relationship (3) h is the size Planck 
constant. (6,626075 x 10-34 Js). If diatomic molecule fundamental changes from the vibration 
(nvib = 0) in the state of vibration excited immediately above (nvib = 1), then change of 

energy ΔEvib(01) is expressed by the relationship (4). 

 ΔEvib(01) = h.ν0 (4) 

This value to change the vibration energy determines how often (or the number of 

wavelength) at which diatomic molecule shows preferential absorption of radiation.  

In principle, diatomic molecule can pass from the fundamental (nvib = 0 ) in a excited state 

(for example, corresponding nvib = 2) but, those quantum transitions in which the number is 

changing more than one establishment are prohibited by the rules of selection.  

Rigorous justification of the rules of selection is treated in detail in literature on the 

subject.  

Preferred frequency (ν0 ), the favorite number of wave nvib = 0 to which a small diatomic 

molecule absorbs radiation (hence to which generates a strip of absorption) as the transition 

(01), is expressed quantitatively the relationship (5) 
 

 0 0

1 1
;

2 2

k k

c
ν ν

π µ π µ
= ⋅ = ⋅

⋅ ⋅ ⋅
  (5) 
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In the relationship (5) 'C' is the speed of propagation of electromagnetic radiation in a 

vacuum. At the harmonic approximation, the dependency Δr is sinusoidal. But in the case of 

molecules, the potential energy is dependent on the momentary deflection Δr of the system 
in a manner more complicated, so the approximation describes successfully the harmonic 
oscillations limited to a diatomic molecules. As a result of difficulties with mathematical 
order but the description of molecular oscillations, especially in the case poliatomice 
molecules, it accepts harmonic approximation."  

 

2

( )01
r r

pE De e β− ⋅ − 
= ⋅ −    (6) 

Figure 1 represents the dependency of potential energy Ep of a diatomic molecules to the 
momentary distance (r) in a approximately more faithful than the harmonic (based on 
parabolic dependence). In a more or less accurate in the description diatomic vibration of 
molecules, energy dependence potential (Ep ) by the distance inter atomic (r) is described by 
a function of type Morse (6) in place of a relationship of type (2). 

 

Fig. 1. Dependency of potential energy Ep of a diatomic molecule to the momentary distance  

In the function (6.) the coefficient β depends on the mass reduced (µ) of the assembly 

diatomic, in accordance with relationship (7). 

 2
0 2 Deβ ν π µ= ⋅ ⋅ ⋅ ⋅  (7) 

Continuous curve in figure 1 graphically represents the function (6). Morse function curve is 

compared with the curve corresponding harmonic approximation (parable with the 

interrupted curve).  
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The horizontal lines, arranged on the inside of the cavity Morse curve, shows the values 

allowed (quantifiable) of the energy of vibration of the assembly diatomic. Advanced to a 

deformation of the length of connection inter atomic, the energy potential of deformation 

tends toward a limit value (D0) over which the energy of deformation of the assembly shall 

cease to be quantified. 

In an approximation more accurate, 'anharmonic', in the phenomenon of vibration, the 
amounts permitted of the energy of oscillation are expressed a relationship similar to (3), 
with the difference that the anarmonic approximation. Status of vibration energy depends 
on the binomial nvib quantum number after an expression of the degree 2 in relation:. 

 

2

0 0

0

1 1
( ) ν ν

2 2

1

2

vib vib c p vib vibE n E E h n h x n

k
ν

π µ

   
= + = ⋅ ⋅ + − ⋅ ⋅ ⋅ +      

= ⋅
⋅

 (8) 

The coefficient 'x' in the relationship (8) characterized quantitatively anarmonicity of 
molecule diatomic vibration, i.e. the drift behavior system from the model of harmonic 
vibration. 

3. Potential energy dependence of the inter atomic distance of a diatomic 
molecule in Morse potential energy approximation 

In inharmonic approximation of the vibration of diatomic molecules of the selection rule, 
relating to the variation in nvib allowed for the quantum number, it is not so strict as in the 
case described harmonics. The model does not exclude the possibility inharmonic 
transitions between the status of vibration to which variation nvib quantum number to be 
2,3 , etc. , in practice IR spectrophotometry.  

Transitions associated with variations in higher than the unit are called harmonics of the 
upper fundamental transition (i.e., the transition that starts at the same lower status, but for 

which Δnvib = 1 ). 

The appearance of the absorption bands assigned to upper harmonics inherent in spectra are 
observed frequently in IR (especially in the case polyatomic molecules), but as a rule occur 
with intensities that are smaller than corresponding fundamental bands.  

Strips of the upper harmonics associated with fundamental tape appear at frequencies (or 
wave numbers) which are approximately multiples whole frequency (or the wave-number) 
fundamental. 

Another practical consequence of the inharmonicity of vibration of molecules is the rise of 
the inter-combination bands in the IR absorption spectra.  

These bands of absorptions are observed at frequencies equal to the sum or the difference 
between two frequencies or fundamental frequency of a fundamental and a harmonic one. 
By cause of bands of combination appear various normal modes of oscillation of the 
molecule. The high harmonics and the bands of combination in IR absorption spectra cause 
considerably complications in their interpretation. 
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4. Vibration of polyatomic molecules  

In the case the vibration diatomic molecules atoms can oscillate just in the direction of 

connection covalent) binding atoms. In the case of molecules consisting of several atoms (N 

atoms) the description of the assembly oscillations, even in harmonic approximation, is 

significantly more complicated. In principle, each atom in the structure molecule can 

execute, independently of the other atoms of the same molecule, the three-way oscillation 

linear independent (after three axes orthogonal coordinate attached each of atoms).  

Therefore, the N atoms can run periodic shifts after 3N directions. In other words, a 

polyatomic molecule, consisting of N atoms, has 3N degrees of freedom of movement of 

constituent atoms. From this number, not all directions of movement of individual atoms 

correspond to deformations of real three-dimensional structure of the molecule, as 

oscillations in which each constituent atom is moving at the same time in the same direction, 

with the same amplitude and phase. They are equivalent to move whole molecules 

(translation molecule) without deforming them. 

Also, movements that the N atoms can be synchronized in such a way that the assembly 

rotation movements correspond to atomic molecule as a whole, without causing structural 

deformation. Whereas entire molecule can be translated into 3 directions linear independent 

of each other and can rotate around a three axis-oriented perpendicular to each other. Of the 

total number of 3N directions of movement are deleted atomic 6 shifts (that is 6 degrees of 

freedom) in order to obtain the number (3N - 6) for detailed rules for the movement of 

atoms, therefore the same number of modes of oscillation actual molecular structure. .  

It must be remembered, however that if molecule is not free, but is linked to a structure with 

crystalline comparable forces with those which act between atoms of molecule, then moving 

molecule as a whole from its position of equilibrium means a deformation, But, in this case 

is not of the molecule, instead of the structure supra molecular (crystalline lattice) in which 

molecule is a constituent. 

In the particular case of a molecules polyatomic (with N atoms) having structure linear (all 

the atoms constituents are willing co-linear), the number of actual oscillation of the molecule 

is equal to (3N - 5). In this case is deleted of the total number of 3N possible directions of 

displacement 3. Degrees of freedom correlated with translation no deformation of the entire 

molecule and only 2 degrees of freedom corresponding to rotation molecule around two 

mutually orthogonal axis and perpendicular to the longitudinal axis of the molecule. 

The explanation lies in the fact that in this case of the inertia of the molecule to the third axis 

of rotation (the flush to the longitudinal axis of the molecule) is vertical, so that rotation 

around this axis is virtually builds up kinetic energy. 

At each of the (3N - 6) (i.e. (3N - 5)) possible ways of real oscillation, in principle each of 

constituents of atoms vibrating molecule running around their own positions of 

equilibrium. But in a particular mode of oscillation, individual atoms oscillate after other 

directions and with other amplitudes, but with the same frequency (feature mode of 

vibration in question). Directions and the amplitudes individual travel, and the frequency 

(common) of oscillation are characteristic mode of vibration. 
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The vibrating atoms in a molecule polyatomic can be described as a function of internal 
coordinates instead of cartesian coordinates. Such are eliminated those movements which 
correspond translations to atoms and rotation molecule without deformation. Internal co-
ordinates of a molecules polyatomic can be defined in different ways. How to define the 
most frequently involves the covalent connection between pairs of atoms connect (lab for 
atoms a and b), Angles between connections covalent) binding centered on an atom 

common (αabc for atoms a and c bound by common atom (b) and diedral angles θabcd (the 
angle of the plans P and R containing three connections between four atoms covalent) 
binding) (Figure 2). 

 

Fig. 2. Define Internal coordinates l , α and θ  

Each vibration mode of the molecule can be described as a time-dependent periodic 

variation of all the internal coordinates. For a specific molecular structure, consisting of N 

atoms, the whole structure runs ((3N-6) or (3N-5)) modes of preferential oscillations, 

involving in (3N-6) (or (3N-5)) ways the internal coordinates of the molecule. These 

“preferential” types of oscillations represent the normal oscillations of the molecule. In each 

normal type of oscillation, all the internal coordinates of the molecule oscillate at a common 

frequency (in principle), specific for that type of oscillation. 

In each normal mode of oscillation, the internal coordinates are involved in varying degrees. 

For a normal oscillation is characteristic of the internal coordinate of the molecule (e.g., a 

covalent bond length) is more involved than the others, then it may be said (with some 

tolerance) that normally oscillation that the respective oscillation type is characteristic for 

the respective internal coordinate (e.g., the length of the covalent bond). 

Figure 3 represents the fine vibration structure of the fundamental electronic state and of the 

first excited electronic states, for the case of a hypothetical triatomic molecule. This type of 

molecule has 3·3-6=3 normal vibration modes. Oscillation modes are also represented in 

Figure 3, indicating the direction and the direction of the relative shift of the individual 

atoms in one of the half period of oscillation. Each electronic state consists in a number of 

vibration states characterized by the vibration quantum numbers nvib. For each normal way 
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of vibration (indicated by “1”, “2” and “3” in Figure 3), the vibrations in the electronic states 

may be differently arranged. In other words, for different normal types of vibrations, the 

fundamental electronic state is differently “split” in substrates of vibration. In practice, the 

most probable vibrational transition occurs between the vibration states corresponding to 

the quantum numbers nvib=0 and nvib=1 for each normal vibration (transitions represented 

in Figure 3 by bold arrows). There is only a diminished probability to also occur, for every 

type of normal vibration, transitions between the vibration states corresponding to the 

quantum numbers nvib=0 and nvib=2 (transitions depicted in Figure 3 by dashed arrows). 

This kind of transition at a normal vibration type generates its first superior harmonic.  

 

Fig. 3. Fine vibration structure of the fundamental and first excited electronic states 

The transition between the vibrational states is initiated by the absorption of radiation with 

proper frequency (or wave number). The transition is visualized, in principle, by the 

appearance of the absorption band in the absorption spectrum of the analyzed substance. 

The incident radiation on the sample. Probability that is able produce transitions between 

the vibrational states of the fundamental electronic state), is located in the infrared (IR) 

domain. In principle, the IR absorption spectrum of a molecule contains a number of 

absorption bands that is equal to the normal modes of vibration of the molecule in question. 

Thus, in the case illustrated in Figure 3, the molecule would present the first absorption 

band corresponding to the normal mode of vibration no. "1" at the highest value of the wave 
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number (the energy gap is maximum), the second absorption band corresponding to the 

normal mode of vibration no. "2", at an intermediate wave number (the energy gap is 

intermediate) and the third absorption band corresponding to the normal mode of vibration 

no."3", at the lowest value number of the wave number (the energy gap is the smallest). The 

superior indices of the vibration quantum numbers that are present in Figure 3 

( )1 2 3
vib vib vibn ,n ,n  refers to the serial number of the respective normal vibration mode. The 

above made statement made, that each normal vibration type generates an absorption band 

in the IR spectrum of the analyzed substance, is true only in principle. It is common that not 

all the normal vibration types of a molecule (3N-5 or 3N-6, for an N atoms molecule) to 

present absorbtion bands.  

If the covalent bonds in a molecule (or a molecular fragment) have comparable force 
constants or the masses of the atoms involved in the covalent bonds are close, then those 
atoms are involved, to some extent, in all possible normal modes of vibration of the 
molecule (or molecular fragment). In these situations, the individual internal coordinates 
(bond lengths or individual angles) do not independently vibrate; their vibrations are 
coupled, generating the appropriate number (N) of normal vibrations. 

If one of the atoms linked by a covalent bond has a much smaller mass than the other atom 
(for example, the C-H, N-H, O-H, S, H, P-H bonds), the reduced mass of the ensemble of 
bound atoms is almost equal to the mass of the lighter atom and in this case the oscillation 
of the bond length is quasi-independent from the oscillation of the rest of the molecule. It 
may be said, in this case, that the absorption band associated with the normal mode of 
vibration affects the covalent bond, and it is characteristic of the presence of that chemical 
bond in the molecule structure. 

On the other hand, if two atoms in a molecule are connected by a significantly stronger 
covalent bond then the other covalent bonds of the molecule (e.g., the isolated double or 
triple bond, as in one of the cases: >C=C<, >C=O, >C=N-, -N=N-, -C-C-), than the vibration 
of the respective bond can be also considered quasi-independent from the oscillation of the 
rest of the molecule. In this case, we can say that in one of the normal modes of vibration of 
the molecule practically occurs only the elongation oscillation of that bond, so the optical 
absorption band, generated in the IR spectrum by the normal mode of vibration, is 
characteristic for the presence of that covalent bond 

Often, a group of atoms (or even a functional group) have their "own" normal ways of 
vibrations, quasi-independent of the rest of the molecule vibrations. In these situations, the 
normal "own" modes of the group of atoms is manifested in the IR absorption spectrum as a 
corresponding number of "group characteristic bands". An example is the characteristic 
band of the amidic functional group.  

5. Practical aspects of infrared spectrophotometric analysis 

The IR absorption spectrum is the graphical representation of a measure of energy 
depending on a measure of wave of the involved radiation. IR practice has established the 
use of the wave number (reciprocal of the wave length and proportional to the frequency of 
the radiation) and of the percentage transmission (T%) or absorbance (A), as related to the 
energy of the radiation.  
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There are significant differences between the UV-Vis and IR absorption spectra. IR spectra, 
even those of samples in condensed states, are generally characterized by a large number of 
well defined, sharp bands, with easily localizable positions. Therefore, IR spectra are useful 
for the fast, non-destructive identification of the chemical substances, and it is extremely 
unlikely that two substances that are chemically different to have, accidentally, identical IR 
spectra.  Instead, the quantitative determinations in the IR spectral range are more difficult 
because diffuse radiation in the IR spectrophotometers is greater than in the UV-Vis 
spectrophotometer, so the error sources affect the results of quantitative determinations 
more than in the UV or Vis range.  

Another difference between the two spectral areas consists in the transparency (and 
usability) of auxiliary materials (glass, optics, etc.). Spectra of liquid samples are recorded 
using similar cells to those used in UV-Vis spectrophotometry, except that glass walls are 
made of specific transparent materials (NaCl, KBr, KCl, ZnSe, As2S3, KRS-5, and others). The 
thickness of the sample in IR spectrophotometry are usually much smaller (0.05 mm – 1 
mm) than those found in the UV-Vis absorption spectrophotometry (1 – 10 mm).  

The IR absorption spectra can be recorded for solid, liquid or gaseous samples. The most 
common presentation state of samples in drug control is solid state. Commonly practiced 
method for obtaining IR spectra of substances or mixtures of pharmaceutical interest in solid 
form, consists in incorporate them into a solid, microcrystalline medium (for exemple 
potassium bromide). This method of sample preparation is called "inclusion in the tablet (or 
pill) of potassium bromide." To achieve such a compressed is triturated a small amount 
medium (1-2 mg) of solid interest with 200-250 mg of potassium bromide microcrystalline. 
Potassium bromide used for this purpose must be high purity (purity "for spectroscopy") 
and dried before use for several hours at 180 ° C. The triturating of solid mixture containing 
the substance of interest and potassium bromide, is running in agate mortar medium (glass 
or porcelain mortar is not appropriate). After the grain sufficiently fine, solid mixture is 
placed in a special mold will compress high pressure medium (about 10 ton-force) with a 
hydraulic press. Before applying pressure, air is removed from the stencil to prevent 
inclusion of air microbubbles in solid mass during pressing, that may produce 
microfissure in mass tablet at the end pressure . During pressing, the potassium bromide 
microcrystalline are sinterising forming a solid transparent, optically homogeneous. A 
compressed pellet carried out in ideal conditions is transparent without opaque area. In 
the spectral range 4000 - 300 cm-1 potassium bromide shows very good transparency, 
which is why this mode is used preferentially for sample preparation. Whereas, the 
included technique of sample in a potassium bromide matrix keeps crystallization form of 
the sample solid, the IR spectrum obtained by compression in potassium bromide is 
dependent from the crystallization of the sample. For substances that shows polymorphic, 
the IR absorption spectrum of solid samples , included in compressed potassium br An 
essential difference between the UV-Vis spectra registration procedure and the IR field is 
that in the UV-Vis domain, the solvents absorbtion is insignificant, so their absorption can 
be compensate, in the case of IR domain all used solvents presents its own band 
absorption, sometimes even more powerful, that in these areas of the spectrum of energy 
received by the detector is too small to differentiate the strong absorption of the solvent 
from the sample absorption that exceeding only in small extent the solvent absorbtion. For 
this reason, in the IR absorption spectra of the solutions are frequently areas where the IR 
radiation detector is inactive, and the signal recorded in these areas is irrelevant. To view 
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the sample spectrum in these areas, is repeat the recording spectrum in another solvent 
that is transparent.omide, allows the identify the crystallization form of the interest 
substance. Another technical detail is related by the fact that in IR absorption domain the 
solvents presents absorption bands, sometimes quite strong. Some IR spectrophotometers 
operating in double beam mode (similar to the double beam spectrophotometers used in 
the spectral UV-Vis). In the case of UV-Vis spectrophotometers is introduced, in the right 
reference optical path, a vat filled with pure solvent, and the right of the second optical 
path is introduced a vat of the same thickness, filled with solution (solvent and solute). 
The electronics parts of the spectrophotometer compare the absorbances of vats located in 
the two optical paths and subtract the absorbance of the solvent, located in the reference 
route, from solution absorbances located in the route of sample. Because the interest 
substances absorbance is marked in UV-Vis, and the absorbance of solvent is insignificant, 
the difference between the absorbances associated with two optical route is almost always 
positive. 

In IR domain, where the absorbances of dissolved substances are comparable with those of 

solvents. It is easily understood that if a certain place in the spectrum (the number of 

wavelengths ΰ  ) the solvent has a strong absorption band (molar absorptivity large solvent 

ε0( v ) and the solute does not absorb significantly at that wavenumbers (ε( v ) small), then, 

the same layer thickness "d", the absorbance values measured in the two opticalroute 

(Aref( v ) for route reference and A( v ) for solution route), are expressed by the relations (9). 

 
ref 0 0

*
0 0 0

A (v)  d  ε (v) C

A(v)  d ε (v) C  d ε (v) C

= ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

 

  
 (9) 

In the (9) relation, C0 şi C*0 represents molar concentration of pure solvent in the two cells 
(placed in reference route and in the sample route respectively), and C is the molar 
concentration of solute in the cells placed in the route sample. It is obvious that C*0 < C0 
because in the sample cells is in addition to solvent, a quantity of solution. The signal 

recorded by spectrometry, ΔA( v ), to the number of wave ( v ), is the difference between the 
both absorbance of relationship (9) 

 ΔA( v )= A( v ) – Aref( v ) = d.[ . ε0( v )·C*0 – C0) + ε( v ).C] (10) 

The first term in the right side of the parenthesis right above relationship is negative, 

because C*0 < C0 . If  ε0( v ).is significantly higher than ε( v ), then it can happen that ΔA( v ) 

to have a negative value for the number of wave v . Obviously, such a negative value of 

absorbance is an artifact, without spectrophotometric real significance. To overcome this 

problem, manifested in solutions recording spectra, are used in the reference route a cell 

with variable thickness. The solution is placed in a cell of fixed thickness"d*", lower than 

thickness"d", in the reference route. The absorbances A*ref( v ) and A( v ), and the difference 

of absorbances, ΔA*( v ), associated with the two optical route, the new working conditions, 

are given by the relations (11). 

 
( ) ( )

( ) ( ) ( )
ref 0 0

*
0 0

A v d ε v C

A v d ε v C d ε v C

∗ ∗= ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

 

  
 (11) 
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If we choose suitable variable thickness of the cell in the reference route, the expression 

ΔA*( v ) = A( v ) – A*ref( v ~) = ε0( v ).(d.C*0 – d*.C0) + d.ε( v ).C 

If we choose suitable variable thickness of the cell in the reference route, the expression 

(d.C*0 – d*.C0) is null for any value of wavenumber (as the expression does not depend on 
the number of wavelengths), so the choice of suitable thickness d* resolve the problem 
reported for the entire spectrum. In this case the absorbance of the solute depends on its 
concentration, according to the relation BLB. 

 ΔA*( v ) = A( v ) – Aref( v ) = d.ε( v ).C (12) 

Because IR absorption spectra are generated by transitions between vibrational states of 
sample molecules and the frequency of normal modes vibration depends (in addition to the 
force constants associated with deformations of the molecule) of the masses of atoms, it is 
expected that the replacement of atoms in molecular structure sample with different 
isotopes of the respective atoms (isotopic marking of the molecule) to induce dramatic 
changes of the IR absorption spectrum of the sample. 

By isotopic marking in the known positions of molecule and by confronting these changes 

with changes in IR absorption band positions, significant conclusions can be drawn on 

whether the different atoms are involved in the normal modes of vibration of the molecule. 

If an atom of molecule is replaced by its heavier isotope, then IR absorption bands is moving 

to lower wavenumbers. The most significant movement is found in these absorption bands 

corresponding to normal vibration modes which involves mostly the replaced atom with 

heavier isotope. 

The biggest relative change in mass of an atom by isotopic substitution is made for 

replacement of the hydrogen atom (isotope 1H) with deuterium (2H isotope). It follows that 

by sample deuterating, the IR absorption bands associated with chemical bonds in which 

one of the atom is hydrogen, suffer very significant movement toward smaller wave 

numbers. 

Isotopic displacement of absorption bands is useful and for choice of suitable solvent in 

those cases where the IR absorption spectrum should be recorded in solution. Because of 

own absorption, some solvent (eg chloroform, HCCl3) can not be used except in those 

domain where this is sufficiently transparent. The spectral regions in which the chosen 

solvent substantially absorbed are not used. But if using deuterated solvent (e.g. 

deuterocloroform, DCCl3), this have unusable areas at other wavenumbers. Original solvent 

(undeuterated) and deuterated solvent presents identical dissolution properties, but are 

complementary with respect to transparency in the IR spectral range. 

6. Aspects of construction and specific features of operating mode for 
Fourier transform spectrophotometers (FTIR) 

Old design spectrophotometers work similar with those for UV-Vis domain, i.e. are 
composed of radiation source, monochromator designed to select a desired wavelength 
radiation, the sample chamber and the radiation detector. In IR domain, diffuse radiation 
presents more serious problems then in ultraviolet and visible domain. Thus, in IR domain, 
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the ratio of useful signal and noise is more disadvantageous. The new concept of Fourier 
transform IR spectrophotometers meant an important step in achieving spectra with high 
quality even for difficult samples where the spectrophotometers with traditional 
construction proved to be powerless. 

Construction scheme and specific features of operating mode for a Fourier Transform 
Infrared Spectrophotometer (FTIR – "Fourier Transform InfraRed") are presented in Figure 4. 
It is noted that the optical assembly has no monochromator, which is replaced by a 
Michelson interferometer type. The polychromatic radiation from LS (light source) source is 
transmitted through concave mirror M1 (mirror 1) and radiation divider BS2 (beam splitter 
2) to sample S (sample). After crossing the sample, the radiation reach the radiation divider 
BS1 (beam splitter 1) that divides the flow of radiation in two tracks: one for the mirrors M2 
(mirror 2) and another for the mirrors M3 (mirror 3). Mirrors M2 and M3 turn back the 
radiation to the radiation divider BS1. Reaching its surface, radiations which had different 
routes, merge and produce a interference phenomena. The only constructive element 
moving while recording the spectrum is the set of M3 mirrors. If the mirrors M3 are in 
position A, the optical path difference, corresponding to the two optical paths is null, thus 
the radiations which turn back on the surface of the radiation divider produces an 

interference maximum. By translation of M3 mirrors, optical path difference δ between the 
two routes is changed progressive. 

 

Fig. 4 Construction and operating scheme for Fourier Transform Infrared 
Spectrophotometer  
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It can be shown that the detector D, which measures the intensity of interference as a 

function of M3 mirrors position (so depending on the optical path difference δ between the 

two routes) records an interferogram which depends on inverse Fourier transform of 

emission spectrum of the source LS and on inverse Fourier transform of transparency 

(transmission) spectrum of the sample S (sample). After Fourier transform of detector D 

signal and some additional mathematical operations on detector signal the transmission (or 

optional absorption spectrum) spectrum of the sample S in known form is obtained. 

Figure 4 shows the typical interferogram recorded by the detector (representing the light 

flux, which reached the detector, as a function of the optical path difference δ associated 

with BS1 – M2 – BS1 and BS1 – M2 – BS1).  

To know the exact positions of absorption maxima in the IR spectrum of the sample, the 

position of mirrors M3 must be known exactly commensurable with the radiation 

wavelength in each moment of this whole movement. Therefore, together with the radiation 

of source LS, it is sent another radiation, this time the radiation is monochromatic, coming 

from a laser emitting in the visible (usually red radiation) or near infrared (often with a 

wavelength of 1064 nm ) range. The interferogram produced by monochromatic laser 

radiation is practically a sinusoidal function. This sinusoidal signal, also noted by the 

detector D, is superimposed on the signal generated by the sample. By tracking the 

interference maximum and minimum (sinusoidal type) of the laser radiation, it can be 

indicated the current location of the mirrors M3, in each moment of the recording operation, 

with an accuracy comparable to the wavelength of laser radiation. 

 

Fig. 5. The typical interferogram recorded by the detector 

Recording of an IR spectrum of a sample based on Fourier Transform method has many 

advantages: 
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a. using a spectral interferometer ensures the achievement of a resolution much higher 
than that offered by spectrophotometers with dispersion or a high signal / noise for a 
given resolution; 

b. lack of slits in the optical assembly of the Fourier transform spectrophotometers 
removes a series of disadvantages related to the fact that for spectrophotometers with 
dispersion the optical image of the input slit is deformed due to dispersive optical 
element (prism or diffractive optical network); 

c. the signal / noise ratio achieved in Fourier transform spectrophotometers it is more 
advantageous with several magnitude orders compared with dispersion 
spectrophotometers; 

d. because of the signal / noise ratio advantage, recording of an interferogram (a single 

displacement of mirrors M3 from position corresponding to δ = 0 to a position with a 

extreme δ value) can be achieved in a very short time (less one second) reason why, 
within a reasonable time, interferogram recording operation can be repeated for several 
times, followed by the mediation of the obtained signals. 

The last aspect is particularly important for difficult samples, which absorb infrared 

radiation in a very advanced position. For these samples, a single interferogram recording, 

with all the inherent advantages of Fourier multiplexing technique, signal / noise ratio is 

often unsatisfactory. In these cases, overlapping a larger number of records (the number can 

be N), followed by calculating the arithmetic average of the records, significantly improves 

the signal / noise ratio. In theory errors can be demonstrated that the overlap (acquisition) 

of N records, followed by mediation of the obtained interferogram, the signal / noise ratio is 

improved by a factor equal to N in comparison with a single record case. Thus, and in IR 

spectra (obtained by the Fourier transform of the interferogram) the signal / noise ratio is 

improved by acquisition of spectra. 

The electrical signal of the detector is digitized with an appropriate electronic interface and 

data (pairs of wavenumber values vs. absorbance or wavenumbers vs. transmission 

percentage) are stored in a file created by a computer. The stored data can be later processed 

in different ways. Thus, you can add or subtract algebraic different spectra, can make 

corrections of baseline, can reduce noise by techniques different than acquisition (e.g. "signal 

smoothing") or it can be presented the absorbance derived as a function of scanned size 

(wavenumber). Derivation of the original spectrum as a function of wavenumer often 

surprises some details of the IR spectrum which are harder to observe in its original form 

(absorbance vs. wavenumber). 

7. Organic compounds 

Elucidation of the molecular structure is especially important in organic chemistry. An 
analytical method for the identification of functional groups from organic compounds uses 
one of the most physical properties of a chemical compound: the infrared absorption 
spectrum. Compared with other physical properties: melting point, refractive index, or 
specific gravity which offer only a single point of comparison with other substances, the IR 
spectrum of a specific compound, gives a multitude of important information (position of 
bands, band intensity). The intensity is indicative of the number of a particular group 
contributing to absorption.  
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It is well known that molecules absorb a unique set of IR light frequencies, because the 
frequency of vibration involved depends on the masses of atoms involved, the nature of the 
bonds and the geometry of the molecule. A molecule absorbs only those frequencies of IR light 
that match vibrations that cause a change in the dipole moment of the molecule. Each organic 
molecule, with the exception of enantiomers, has a unique infrared spectrum. This is because 
symmetric structures and identical groups at each end of one bond will not absorb in the IR 
range. The spectrum has two regions. The fingerprint region is unique for a molecule and the 
functional group region is similar for molecules with the same functional groups. 

The entire spectral pattern is unique for a given compound. The bands that appear depend 
on the types of bonds and the structure of the molecule. 

In a complicated molecule many fundamental vibrations are possible, but not all are 
observed movements which do not change the dipole moment for the molecule or the those 
which are so much alike that they coalesce into one band. 

IR is usually preferred when a combination of qualitative and quantitative analysis is 

required. It is often used to follow the course of organic reactions allowing the researcher to 

characterize the products as the reaction proceeds. 

For the analysis, the samples can be liquids, solids, or gases. The only molecules transparent 

to IR radiation under ordinary conditions are monatomic and homonuclear molecules such 

as Ne, He, O2, N2, and H2. One limitation of IR spectroscopy is that the solvent water is a 

very strong absorber and attacks NaCl sample cells. 

Computerized spectra data bases and digitized spectra are widely used today especially in 

research, chemistry, medicine, criminology, etc 

8. Interpretation of spectra 

Identification of a molecular structure from the IR spectrum can be realized using 

information from correlation tables and absorbances from the functional group region of the 

spectrum and comparison of the obtained spectrum with those of known compounds or 

obtain a known sample of a suspected material.  

A preliminary examination of a spectrum use requires the examination of two important 

spectrum areas: functional group region (4000-1300 cm-1) and the 909-650 cm-1 region. The 

characteristic stretching frequencies for important functional groups such as OH, NH, and 

C=O occur in this portion of the spectrum. The absence of absorption in the assigned ranges 

for the various functional groups can usually be used as evidence for the absence of such 

groups from the molecule. The absence of absorption in the 1850-1540 cm-1 region excludes a 

structure containing a carbonyl group.  

Strong skeletal bands for aromatics and heteroaromatics fall in the 1600-1300 cm-1 region of 

the spectrum. These skeletal bands arise from the stretching of the carbon-carbon bonds in 

the ring structure. The lack of strong absorption bands in the 909-650 cm-1 region generally 

indicates a aliphatic structure. Aromatic and heteroaromatic compounds display strong out-

of-plane C-H bending and ring bending absorption bands in this region. The intermediate 

portion of the spectrum, 1300-909 cm-1 is usually correspond to the fingerprint region. The 
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absorption pattern in this region is complex, with bands originating in interacting 

vibrational modes. Absorption in this intermediate region is probably unique for every 

molecular species. For example, in the cases of hydrocarbons, organic compounds classified 

as saturated or unsaturated based on the absence or presence of multiple bonds, the energy 

of the infrared light absorbed by a C-H bond depends on the hybridization of the hybrid 

orbital, in the order of sp3>sp2>sp. The sp3-hybridized C-H bonds in saturated hydrocarbons 

absorb in the 2850-3000 cm-1 region. The sp2-hybridized C-H bonds from alkenes absorbs at 

3080 cm-1. A sp-hybridized C-H bond in a molecule, alkyne absorbs infrared at 3320 cm-1. 

Another classification of hydrocarbons can be made based on absorptions due to the carbon-

carbon bond. Carbon-carbon bond strength increases in the order of single>double>triple. 

Saturated hydrocarbons all contain carbon-carbon single bonds that absorb in the 800-1000 

cm-1 region. But, unsaturated hydrocarbons also contain carbon-carbon single bonds that 

absorb in this same region. So, this interval can not be considered as fingerprint region 

because most organic compounds have carbon-carbon single bonds. 

The alkanes give an IR spectrum with relatively few bands because there are only CH bonds 
that can stretch or bend.  

The next table present the characteristic group frequencies of organic molecules. 

 
Class Group Wavenumber (cm-1)
Hydrocarbons 

Alkane 
C-H 2850-3000

C-C 800-1000

Aromatic 
C-H 3000-3100

C=C 1450-1600

Alkene 
C-H 3080-3140

C=C 1630-1670

Alkyne 
C-H 3300-3320

C-C 2100-2140
Oxygen Compounds

Alcohol 
O-H 3300-3600

C-O 1050-1200

Ether C-O 1070-1150

Aldehyde 
C=O 1720-1740

C-H 2700 -2900

Carboxylic Acids 

C=O 1700-1725

O-H 2500-3300

C-O 1100-1300

Ester 
C=O 1735-1750

C-O 1000-1300 (2 bands)

Ketone C=O 1700-1725

Acyl halides C=O 1785-1815

Anhydrides 
C=O 1750;1820 (2 bands)

O-C 1040-1100

Amides C=O 1630-1695
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Class Group Wavenumber (cm-1)

N-H 1500-1560

Isocyanates,Isothiocyanates, 
Diimides, Azides, Ketenes 

-N=C=O,  
-N=C=S 
-N=C=N-,  
-N3, C=C=O

2100-2270 

Nitrogen compounds

Amines 

N-H 3300-3500

C-N 1000-1250

NH2 1550-1650

NH2 & N-H 660-900

Nitriles C≡N 2240-2260
Oxidized Nitrogen Functions

Oxime (=NOH) 

O-H 3550-3600

C=N 1665± 15

N-O 945± 15

Amine oxide (N-O) 
aliphatic 960± 20
aromatic 1250± 50

N=O 
nitroso 1550± 50
nitro 1530± 20;1350± 30 

Alkyl bromide C-H 667
Sulfur compounds
Thiols S-H 2550-2600
Esters S-OR 700-900
Disulfide S-S 500-540
Thiocarbonyl C=S 1050-1200
Sulfoxide S=O 1030-1060
Sulfone S=O 1325± 25; 1140± 20
Sulfonic acid S=O 1345
Sulfonyl chloride S=O 1365± 5;1180± 10
Sulfate S=O 1350-1450
Phosphorous compunds

Phosphine P-H 
2280-2440
950-1250

Phosphonic acid (O=)PO-H 2550-2700
Esters P-OR 900-1050
Phosphine oxide P=O 1100-1200
Phosphonate P=O 1230-1260
Phosphate P=O 1100-1200
Phosphoramide P=O 1200-1275
Silicon compounds

Silane 
Si-H 2100-2360
Si-OR 1000-1110
Si-CH3 1250± 10

 
Table 1. Schematic representation of the Infrared Group Frequencies classification 
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