Organic Compounds

Naming Hydrocarbons
(nomenclature)

,	Compounds - any covalently
	bonded compound containing carbon
	(except, and
	<u> </u>

Hydrocarbons

•	Organic compounds that
	contain only carbon & hydrogen
•	contain only single covalen
	bonds
•	contain one or more carbon
	- carbon double bond
•	contain one or more
	carbon-carbon triple bond

Saturated & Unsaturated Hydrocarbons

•	Saturated hydrocarbons – contain only carbon-carbon bonds
	()
•	<u>Unsaturated hydrocarbons</u> – contain
	double carbon-carbon bonds
	() or triple carbon-carbon
	() honds

Formulas

- Alkanes = C_nH_{2n+2}
- Alkenes = C_nH_{2n}
- Alkynes = C_nH_{2n-2}

Nomenclature

- · Must memorize prefixes
- To name, look at the formula for the hydrocarbon
- Determine if it is an alkane, alkene, or alkyne
- Use the prefix for the number of carbons
- Add ending (ane, ene, yne)

Prefix	# of carbon atoms
Meth-	1
Eth-	2
Prop-	3
But-	4
Pent-	5
Hex-	6
Hept-	7
Oct-	8
Non-	9
Dec-	10

Example

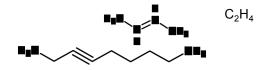
• Name C₃H₈

Mnemonic for first four prefixes

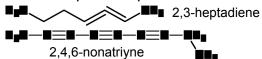
First four prefixes

Meth- Monkeys

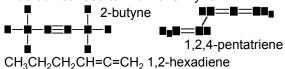
• <u>E</u>th- <u>E</u>at


• Prop-Peeled

• <u>B</u>ut- <u>B</u>ananas

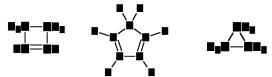

Numbering carbons

Q- draw pentene


· Q - Name these

Multiple multiple bonds

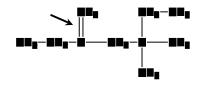
- Give 1st bond (1st point of difference) lowest #
- include di, tri, tetra, penta, etc. before ene/yne
- Comma between #s, hyphen between #-letter
- You do not need to know ene + yne



Cyclic structures

- · Cyclic structures are circular
- · Have "cyclo" in name

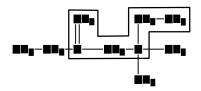
Q- Draw these (note: carbons in a double bond should be consecutive- 1 and 2, 5 and 6, etc.): cyclobutene 1,3-cyclopentadiene cyclopropane



- of: side chains, root

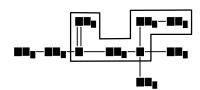
- Common side chains include: CH₃- methyl
- ispertishes), CI- (chloro), F- (fluoro), I- (iodo)

Naming side chains

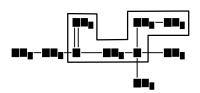

Example: name the following structure

Rule 1: choose the correct ending

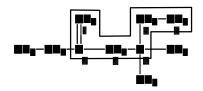
ene


Naming side chains

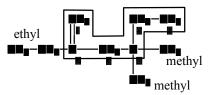
Rule 2: longest carbon chain


ene

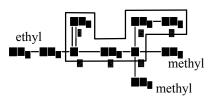
Naming side chains


Rule 3: attach prefix (according to # of C)

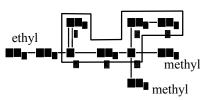
1-hexene


Rule 4: Assign numbers to each carbon 1-hexene

Naming side chains

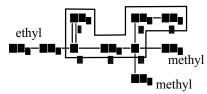

Rule 4: Assign numbers to each carbon 1-hexene

Naming side chains

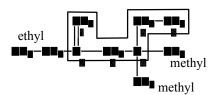


Rule 5: Determine name for side chains
1-hexene

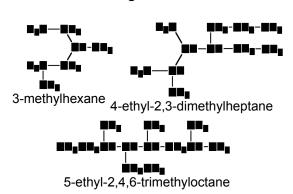
Naming side chains

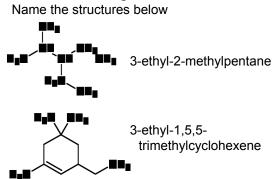


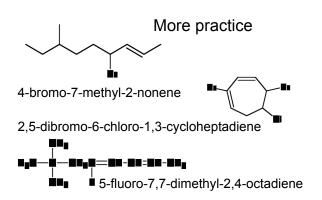
Rule 6: attach name of branches 2-ethyl-4-methyl-4-methyl-1-hexene


Rule 7: list alphabetically 2-ethyl-4-methyl-4-methyl-1-hexene

Naming side chains

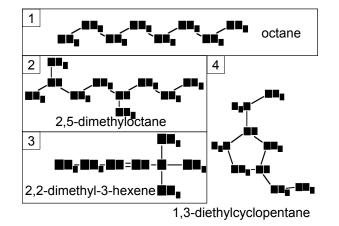

Rule 8,9: group similar branches 2-ethyl-4-methyl-4-methyl-1-hexene

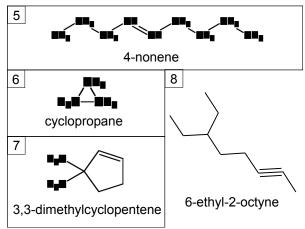

Naming side chains

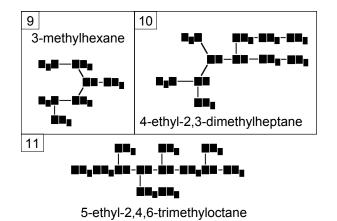


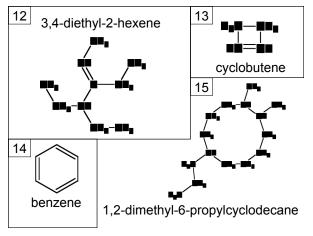
Rule 8,9: group similar branches 2-ethyl-4,4-dimethyl-1-hexene

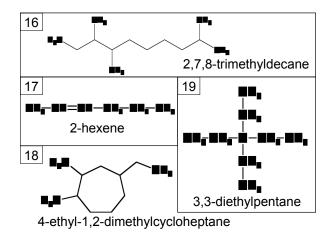
Naming side chains








Functional Groups


Class	Functional group
Alcohol	R - OH
Ether	R - O - R'
Aldehyde	0 R – C – H
Ketone	0 R - C - R'
Carboxylic acid	О - С – ОН
Ester	0 R - C - O - R'
Amine	R' R - N - R"

