
Origami: A High-Performance Mergesort Framework
Arif Arman

Texas A&M University

College Station, TX

arman@tamu.edu

Dmitri Loguinov

Texas A&M University

College Station, TX

dmitri@cs.tamu.edu

ABSTRACT
Mergesort is a popular algorithm for sorting real-world work-

loads as it is immune to data skewness, suitable for paralleliza-

tion using vectorized intrinsics, and relatively simple to multi-

thread. In this paper, we introduce Origami, an in-memory merge-

sort framework that is optimized for scalar, as well as all current

SIMD (single-instructionmultiple-data) CPU architectures. For each

vector-extension set (e.g., SSE, AVX2, AVX-512), we present an in-

register sorter for small sequences that is up to 8× faster than prior

methods and a branchless streaming merger that achieves up to a

1.5× speed-up over the naive merge. In addition, we introduce a

cache-residing quad-merge tree to avoid bottlenecking on memory

bandwidth and a parallel partitioning scheme to maximize thread-

level concurrency.We develop an end-to-end sort with these compo-

nents and produce a highly utilized mergesort pipeline by reducing

the synchronization overhead between threads. Single-threaded

Origami performs up to 2× faster than the closest competitor and

achieves a nearly perfect speed-up in multi-core environments.

PVLDB Reference Format:
Arif Arman and Dmitri Loguinov. Origami: A High-Performance Mergesort

Framework. PVLDB, 15(2): 259-271, 2022.

doi:10.14778/3489496.3489507

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/arif-arman/origami-sort.

1 INTRODUCTION
Over the years, mergesort has emerged as a highly appealing plat-

form for tackling real-world sorting tasks, with many benefits and

features. Its first important characteristic is distribution insensitiv-
ity, i.e., constant speed on all inputs. Among the alternatives, some

of the methods (e.g., most-significant byte first (MSB) radix sort

[25]) perform quite poorly unless the keys are uniform. Others (e.g.,

quicksort, samplesort, combsort) have certain worst-case inputs

that degrade the sort by either worsening its asymptotic complexity

or inflating the constants in the𝑂 (𝑛 log𝑛) upper bound [3], [4], [5],
[22], [29], [31], neither of which is desirable. The second benefit

of mergesort is the support for streaming operation, i.e., sequential
processing of input/output data, which is a highly useful feature for

certain large-scale applications that involve external-memory (i.e.,

disk) and/or distributed (i.e., network) computation. With PCIe 5.0

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.

doi:10.14778/3489496.3489507

I/O rates reaching 64 GB/s, faster in-memory sorters will soon be in

demand. Third, mergesort is well-suited for multi-core paralleliza-

tion because it admits low-overhead load-balancing of tasks across

threads, even under non-uniform keys, and trading of memory

traffic for cache hits as the amount of parallelism increases. The al-

ternatives are usually harder to scale without taking a performance

hit. A prime example is least-significant byte first (LSB) radix sort

[25], where rewriting the entire dataset in RAM during each pass

causes it to saturate memory bandwidth with just 2-4 threads. Fi-

nally, research into mergesort usually yields new optimized kernels

for small inputs, which helps speed up applications that deal with

short chunks of data (e.g., neighbor lists in graph algorithms).

Many mergesort variants have been proposed in the last two

decades with the goal to maximize data/thread-level parallelism

[6], [14], [15], [17], [18], [26], [27], [30], [32], [33]; however, they

leave room for improvements in terms of speed and usability. First,

none of the papers examine how to optimize each individual phase

of the sort pipeline. With many partial benchmarks and disjoint

techniques, it is unclear which of them can be improved, by how

much, and where the bottlenecks are. Additionally, the majority of

available code is either single-threaded or, if parallel, bottlenecks

on memory bandwidth, which sheds little light on the best per-

formance of mergesort in multi-core environments. Second, the

existing frameworks do not offer a unifying mergesort solution that

is simultaneously optimized for scalar, SSE, AVX2, and AVX-512

architectures. In fact, some of them [30], [32], [33] inherently work

only in the extended instruction set of AVX-512, with back-porting

either impossible or requiring a expensive set of substitute instruc-

tions. Depending on CPU availability and user preferences (e.g.,

lower power consumption), it may be desirable to have access to

the fastest sort in each category rather than the fastest overall.

To address these issues, we introduce a highly optimized, distribu-

tion-insensitive, parallel mergesort framework that we call Origami.
We first formalize operation of mergesort using a four-phase compu-

tational model and examine how to achieve maximum speed during

each step of the sort. This leads to a number of novel algorithms,

improvements, and corresponding benchmarks. We then develop

our end-to-end sort by efficiently connecting these optimized com-

ponents together and generalizing the underlying algorithms to

work for scalar, SSE, AVX2, and AVX-512 CPU architectures. Results

show that the Origami framework is by far the fastest mergesort

on both small and large input sequences, reaching a 1.5-2× speed-

up over the best existing methods. After parallelization, it gains a

nearly perfect scaling in multi-core settings.

2 PIPELINE OVERVIEW
Suppose a sort algorithm operates on fixed-size items, which are

either keys or key-value pairs, depending on the application. The

following notation will be useful for the rest of the discussion:

259

https://doi.org/10.14778/3489496.3489507
https://github.com/arif-arman/origami-sort
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489507
https://www.acm.org/publications/policies/artifact-review-and-badging-current

N : Number of items to sort

C: Number of items fitting into L2 cache (typically 2
16 − 2

18
)

T : Number of threads (typically double the core count)

W: Number of items per SIMD register (typically 4-16)

R: Number of SIMD registers per core (typically 16 or 32)

B: Size of each item in bits (typically 32, 64, or 128)

Mergesort can be broken down into four phases, which we call

𝑃1 − 𝑃4. For better cache utilization, which in turn increases per-

formance, merge-based sorts [6], [14], [27] usually divide the input

into blocks of size C and sort them individually in the cache to

produce N/C sorted lists. A series of 𝑘-way merge operations on

these blocks, where 𝑘 ≥ 2, then yields the final sorted list. In the rest

of this section, we briefly overview this pipeline, examine the oper-

ation of each phase, highlight the limitations of existing methods,

and explain our contributions.

(𝑃1) Tiny sorters. Define phase 𝑃1 to be a process that converts each
input block into a sequence of sorted runs of length 𝑚 ≥ 2, i.e.,

items in each range [𝑖𝑚, (𝑖 + 1)𝑚) are organized in ascending order,

where 𝑖 = 0, 1, . . . , C/𝑚 − 1. While mergesort is quite inefficient for

small values of𝑚 (e.g., below 128), much faster alternatives, which

we call tiny sorters, exist (e.g., insertion sort [24], sorting networks

[2], [23], and various SIMD generalizations [6], [14]).

Letting 𝑆1 (𝑚) be the speed at which 𝑃1 executes, we show that

the runtime of the full sort is determined by the cost function

𝑓 (𝑚) = 𝑆𝑚𝑒𝑟𝑔𝑒/𝑆1 (𝑚) − log
2
𝑚, where 𝑆𝑚𝑒𝑟𝑔𝑒 is the speed of the bi-

nary merge. Prior work typically operates at a fixed point𝑚 = W
and does not explore avenues for minimizing 𝑓 (𝑚). In contrast,

Origami offers novel algorithms that expand𝑚 to the entire range

[W,RW] and significantly increase 𝑆1 (𝑚) compared to existing

approaches, both of which leads to lower 𝑓 (𝑚) and much faster

overall runtime. This is achieved by saturating all R available reg-

isters with data, representing them as an R ×W matrix, and de-

veloping new SIMD-friendly methods for sorting such rectangular

structures entirely within the CPU.

(𝑃2) In-cache merge. At the end of 𝑃1, every run of 𝑚 keys in a

block is sorted. A sequence of log
2
(C/𝑚) binary merges, which

comprises phase 𝑃2, then sorts all C items in the block. While many

efforts exist for moving pointers along two sorted arrays during

merging (e.g., branching [6], [14], [15], [17], [18], [26], [27], branch-

less [30], partially branchless [16], SIMD-aided [33]), the issue of

how to further increase performance of this step has remained open

for many years. To this end, we develop a new merge technique

that is not only faster than all prior solutions, but also applicable to

both scalar and vectorized architectures. It relies on a novel design

for advancing stream pointers using conditional move instructions

and interleaved comparisons from multiple merge pairs to lower

the latency caused by instruction/data dependency.

(𝑃3) Out-of-cache independent merge. Each thread begins the next

phase, which we call 𝑃3, with owning several sorted sequences of C
items each. It then independently merges them until reaching some

threshold after which coordination with other threads becomes nec-

essary. Because the data no longer fits in the cache, binary merges

are not suitable for this step as they operate at speed that can easily

exceed RAM bandwidth, especially across T threads. Much of the

prior work [14], [26], [30], [32], [33] ignores this issue and produces

poor performance in this phase. The remaining efforts [15], [17]

perform a 𝑘-way merge in 𝑃3, which reduces memory traffic by a

factor of log
2
𝑘 , but their performance is often suboptimal. Specifi-

cally, [15] always uses 𝑘 = 4 without regard to memory bandwidth

and [17] requires an insertion sort that may result inN2
complexity

for non-inform keys.

In Origami, we develop a new 𝑘-way merge tree that relies on

our algorithms in 𝑃2. Unlike previous literature [6], [17], where

each node performs a binary merge, our approach executes op-

timized 4-way merges at each step to achieve better throughput.

In contrast to expensive circular queues in [6], [18], [27], we use

simpler data structures that exhibit lower management cost. And

most importantly, Origami computes the optimal value of 𝑘 based

on the memory bandwidth achievable across T threads instead of

hardcoding an ad-hoc constant (e.g., 𝑘 = 4 in [15], 𝑘 = 32 in [17]).

(𝑃4) Out-of-cache cooperative merge. In this phase, which we call

𝑃4, multiple threads work together to merge the final 𝑘 lists. Note

that some papers, e.g., [6], [18], [27], omit phase 𝑃3 and directly

execute 𝑃4 on 𝑘 = N/𝐶 sorted buffers, which suffers from hefty

synchronization cost. Additionally, some of the techniques [14],

progressively shrink the number of working threads as the com-

putation goes forward and others [30], [32], [33] continue running

binary merges, which results in suboptimal multi-core utilization.

The remainingmethods [15], [17] split the merge size across threads

evenly; however, they do not parallelize the partitioning step, fail to

perfectly load-balance stragglers, and run into performance issues

when the final number of sorted streams (i.e., T) is insufficient to

prevent memory bottlenecks.

Origami overcomes these problems by multi-threading the array

split, load-balancing across threads even when equal-size jobs con-

sume different amounts of time (e.g., due to OS scheduling delays,

difference in key distribution), and using our 𝑘-way merge tree

from 𝑃3, which keeps memory traffic just below RAM bandwidth.

3 TINY SORTERS (𝑃1)
3.1 Principles
Traditional mergesort [8][p. 13] performs log

2
N binary merges

starting from sorted runs of size 1. In practice, however, it is better

to first presort the items in small groups using a different algorithm

and then execute binary merges on these chunks. Over the years,

sorting networks [2] have proven to be the fastest option for such

tiny sorts. Recall that a sorting network is a sequence of min-max
operations, each of which we call a swap.

Definition 1 (swap). Given two (possibly vector) registers 𝑥 and
𝑦, the swap(x,y) macro performs the following operations

tmp = min(x, y); y = max(x, y); x = tmp;

Normally, a sorting network would run over scalar variables

(e.g., integers, doubles), but modern computers can do better. With

their ubiquitous support of SIMD (single-instruction multiple-data)

operations, commonly known as streaming or advanced vector ex-
tensions (i.e., SSE, AVX, AVX2, AVX-512), a single register can hold

multiple scalar values. For example, AVX2 has 256-bit registers

that can fit W = 8 integers or W = 4 doubles. A single vector

instruction, which we indicate by prefix _mm_, can then apply a

260

store W sorted runs

sort columns transpose

load keys

W

W

(a) prior work

store one sorted run

matrix-column merge

sort columns

R

load keys

... ...

..

..

matrix-row merge

transpose

W

(b) Origami

Figure 1: Approaches to sorting short lists (W = 4).

particular operation (e.g., min/max) to allW values at once. As a

result, these architectures can performW scalar swaps with only a

pair of _mm_min, _mm_max intrinsics. For a more in-depth overview,

see [6], [17], [27].

For maximum speed (i.e., to avoid of branch mispredictions) both

min/max functions in swapmust be branchless. In scalar code, this is
achieved using the cmov (conditional move) Assembly instruction or

the ternary operator ? in C/C++. For example, tmp = x < y ? x : y
implements the min. For SIMD, all vectorized min/max intrinsics

are automatically branchless. An added benefit of sorting networks

and branchless code is their insensitivity to key distribution, i.e.,

similar speed on all inputs, which is a desirable characteristic for

real-life workloads that are frequently skewed/non-uniform.

With this in mind, we can stack multiple SIMD registers and

vertically sortW columns in parallel, which is a common technique

we call csort.

Definition 2 (csort). Given an 𝑟 × 𝑐 matrixM, csort orders
each column of M using a vectorized sorting network of size 𝑟 .

Define 𝑚 to be the length of sorted runs generated by 𝑃1. As

shown in Figure 1(a), where the shade of each cell indicates its rela-

tive numeric value (i.e., darker is larger), the best existing methods

[6], [27], [14], [33] loadW2
items inW SIMD registers and view

them as aW ×W matrix. Next, they sort the items independently

within each column with csort, transpose the matrix, and obtain

W sorted lists of W items each. Other approaches exist, but they

are less efficient. In particular, [30] uses only four registers, [32]

only two, and [15], [17] only one.

There are several limitations to the method in Figure 1(a). First,

it uses just W out of R available registers. With R either 16 (i.e.,

SSE) or 32 (i.e., AVX2, AVX-512), this leaves 50−94% of the registers

unused depending on item size B. Second, this technique loadsW2

keys per iteration, but outputs sorted runs of dismal size𝑚 = W.

To sort allW2
keys, another log

2
W merge passes are needed in

the cache. In contrast, Origami 𝑃1 stuffs data into all R registers,

sorts the whole rectangular R ×W matrix using a variety of new

algorithms, including a faster transpose, and outputs runs of𝑚 =

RW items. This is illustrated in Figure 1(b) and detailed next.

3.2 Matrix-Column Merge
Origami begins 𝑃1 by loading RW input items into R registers

and sorting columns of the corresponding matrix using csort. The
complexity of this step is given by the length of the underlying

sorting network (e.g., 19 invocations of swap for R = 8). The next

6 30

14 33

19 45

28 48

10 46

20 49

29 50

34 53

M0 M1

(a) initial

6 30

14 33

19 45

28 48

10 46

20 49

29 50

34 53

M0 M1

(b) shuffle #1

6 30

10 33

14 46

20 49

19 45

28 48

29 50

34 53

M0 M1

(c) cswap #1, shuffle #2

6 14

10 20

46 30

49 33

19 29

28 34

50 45

53 48

(d) cswap #2, shuffle #3

6 14

10 19

50 20

53 28

29 45

30 46

33 48

34 49

(e) cswap #3

6 20

10 28

14 29

19 30

33 48

34 49

45 50

46 53

(f) final

Figure 2: Operation of mcmerge on 4 × 2 matrices.

objective is to continue sorting this matrix in column-major order,

by which we mean the following.

Definition 3. An 𝑟 × 𝑐 matrix𝑀 is considered sorted in column-

major order if values within each column are non-decreasing and no
larger than those in the next column, i.e., 𝑀 (𝑖, 𝑗) ≤ 𝑀 (𝑖 + 1, 𝑗) and
𝑀 (𝑟, 𝑗) ≤ 𝑀 (1, 𝑗 + 1) for all valid indexes 𝑖, 𝑗 .

An example is shown in Figure 2(a), where both 4 × 2 matrices

𝑀0, 𝑀1 satisfy this definition. We can view the result of the initial

csort as producing W matrices sorted in column-major order,

each R × 1 in size. From this point forward, a sequence of spe-

cialized operations, which we call matrix-column merge (mcmerge),
lead to progressively larger matrixes sorted in column-major or-

der. This design considering two key characteristics of SIMD: (i)

multiple columns can be manipulated with one instruction; and

(ii) re-arranging keys across columns and registers is expensive.

Therefore, it is advantageous to keep the items in column-major

order and delay the transpose as long as possible.

Definition 4 (mcmerge). Given two 𝑟 ×𝑐 matrices𝑀0, 𝑀1 sorted
in column-major order, mcmerge reorders the keys such thatmax(𝑀0)
≤ min(𝑀1) and both matrices remain sorted in column-major order.

This algorithm is rather complex; we thus relegate its details

and mapping to the various instruction sets to the code [1]. Its

essence boils down to the following. Suppose we split 𝑀0 into

𝑟/2 × 1 partial columns 𝑣1, . . . , 𝑣2𝑐 such that max(𝑣 𝑗) ≤ min(𝑣 𝑗+1).
Note that each 𝑣 𝑗 is internally sorted. Applying the same operation

to𝑀1, we get additional columns 𝑣2𝑐+1, . . . , 𝑣4𝑐 . In Figure 2(a), 𝑣0 =

(6, 14), 𝑣1 = (19, 28), . . . , 𝑣7 = (50, 53). We now use an odd-even

merge network over these 4𝑐 elements, coupled with vectorized

swap operations, to order the entire sequence of columns such that

max(𝑣 𝑗) ≤ min(𝑣 𝑗+1) holds for all 𝑗 ∈ [1, 4𝑐].
This is illustrated in Figure 2, which runs mcmerge over two 4×2

matrices to produce a 4 × 4 result sorted in column-major order.

Part (b) of the figure performs the initial shuffle to exchange 𝑣1
with 𝑣5 and 𝑣4 with 𝑣7, which facilities a vertical merge given next.

261

Definition 5 (cswap). Given a 𝑟 × 𝑐 matrix𝑀 , where 𝑟 is even
and its half-columns are sorted, i.e., 𝑀 (𝑖, 𝑗) ≤ 𝑀 (𝑖 + 1, 𝑗) for 𝑖 ∈
[1, 𝑟/2 − 1] ∪ [𝑟/2 + 1, 𝑟 − 1], 𝑗 ∈ [1, 𝑐], cswap applies a vectorized
merge network of size 𝑟 to make the columns of𝑀 fully sorted.

Figure 2(c) shows the effect of running a single cswap over the
result in (b). After the next shuffle, i.e., 𝑣2 ↔ 𝑣4, 𝑣6 ↔ 𝑣8, and

another cswap, we obtain the result in (d). The next shuffle is the

most complicated, i.e., 𝑣2 → 𝑣8, 𝑣3 → 𝑣4, 𝑣4 → 𝑣6, 𝑣5 → 𝑣3, 𝑣6 →
𝑣2, 𝑣7 → 𝑣5, 𝑣8 → 𝑣7, but, after another cswap, it produces the
correct partial columns in (e), but in the wrong locations. After

another round of shuffling, we obtain the final result in (f).

It should be noted that the number of steps required for mcmerge
is the depth (i.e., number of parallel layers) of the underlying merge

network of size 4𝑐 , where each step contains one cswap and one

or more shuffles. For 𝑐 = 2 in Figure 2, we have a size-8 merge

network with 3 layers. Furthermore, the number of regular swaps
contained in each cswap is the length of its size-𝑟 merge network

(i.e., 3 for 𝑟 = 4 in the figure). Thus, larger 𝑟 or 𝑐 make the process

slower. However, whenW > 2𝑐 , vectorization allows mcmerge to
apply simultaneous operations on allW/(2𝑐) pairs of matrices. For

example,W = 16 performs the transformations in Figure 2 on four
pairs of 4 × 2 matrices at no extra cost.

For back-to-back mcmerges, the last reordering (e)→(f) can be

omitted; instead, the sorted half-columns can be used in their cur-

rent locations if the merge network of the following mcmerge is

adjusted accordingly. It may also appear that (e)→(f) is unavoidable

at the final mcmerge; however, for R ≥ W, it can also be omitted

by simply renumbering the registers after the transpose.

Origami uses 𝑟 = R, applying mcmerge repeatedly with 𝑐 =

1, 2, 4, . . . At some point before reaching W/2, 𝑐 becomes large

enough that an alternative mechanism can continue merging faster

than mcmerge. This is related to the growing depth of size-4𝑐 merge

networks and the corresponding shuffle cost. At that point, it is

better to perform a transpose to convert the matrix into row-major

order and switch to another algorithm, which we explain next.

3.3 Matrix-Row Merge
Our second method, which we call matrix-row merge (mrmerge),
is similar in spirit to mcmerge, except it maintains sorted keys in

row-major order rather than column-major.

Definition 6 (mrmerge). Given two 𝑟/2 × 𝑐 matrices 𝑀0, 𝑀1

sorted in row-major order, mcmerge reorders the keys such thatmax(𝑀0)
≤ min(𝑀1) and both matrices remain sorted in row-major order.

This algorithm is derived from modulo merge sorting networks

[21] and its generalization for keys stored in a grid [7]. At a high

level, mrmerge performs the following steps:

(1) Reverse each row of the second matrix𝑀1;

(2) Stack the matrices on top of each other and run cswap;
(3) Sort each row of the resulting 𝑟 × 𝑐 matrix𝑀 .

To understand this better, consider Figure 3 which uses trans-

posed versions of𝑀0, 𝑀1 from Figure 2(a), i.e., input consists of 2×4
matrices. This would be equivalent to Origami stopping mcmerge
after 𝑐 = 1. In Figure 3(a), we reverse the rows of𝑀1 and run cswap
on the stacked matrix to obtain the result in (b). After this, it is guar-

anteed that the largest key in row 𝑗 is no bigger than the smallest

34 29 20 10

53 50 49 46

6 14 19 28

30 33 45 48
M0

M1

(a) reverse bottom rows

34 33 45 46

53 50 49 48

6 14 19 10

30 29 20 28

(b) cswap

33 34 45 46

48 49 50 53

6 10 14 19

20 28 29 30

(c) sort rows

Figure 3: Operation of mrmerge on 2 × 4 matrices.

key in row 𝑗 + 1. What is left at this point is to simply sort the rows.

For SSE and AVX2, this is accomplished by transposing the full ma-

trix𝑀 , running csort, and transposing it back. For AVX-512, it is

faster to use its new masking instructions, which are not supported

on earlier platforms, and perform the sort in place leveraging the

observation that each row is a bitonic sequence. At the end of this

step, all R registers are stored to memory and the process repeats

with the next RW items.

It should be noted that mrmerge is not significantly affected by

the increasing complexity of the merge networks as 𝑟 or 𝑐 increase,

which results in excellent scalability to large matrix sizes. How-

ever, it has a non-negligible minimum cost (e.g., two transposes)

that makes it inefficient for short sequences. This is in contrast to

mcmerge, where the overhead is low to begin with but increases

rapidly as the network becomes more complex. It is therefore bene-

ficial to switch between them at some critical threshold, which we

determine experimentally later in the paper.

3.4 Matrix Transpose
Column-wise SIMD operations leave sorted lists scattered in differ-

ent registers in column-major order. This organization must usually

be fixed with a matrix transpose before the data can be written back

to memory. An SIMD transpose is performed with log
2
W levels

of diagonal exchanges, where at level 𝑗 = 0, 1, . . . rows (𝑖, 𝑖 + 2
𝑗)

exchange 2
𝑗B bits. Present work [6], [14], [26], [33] achieves this

through a pair of shuffle or permute instrinsics for each diagonal

exchange. However, this puts pressure on port 5 in Intel CPUs and

becomes a performance bottleneck [9]. To avoid this, we replace

some of the shuffles with blend instructions, which are executed

in ports 0, 1, and 5. This yields better IPC (instructions per cycle)

performance, which is especially useful during multiple indepen-

dent exchanges where the CPU’s out-of-order execution engine can

issue instructions to different ports. The following code segment

shows how we can achieve this for diagonally exchanging 64 bits.

We refer to these as transpose_v0 and v1 respectively.

// transpose_v0: two shuffles
_v0 = _mm256_shuffle_ps(v0, v1, 0x44);
_v1 = _mm256_shuffle_ps(v0, v1, 0xEE);

// transpose_v1: one shuffle and two blends
v = _mm256_shuffle_ps(v0, v1, 0x4E);
_v0 = _mm256_blend_ps(v0, v, 0xCC);
_v1 = _mm256_blend_ps(v1, v, 0x33);

262

3.5 Optimal Run Length
Note that Origami is flexible enough to allow a variety of run

lengths𝑚 ∈ [W,RW]. At what point𝑚 should the algorithm be

operating? As given in the next result, this depends on the speed

𝑆1 (𝑚) at which it can produce sorted runs during 𝑃1 and the in-

cache merge speed 𝑆𝑚𝑒𝑟𝑔𝑒 of phase 𝑃2.

Theorem 3.1. The optimal value of𝑚 for 𝑃1 minimizes

𝑓 (𝑚) = 𝑆𝑚𝑒𝑟𝑔𝑒/𝑆1 (𝑚) − log
2
𝑚. (1)

There is tradeoff in the cost function 𝑓 (𝑚) – larger𝑚 increases

the log term being subtracted, but also reduces the speed 𝑆1 (𝑚).
And thus the sweet spot usually lies somewhere in the middle.

4 IN-CACHE MERGE (𝑃2)
4.1 Merge Kernel
The main building block of merge-based sorts is the binary merge,

which we call bmerge. Its purpose is to combine two large (i.e.,

significantly longer than W) sorted sequences into one. With non-

trivial input sizes (e.g., over 1 GB), there can be 20-30 passes of

bmerge over the data. Therefore, its speed plays an important role

in the overall performance of the sort. The main difference between

bmerge in phase 𝑃2 (in-cache) and 𝑃3 (out-of-cache) is whether the

algorithm needs to keep memory traffic below some threshold.

One component of bmerge is its kernel, i.e., an algorithm that

merges two sorted registers.

Definition 7 (rswap). Given two sorted SIMD registers 𝑥 and
𝑦, rswap(x,y) rearranges the items such that both registers are still
sorted and max(𝑥) ≤ min(𝑦).

Note that if 𝑥 is loaded from an input stream 𝐴 and 𝑦 from

another stream 𝐵, rswap shuffles the data such that the smallestW
items out of 2W end up in 𝑥 , which is then written to the output.

In more general cases, illustrated in Algorithm 1, we can load 𝑘 ≥ 1

registers from each of 𝐴, 𝐵 and run a sequence of rswaps from any

merge network (e.g., odd-even, bitonic) of size 2𝑘 . This produces

a sorted sequence of 2𝑘W items, whose lower half 𝑟0, . . . , 𝑟𝑘−1 is
stored to the output 𝐶 and the upper half 𝑟𝑘 , . . . , 𝑟2𝑘−1 is retained
for the next iteration. We then reload the emptied registers from

the stream with smaller values at the front, advance its pointer, and

repeat until one of the two streams is exhausted.

For scalar keys, rswap is identical to the regular swap. For wider
registers, existing work uses SIMD merge kernels based on either

the bitonic [6], [14], [18], [27], [33] or odd-even network [15]; how-

ever, their speed leaves room for improvement. The fastest prior

kernel, which comes from [17], uses a series of rotate and swap
operations; however, it works only for SSE. We extend this method

to AVX2/AVX-512 and compare it against mrmerge. The former re-

quiresW stages compared to log
2
W+ 1 in the latter. But rotates

are cheaper than transpose, which usually makes this method faster.

For AVX-512, however, larger register width produces a significant

difference between W and log
2
W + 1. In addition, introduction

of mask_min and mask_max intrinsics in AVX-512 gives more flex-

ibility in data movement across registers and enables faster sort

compared to older extension sets [32]. In the benchmark section, we

evaluate which method is faster and deploy the winner in Origami.

Algorithm 1: Outline of generalized bmerge

Function bmerge (Item *A, *endA, *B, *endB, *C)
load registers 𝑟0, . . . , 𝑟𝑘−1 from 𝐴; 𝐴 += 𝑘W;

load registers 𝑟𝑘 , . . . , 𝑟2𝑘−1 from 𝐵; 𝐵 += 𝑘W;

while 𝐴 ≠ 𝑒𝑛𝑑𝐴 and 𝐵 ≠ 𝑒𝑛𝑑𝐵 do
rswaps from a merge network of size 2𝑘 ;

store 𝑟0, . . . , 𝑟𝑘−1 to𝐶 ; 𝐶 += 𝑘W;

reload 𝑟0, . . . , 𝑟𝑘−1 from either 𝐴 or 𝐵;

move 𝐴 or 𝐵 forward by 𝑘W;

end
merge keys left in registers and the unfinished list;

4.2 Advancing Pointers
Performance of Algorithm 1 depends on rswap and the last two lines
of the loop (i.e., deciding which stream to load from and moving the

pointers). When 𝑘W is small, pointer management plays a pivotal

role in determining the speed. The majority of work in the SIMD

literature [6], [14], [16], [27], [32] relies on a branching comparison

to decide which of the two pointers to advance:

if (∗𝐴 < ∗𝐵) { reload 𝑟0, . . . , 𝑟𝑘−1 from 𝐴; 𝐴 += 𝑘W; }
else { reload 𝑟0, . . . , 𝑟𝑘−1 from 𝐵; 𝐵 += 𝑘W; }

This version, which we call bmerge_v0, sometimes leads to a sig-

nificant misprediction penalty and bottlenecks the sort. Other alter-

natives [15], [17] dismiss mergesort for in-cache operation in favor

of combsort (i.e., an extension of bubble sort), which runs in qua-

dratic time for certain inputs [4]. Finally, the remaining papers [30],

[33] use expensive intrinsics (e.g., scatter, gather, mask_cmp) that
are not only slower than our approach below, but also inapplicable

to certain instruction sets (e.g., scalar, SSE).

For non-SIMD sorts, there were several attempts at developing a

branchless bmerge. For example, [12] argues that the compiler will

generate cmov (conditional move) instructions for short if state-

ments, but this is usually not the case in practice. Other techniques

include [13], which replaces the branch with a binary flag and mul-

tiplication, and [16], which runs a hybrid set-intersection algorithm

that removes difficult-to-predict branches in favor of those that

are easy to predict. These methods are usually 40-50% faster than

the branching version; however, Origami develops an even faster,

purely branchless bmerge as we explain next.

The first improvement to bmerge_v0 is to attempt replacing the

if block with a sequence of ternary operators to force the compiler

to generate cmov instructions during load. We call this version

bmerge_v1:

flag = ∗𝐴 < ∗𝐵;
𝑟𝑖 = flag ? load(𝐴 + 𝑖W) : load(𝐵 + 𝑖W); 𝑖 ∈ [0, 𝑘 − 1]
𝐴 += flag ? 𝑘W : 0; 𝐵 += flag ? 0 : 𝑘W;

While this works fine for scalar with 𝑘 = 1, the compiler gets

confused for 𝑘 > 1 and opts for a branch instead of multiple cmovs.
It also computes the flag three times, which may be related to its

inability to hold both incremented pointers in registers. On top of

that, SIMD _mm_load intrinsics do not support conditional moves,

which leads to branches as well. The first and third issues can be

mitigated by using cmovs to control the pointer to where the data is

263

Algorithm 2: Origami bmerge

Function bmerge_v3 (Item *A, *endA, *B, *endB, *C)
load 𝑟0, . . . , 𝑟2𝑘−1 as in Algorithm 1;

loadFrom = 𝐴 + 𝑘W; opposite = 𝐵 + 𝑘W;

while loadFrom ≠ endA and loadFrom ≠ endB do
rswaps from a merge network of size 2𝑘 ;

store 𝑟0, . . . , 𝑟𝑘−1 to𝐶 ; 𝐶 += 𝑘W;

flag = *loadFrom < *opposite;

tmp = flag ? loadFrom : opposite;

opposite = flag ? opposite : loadFrom;

loadFrom = tmp;

load 𝑟0, . . . , 𝑟𝑘−1 from loadFrom; loadFrom += 𝑘W;

end
merge keys left in registers and the unfinished list

coming from. This version, which we call bmerge_v2, is completely

branchless:

src = flag ? 𝐴 : 𝐵;
𝑟𝑖 = load(src + 𝑖W); 𝑖 ∈ [0, 𝑘 − 1]
𝐴 += flag ? 𝑘W : 0; 𝐵 += flag ? 0 : 𝑘W;

While this algorithm is 50% faster than v0, the compiler still has

a redundant computation of the flag. To overcome this issue, we in-

troduce our final method in Algorithm 2, which we call bmerge_v3.
It runs two pointers loadFrom and opposite, where the former

always points to the array from which the next load will take place

and the latter points to the current position in the other array. The

pointers are swapped based on the flag using one mov instruction
and two cmovs, which increases efficiency and yields a 25% faster

merge than v2 and 86% faster than v0. In addition, Algorithm 2 is

distribution-insensitive since the branchless merge removes spec-

ulation from the control flow and runs at a nearly constant speed

for all inputs.

Even though the vectorizedmerge network in Algorithm 2 allows

multiple rswaps to proceed in parallel, it still periodically runs

into pipeline stalls when there is dependency between adjacent

operations in themerge network. To push performance even further,

it is beneficial to run multiple independent merge networks to take

advantage of the CPU’s instruction-level parallelism. To this end,

Origami unrolls bmerge to simultaneously read several pairs of

input lists in a single thread. This interleaves the instructions of the

rswaps and reduces the duration of the stall cycles in the pipeline,

which for AVX2 increases performance by 77-94%.

4.3 Scalar Merge Optimizations
We can speed up the scalar bmerge further by reducing the num-

ber of swaps needed by the merge network. Assume that regis-

ters 𝑟0, . . . , 𝑟𝑘−1 are loaded from 𝐴 and 𝑟𝑘 , . . . , 𝑟2𝑘−1 from 𝐵. A

2𝑘-size merge network will aim to reorder the keys such that

𝑟0 ≤ . . . ≤ 𝑟
2𝑘−1, i.e., it sorts the entire collection of 2𝑘 items.

Since each iteration of the loop stores the smallest 𝑘 keys to the

output, the lower half of this sequence must be sorted; however,

the upper half can remain in some partially sorted state that allows

the next iteration to properly extract the smallest 𝑘 items. For 𝑘

that is a power of 2, it turns out that we can skip any swaps that
involve the second half, i.e., registers 𝑟𝑘 , . . . , 𝑟2𝑘−1, which can be

proven using the zero-one principle [19]. This novel result allows

Origami to reduce the number of swaps from 9 to 8 for 𝑘 = 4 and

from 25 to 20 for 𝑘 = 8. Note that this optimization does not work

for vector registers since multiple keys reside in each 𝑟𝑖 .

5 OUT-OF-CACHE MERGE
Merging lists that do not fit in the cache requires consideration of

memory-bandwidth limitations. In addition, proper load balancing

is needed to maximize thread-level parallelism. In this section, we

discuss the design decisions in Origami for out-of-cache merge

using single and multiple threads.

5.1 Independent Merge (𝑃3)
Phase 𝑃2 finishes when each thread obtains a number of sorted

lists of L2-cache-size C. Assuming the number of these streams is

still significant, we can continue merging them separately in each

thread, which constitutes phase 𝑃3. An out-of-cache merge involves

loading items from main memory, running rswap over them, and

storing the result back to RAM. The maximum achievable speed

for this step is that of memcpy, which we define as the rate at which

T threads can concurrently copy large chunks of memory (e.g.,

100 MB) without any synchronization. For example, Skylake-X i7

CPUs with DDR4-3200 quad-channel memory max out at 37 GB/sec.

Our vectorized bmerge_v3 can exhaust this bandwidth with just 3

threads, even though this CPU family comes with many more cores

(i.e., between 6 and 18). For older computers with lower RAM clocks

and those with dual-channel memory, the saturation point may

be approached even with a single Origami thread, which severely

limits the overall performance on these systems.

The majority of prior SIMD mergesorts [14], [26], [30], [32], [33]

ignore this issue and continue with binary merges in 𝑃3. The main

other alternative is to run a multi-way merge to get around this

bottleneck. Observe that a 𝑘-way merge reduces the number of

out-of-cache passes over the data from log
2
(N/C) to log𝑘 (N/C).

This reduces memory-bandwidth demand by a factor of log
2
𝑘 . One

technique [6] is to use a merge tree that resides in the L3 cache

and implements an N/C-way merge through a series of binary

merges at each node. Each internal node stores partial merge results

in a circular-buffer queue. A node is marked ready if both of its

children’s queues contain a threshold number of keys. Threads draw

elements from a global pool of ready nodes and process their merges

in parallel. Besides requiring inter-thread synchronization and inter-

core data traffic, which we would like to avoid in 𝑃3, this method

fails to utilize dedicated core caches (i.e., L2) and uses relatively

slow queues at each node. Another approach [17] uses a 32-way

merge tree that fits into the L2 cache and fixed 4-KB intermediate

buffers instead of queues. It encodes the stream from which the

key originated in the upper 5 bits of each item and runs insertion

sort to break ties, which leads to not only extensive overhead in

coding/decoding the index bits, but also quadratic complexity on

certain inputs.

In Origami, we develop an L2-cache-residing 𝑘-way merge tree,

which we call mtree. Unlike prior work, where 𝑘 is fixed, our ap-

proach uses it as a tuning parameter that can be adapted to the

characteristics of the architecture on which the sort is running. To

facilitate faster operation, each node in mtree performs a 4-way

264

merge instead of binary. This is done with tiny intermediate buffers

inside each 4-way node (i.e., 64 − 128 bytes), while buffers at the

root and leaves remain large. We use our branchless bmerge_v3
from Section 4.2 within the tree. The optimal choice of 𝑘 , which can

be determined experimentally at runtime or in advance, depends

on T , memory bandwidth, and L2 cache size. If the optimizer re-

turns 𝑘 = 2, we run binary merges using bmerge_v3; otherwise, we
invoke mtree_v2, with hyper-threading enabled to better utilize

the CPU pipeline.

For comparison purposes, we refer to the baseline binary merge

tree that internally uses bmerge_v0 at each node as mtree_v0, bi-
nary tree with bmerge_v3 as mtree_v1, and our final quad-way

tree with bmerge_v3 as mtree_v2.

5.2 Cooperative Merge (𝑃4)
Mergesort inherently allows easy utilization of thread-level par-

allelism since sorted sequences can be merged independently. At

a certain point, however, the number of remaining lists becomes

insufficient to continue independent merging (i.e., fewer than one

per thread). This calls for the final phase 𝑃4, where T threads co-

operatively process the remaining items. Most prior work [6], [15],

[17], [30], [32], [33] begins this phase with 𝑘 = T streams and uses

a binary-search partitioning method that splits each list 𝑖 into T
segments [𝑎𝑖 𝑗 , 𝑏𝑖 𝑗), where 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . ,T , such that∑︁𝑘
𝑖=1 (𝑏𝑖 𝑗 − 𝑎𝑖 𝑗) = N/T . Other approaches either avoid the issue

of load-balancing by shrinking T as the merge nears the end [14]

or do not multi-thread the code at all [26].

To avoid bottlenecking onmemory bandwidth, our observation is

that the merge must utilize at least 𝑘 sequences, where 𝑘 is selected

optimally by mtree in 𝑃3. For example, if 𝑘 = 64 and T = 8, prior

work would lose half the achievable performance in 𝑃4. Other issues

in previous approaches include single-threaded partitioning and

poor management of stragglers, i.e., threads that take longer to

finish despite having the same amount of work. Instead, Origami

terminates 𝑃3 at the stage when at least 𝑘 streams remain, performs

parallel partitioning of the lists, and creates a large number of

smaller jobs (e.g., 16T) to reduce the time gap between the fastest

and slowest threads. The jobs are added into a shared queue, from

which all threads draw their workload in parallel.

6 EXPERIMENTS
6.1 Setup
Benchmarks run all code compiled with Visual Studio 2019 in Win-

dows Server 2016 on an 8-core Intel Skylake-X (i7-7820X) CPU with

a fixed 4.7 GHz clock on all cores, 1 MB L2 cache, and 32 GB of

DDR4-3200 quad-channel RAM. When AVX-512 was used, BIOS de-

faulted to a 400-MHz lower clock (i.e., 4.3 GHz), which is known as

the AVX offset implemented by many motherboard manufacturers

to keep core temperature under control.

We enable the maximum level of optimization and use appro-

priate flags (e.g., /arch:AVX512) to ensure the compiler uses all

available SIMD registers. Performance profiling is done with the

help of EMON, which is a low-level command-line tool that is part

of the Intel VTune profiler [10]. EMON leverages the counters from

CPU performance monitoring units to collect event information.

Unless mentioned otherwise, all keys are uniformly random.

Table 1: Matrix transpose cost (CPU cycles/transpose)

SSE AVX2 AVX-512

B W v0 v1 W v0 v1 W v0 v1
32 4 8 6.2 8 24.1 17.6 16 63.9 58.9

64 2 2.25 2 4 9.1 8.27 8 24.5 21.4

64+64 1 – – 2 4 4 4 9.3 11.1

6.2 Tiny Sorters
Matrix Transpose. We start by testing the speed of matrix transpose

as it is a key component of our in-register sort. The test loads a

W×W matrix with random keys and performs a billion transposes.

Table 1 shows the result across all SIMD extension sets, where

B = 32 uses 4-byte keys, B = 64 runs 8-byte keys, and B = 64 + 64

uses 16-byte key-value pairs. Note that gray shading in the table

shows the fastest result for each architecture and value of B.

As discussed in Section 3.4, transpose_v1 achieves better pipe-

line utilization by distributing the workload among ports 0, 1, and

5. We see a reduction in CPU cycles per transpose by up to 23% in

SSE, 27% in AVX2, and 11% in AVX-512. The result for key-value

pairs, however, demands further explanation. For SSE, 128-bit pairs

consume entire registers, where transposing a 1 × 1 matrix is not

needed. In AVX2, the transpose is a single 128-bit diagonal exchange.

The two permutes of v0 take 4 cycles to achieve this since each has

latency 3 and throughput 1. On the other hand, v1 also requires 4

cycles because the two blends (latency 1, throughput 0.5) following
the permute can be performed in 1 cycle when issued to separate

ports. In this case, reducing port 5 pressure therefore does not

improve performance.

From the table, transposing key-value pairs in AVX-512 with v1
is 19% slower than with v0. This transpose pipeline consists of a
pair of diagonal exchanges – one shuffles 128 bits and the other

256 bits. Results show that this step takes 4.1 cycles in v0 and 4.5

cycles in v1. This is possibly due to AVX-512 using mask registers

to perform the mask_blend intrinsic. For each pair of blends, a
mask register is loaded from a general-purpose register with kmov
(latency 1, throughput 1) that also uses port 5. The good news for

v1 is that the overhead of kmov is mostly hidden when executing

multiple independent exchanges (i.e., unrolling the transpose loop

to operate on multiple matrices simultaneously). For example, with

4× unrolling, v0 takes 2 cycles per exchange, while v1 executes

in 1.75. This translates to v1 becoming 11% faster, i.e., 7.1 cycles

per transpose vs 8 cycles for v0. Because Origami almost always

performs R/W independent transposes simultaneously (i.e., 8 for

B = 64 + 64), v1 is still the clear choice, even for AVX-512.

Matrix Merges. We next analyze the speed of mcmerge and mrmerge.
The benchmark loads an R ×W matrix in R = 32 registers. These

𝑚 = RW numbers are set up to consist of𝑚/K sorted sequences

ofK items each, whereK = {8, 16, 32, 64}. For example, for R = 32

and W = 8, we can represent the matrix as 32 sorted sequences

of 8 items or four sequences of 64 items. Define X = 𝑚/(2K) to
be the number of pairs of sorted sequences in the matrix. Then, a

K-merge operation uses SIMD to produce a binary merge over allX
pairs, replacing them with size-2K sorted sequences. For example,

a merge that begins withX = 16 sorted sequences of lengthK = 16

produces X/2 = 8 sorted sequences of size 2K = 32.

265

Table 2: Merge speed (B keys/s) in a 32 ×W matrix

B K SSE AVX2 AVX-512

X mc mr X mc mr X mc mr

32

8 8 10.39 3.75 16 24.11 5.19 32 21.98 -

16 4 6.26 3.52 8 13.82 5.21 16 16.92 7.63

32 2 2.81 3.24 4 6.24 5.02 8 7.53 7.23

64 1 1.58 2.83 2 3.98 4.74 4 5.04 6.71

64

8 4 3.51 1.96 8 4.66 2.36 16 10.98 3.22

16 2 2.45 1.71 4 3.21 1.99 8 8.46 3.07

32 1 1.06 1.41 2 1.41 1.83 4 3.53 2.88

64 – – – 1 0.93 1.49 2 2.33 2.68

64+64

8 2 1.44 4 2.08 1.23 8 3.61 1.26

16 1 1.06 2 1.43 1.08 4 3.06 1.13

32 – – – 1 0.66 0.92 2 1.32 1.03

64 – – – – – – 1 0.89 1.01

Each test performs a billion K-merges within the matrix. Ta-

ble 2 shows the result, where cells with a dash denote an invalid

merge condition. The outcome is consistent with our earlier dis-

cussion – mcmerge is up to 4.65× faster than mrmerge for small

K as it utilizes the data-level parallelism of SIMD registers better

(i.e., by performing column-major merges). However, it suffers an

almost exponential decay in speed as K gets larger. The reason is

that its merge networks get longer and the overhead of expensive

cross-column permutes becomes higher. While mrmerge begins at
a lower rate, the length of the sequence being merged does not

significantly impact its performance. While K affects the number

of merge-network swaps, the remaining elements of the algorithm

have constant cost, i.e., exactly R/2 reverses and 2R/W transposes,

irrespective of K .

6.3 In-cache Merge
rswap. We next discuss the performance of rswap. We benchmark

this by repeatedly performing a merge of two sorted sequences

of size W within two registers. Table 3 compares the different

implementations of rswap for various B. It shows that for both

SSE and AVX2, running W levels of rotate/swap instructions

outperforms both mrmerge and the bitonic network. AVX-512, on

the other hand, runs much faster with mrmerge, where specialized
mask instructions allow rapid sorting within the rows. Finally, 128-

bit key-value pairs occupy an entire SSE register, in which case

rswap is equivalent to a regular swap and all three methods produce

the same result. The data in Table 3 is in line with our discussion in

Section 4.1. As a side note, scalar rswap, which is absent from the

table, increases speed by 5 − 15% using our optimized size-8 merge

network from Section 4.3. This is the benefit of saving one out of

every nine swaps.
Table 4 shows the effect of running multiple independent rswaps

on separate input streams. For all extension sets, there is a signif-

icant performance improvement from unrolling (up to 2.86× in

SIMD, 1.38× in scalar). For SIMD, this is because each swap is de-
pendent on the previous rotate or permute. Without unrolling,

the CPU fails to take advantage of its out-of-order execution en-

gine. While running multiple rswaps, the pipeline can reorder the

instructions to use the available execution units and utilize the

cycles otherwise wasted in pipeline stalls. The performance gain

for scalar in last row is smaller since the number of stalls is already

Table 3: rswap speed (B keys/s) for a size-2W merge

SSE AVX2 AVX-512

B → 32 64 64+64 32 64 64+64 32 64 64+64

bitonic 2.34 1.38 1.81 2.93 1.14 0.76 3.31 1.52 0.51

rotate 4.26 1.81 1.81 3.61 1.31 1.01 3.38 1.56 0.69

mr 2.21 1.19 1.81 2.29 1.21 0.78 5.61 2.27 0.74

Table 4: Speed-up factors over the best speed from Table 3
for running simultaneous independent rswaps (unrolling)

B → 32 64 64 + 64

Unroll → 2× 3× 4× 2× 3× 4× 2× 3× 4×
SSE 1.57 1.90 2.07 1.57 2.09 2.45 1.63 1.94 2.15

AVX2 1.59 2.07 2.27 1.74 2.33 2.72 1.93 2.43 2.86

AVX-512 1.49 1.49 1.49 1.38 1.44 1.47 1.54 1.68 1.68

Scalar 1.05 1.11 1.09 1.11 1.12 1.06 1.38 1.36 1.35

minimized by using a size-8 merge network. After a certain thresh-

old, further unrolling leads to performance degradation due to the

lack of registers.

bmerge. Our next test benchmarks the in-cache bmerge. The input
arrays are filled with C/4 random keys, where C is the L2 cache

size, and sorted separately before running the merge. To prevent

cache misses due to core hopping, we bind the merging thread

to a fixed core. The left half of Table 5 compares performance of

Origami’s bmerge_v3 (Algorithm 2) with that of the naive branched

version v0. It also shows the effect of loading 𝑘 registers per input

stream and running a size-2𝑘 rswap merge network. The v3 setup

gains up to 92% in scalar and up to 72% in vectorized bmerge over

the corresponding v0. The margin of improvement, however, gets

narrower for larger networks and wider registers. In these cases,

executing the rswaps constitutes the majority of instructions in

bmerge and the relative penalty of branch misprediction diminishes.

For scalar merges in Table 5 under B = 32 and B = 64, Origami

reaches peak speed at 𝑘 = 4, but then performance takes a dive.

There are two reasons for this. First, some of the 16 available reg-

isters are used to store pointers and loop variables of bmerge_v3.
Using a larger 𝑘 would result in some of this contents being spilled

to memory (i.e., the stack). Second, larger merge networks have

more complexity per key they output. For example, a classical size-8

merge network [2] runs 9 swaps to output 4 keys, while a size-10
network executes 15 swaps to spit out 5 keys. This increases the cost
per output key from 2.25 swaps to 3. Not surprisingly, key-value

pairs (i.e., B = 64 + 64) exhibit 𝑘 = 2 as optimal for scalar since

each swap now uses double the amount of registers.

As discussed in Section 4.2, we run multiple independent bmerge
operations in a single thread to achieve even higher throughput.

The right side of Table 5 shows the effect of unrolling bmerge_v3 to
multiple pairs of streams, all of which still fit into the L2 cache. Ex-

cept for scalar, where we either run out of registers or already fully

pack the pipeline, unrolling significantly improves performance.

To be specific, we gain up to 47%, 96%, and 59% in SSE, AVX2, and

AVX-512, respectively, over the corresponding merges without any

unroll. At a certain point, additional unroll begins to hurt perfor-

mance, which is similar to earlier observations in Table 4. Origami

selects the best option for bmerge_v3 based on Table 5.

266

Table 5: In-cache bmerge speed (M/s); the left half of the table compares Origami optimized branchless merge (v3) with naive
branched merge (v0); the right half shows further improvement from unrolling v3 to merge multiple sequences

B 𝑘
Scalar SSE AVX2 AVX-512 Scalar SSE AVX2 AVX-512

v0 v3 v0 v3 v0 v3 v0 v3 2× 2× 3× 4× 2× 3× 4× 2× 3× 4×

32

1 308 575 1402 1788 1966 2006 2639 2770 830 2441 2430 2338 3068 3552 3292 3422 3796 3776

2 591 1136 1893 2284 1821 1888 2424 2503 1074 2324 2282 2224 2305 2203 2120 2526 2542 2514

3 791 1213 1701 1904 1526 1537 1877 1877 986 1926 1893 1796 1623 1581 1592 1905 1901 1868

4 922 1327 1869 2016 1651 1662 1892 1904 1002 1935 1908 1795 1668 1627 1596 1903 1850 1845

64

1 309 569 616 931 686 698 1042 1065 805 1396 1396 1316 1176 1355 1278 1430 1495 1488

2 573 1016 864 912 671 674 988 988 1058 1422 1397 1260 864 836 804 1041 1059 1066

3 814 1133 822 828 611 613 779 781 916 1101 1068 980 606 598 590 799 811 808

4 961 1270 914 966 609 611 789 790 1004 1048 1013 954 622 620 608 804 811 809

64+64

1 263 481 290 503 489 557 342 353 542 844 872 697 961 1113 962 547 561 546

2 448 674 526 761 520 520 319 327 531 1030 1017 928 834 831 703 370 370 359

3 494 544 671 780 498 499 265 269 448 967 922 784 559 585 545 288 279 275

4 463 528 764 926 557 567 287 290 371 955 907 747 579 539 515 297 289 289

Table 6: In-cache bmerge speed (M/s); B = 32

Scalar AVX2 AVX-512

[13] [16] v3 [14] [26] v3 [30] [32] [33] v3
465 481 1327 720 1995 3552 395 2997 1849 3796

Table 7: Single-threaded memory throughput (GB/s)

bmerge_v3

B Scalar SSE AVX2 AVX-512 memcpy
32 4.83 8.82 10.26 11.99

10.8164 7.39 9.75 8.69 10.84

64+64 7.53 11.62 11.58 8.22

Table 6 compares our optimal bmerge against the existing work.

We directly use the source code published by the authors of [14],

[26], [30], [32], porting everything to Windows and building with

maximum compiler optimizations. Some methods [13], [16], [33] do

not have a reference implementation; however, the papers provide

enough code snippets and details for us to make one ourselves. SSE

is left out of this table since older papers either do not use phase 𝑃2
for in-core sorting [6], [18], [27] or rely on distribution-sensitive

combsort [15]. Results in the table show that Origami achieves a

substantial improvement over prior methods, exceeding their merge

speed by 1.27 − 2.85×.

6.4 Out-of-cache Merge
bmerge. During 𝑃2, each thread has many pairs of sorted lists to

merge, which allows usage of unrolled bmerge_v3 throughout; how-
ever, the situation changes once input arrays become larger than L2

and threads put pressure on the memory controller. We first discuss

the bandwidth usage by bmerge_v3 running in a single thread over

sequences that cannot be kept in the cache. The benchmark setup is

similar to earlier in-cache bmerge tests except the total output size

is now 1 GB. Table 7 displays the throughput of the optimized and

parameter-tuned bmerge_v3, as well as that of C++ std::memcpy.
We drill into these numbers in more detail next.

On a single core, the RAM bandwidth is limited by the number of

line-fill buffers (LFBs) and RAM latency. Skylake-X has 12 LFBs [28]

and its latency on our test machine is reported as 61 ns by the Intel

MLC [11]. This gives us an ideal one-directional throughput (i.e.,

reads or writes) as 12 × 128/61 = 25.2 GB/s. Dividing this in half

Table 8: Single-threaded mtree speed (M/s); B = 32

SSE AVX2 AVX-512

𝑘 v0 v1 v2 v0 v1 v2 v0 v1 v2
4 843 1048 1101 986 987 1093 1244 1303 1482

8 521 627 694 617 644 718 843 858 955

16 379 456 501 465 477 528 628 638 689

32 292 346 396 364 366 413 484 488 549

64 240 284 303 303 302 331 398 398 433

128 202 237 251 251 253 278 331 336 361

256 174 199 214 211 212 235 269 267 301

512 151 171 190 192 190 203 230 235 259

1024 133 147 165 166 168 178 196 203 223

produces an estimated upper bound on memcpy rate – 12.6 GB/s.

As the table shows, Origami comes within 60% of this number using

scalar merging and 92-95% using SIMD. It also beats memcpy since
bmerge_v3 switches to streaming (i.e., non-temporal) SIMD store

instructions to bypass the cache on large inputs. By comparing

Table 7 with the top speed in Table 5, where unrolled Origami hits

16 GB/s on SSE and 17.8 GB/s on AVX2, it is easy to see how a single

merge thread can exhaust the available bandwidth of its core.

With multiple threads, the situation gets worse. The memcpy
bandwidth across all cores on this machine is limited to 37 GB/s.

With 8 threads, Origami could exceed this rate by as much as 3.8×.
It is therefore beneficial to explore alternative ways to merge out-

of-cache data that avoid these bottlenecks, which we do with our

𝑘-way merge tree.

mtree. Next we discuss the performance of mtree. The test is pre-
pared by generating a 1 GB buffer, dividing it into 𝑘 chunks, and

then sorting them individually before feeding the result into the

leaves of the tree. While the tree stays in L2 cache, the data is

directly served from and written to RAM. Table 8 compares the

results of different mtree versions for 32-bit keys over various 𝑘 . To
recap, both v0 and v1 trees use binary nodes, where the former runs

the branching bmerge_v0 and the latter uses our fastest branchless

bmerge_v3. The third variant is mtree_v2 that internally operates

4-way merge nodes, except for the root node, which may be 2-way

depending on the desired value of 𝑘 .

As seen in the table, mtree_v2 is the best option for all SIMD

extension sets. It beats v0 by bigger margins than previously in Ta-

ble 5 (e.g., 19% in the first row of AVX-512) and comes out ahead of

mtree_v1 by 5-12% due to better clustering of data in small buffers

267

Table 9: Chunked speed in 𝐶1 (M/s); N = 128K, B = 32

chunk SSE AVX2 AVX-512

size 𝑐 [15] 𝐶1 [14] [26] 𝐶1 [30] [32] [33] 𝐶1

8 809 4416 7043 2987 7462 913 - - -

16 562 3137 978 1622 5599 534 1740 4615 5682

32 499 2082 493 964 4198 372 1545 2921 4412

64 454 1036 302 659 2377 288 923 1519 2642

128 435 653 212 494 1431 233 697 889 1976

256 362 421 167 391 1053 197 558 633 1457

512 – – 137 333 757 167 463 467 1184

1K – – – – – 117 399 380 951

within each 4-way node. It should be noted that bmerge_v3 inside

the tree cannot be unrolled due to complex dependencies that con-

trol buffer refill at each node and its children. As a result, the extra

cost of running mtree_v2 compared to repeated binary merges can

be assessed by diving the speed of non-unrolled bmerge_v3 on the

left half of Table 5 by log
2
𝑘 . Generally, the tree is slower than the

corresponding estimates from binary merges, except for AVX-512

in the first three rows of Table 8. For example, its 4-way merge

speed 1482M/s manages to beat the predicted 2770/2 = 1385M/s.

Reduction in performance is negligible in the first few rows of Ta-

ble 8, but then becomes more noticeable as 𝑘 grows. It is therefore

beneficial to use the smallest 𝑘 allowed by the memcpy bandwidth
for a given number of threads T .

Scalar results are absent from the table as the speed remains

similar for both mtree_v1 and mtree_v2. With general-purpose

registers used to maintain tree variables and perform the merge,

the advantage of 4-way merging is lost due to register scarcity.

6.5 End-to-End Sort
For convenience of presentation, the section breaks the full Origami

sort, which consists of the fastest components outlined above, into

so-called checkpoints 𝐶𝑖 , each of which represents execution of

phases 𝑃1 through 𝑃𝑖 . The source code is available from [1].

Origami 𝐶1 (Tiny Sorters). We now compare the 𝐶1 performance

of Origami against that of prior work. We first define a chunk-𝑐
sort to be an algorithm that sorts every 𝑐 continuous items in an

input of size N , where 𝑐 ≤ N . Note that this section uses 𝑐 up to

𝑚 = RW, i.e., it sorts the entire chunk in registers (at least from

the compiler’s perspective, see below), but later sections expand 𝑐

to be much larger. Our next test generates a block of random items

that fit in the L2 cache (i.e., N = C) and measures the chunked

sort speed for different 𝑐 . Note that Origami loads RW keys into

its matrix and sorts each group of min(RW, 𝑐) items in registers.

It begins the sort with mcmerge and then, if necessary, moves to

mrmerge at the optimal switch point from Table 2. Since none of the

prior work sorts more thanW keys in register, achieving 𝑐 > W
requires them to run bmerge from phase 𝑃2.

Table 9 shows the result on 32-bit keys (most prior implemen-

tations do not support larger B). Note that dashes represent cases

that require either too many registers (SSE and AVX2) or fewer

than one (AVX-512). In all cases, Origami demonstrates a significant

improvement over prior work, posting a 5× faster speed in third

row for SSE, 4.3× for AVX2, and 1.5× for AVX-512. As chunk size

increases, our SSE advantage shrinks to 16% at 𝑐 = 256, where the

Table 10: Chunked speed in 𝐶2 (M/s); N = 128K, B = 32

chunk SSE AVX2 AVX-512

size 𝑐 [15] 𝐶2 [14] [26] 𝐶2 [30] [32] [33] 𝐶2

8 809 4416 7043 2987 7462 913 - - -

16 562 3137 978 1622 5599 534 1740 4615 5682

32 499 2082 493 964 4198 372 1545 2921 4412

64 454 *1089 302 659 2377 288 923 1519 2642

128 435 729 212 494 1431 233 697 889 1976

256 362 563 167 391 1053 197 558 633 1457

512 319 458 137 333 *767 167 463 467 1184

1K 308 386 114 292 650 117 399 380 951

2K 286 333 98 259 545 90 341 303 750

4K 266 294 87 232 474 74 306 260 *646

8K 222 263 78 208 414 62 279 235 557

16K 204 237 70 190 370 58 257 211 480

32K 189 217 63 175 326 50 236 189 425

64K 161 198 58 161 297 44 217 172 378

128K 150 183 54 150 257 40 203 157 335

vectorized combsort from [15] is quite efficient; however, its qua-

dratic complexity on certain inputs makes it potentially unsuitable

for sorting real-world (i.e., skewed) data. For AVX2 and AVX-512,

Origami finishes the table with a 2.3 − 2.4× advantage over the

nearest competitor. The extra cache traffic and their bmerge being

expensive for small sequences render previous methods inefficient

in this benchmark.

For scalar, checkpoint 𝐶1 simply runs a sequence of swaps in a

size-𝑐 sorting network over each chunk. Since prior SIMD work

does not consider scalar sorting as a viable option, we only discuss

Origami results. For 𝑐 = 8, the speed of its C1 is 1804M/s for B = 32

and 1590M/s for B = 64. Note that this performance more than dou-

bles that of [15] in the first row of Table 9. Dealing with B = 64+64
key-value pairs, where each item is packed in a struct, is the next
question. Trivially, we could overload the < operator in C++ and

use the scalar swap from Section 3. However, compilers generate a

significant amount of load/store instructions with operator over-

load, even when sorting only 𝑐 = 8 pairs. Instead, we modify the

swap to move the keys and values as separate entities, forcing the

compiler to generate a single cmp instruction and four cmovs, which
is optimal. This results in a 20% speed-up over operator overload.

Origami 𝐶2 (In-Cache). We now set up a benchmark to find the

optimal switch point from 𝑃1 to 𝑃2 in Origami. To achieve a chunk-

𝑐 sort, there are two competing options. First, we could run 𝑃1 all

the way to 𝑐 , assuming the compiler allows usage of this many

registers. The speed for this step comes from Table 9. Alternatively,

we could run 𝑃1 to 𝑐/2 and then execute a binary merge with

bmerge_v3. For each 𝑐 = 8, 16, . . ., we test both versions and select

the winner, which represents the Origami algorithm for checkpoint

𝐶2. Note that once the dilemma is resolved in favor of bmerge_v3,
all remaining chunks are processed via binary merge as well. This

is because each additional phase in Origami 𝑃1 gets slower as 𝑐

increases, while bmerge_v3 runs at a constant rate.
Table 10 shows results for 𝐶2, where the cells marked with as-

terisks denote the first time bmerge_v3 wins in each column. For

example, Origami SSE runs 𝑃1 up to 𝑐 = 32 and then switches

to binary merge. This yields a 33% improvement compared to the

results in Table 9 by the time we get to 𝑐 = 256. Table 10 also demon-

strates that in some of the cases, it is beneficial to run 𝑃1 with more

268

Table 11: Chunked speed in 𝐶3 (M/s); N = 256M, B = 32

chunk SSE AVX2 AVX-512

size 𝑐 [15] 𝐶3 [14] [26] 𝐶3 [30] [32] [33] 𝐶3

128 K 63 176 53 139 228 40 198 140 295

256 K 61 147 47 128 210 33 184 130 269

512 K 59 138 44 120 195 30 172 113 249

1 M 57 131 41 109 183 28 160 102 232

2 M 55 124 39 92 174 25 150 95 216

4 M 54 118 37 81 168 23 140 88 203

8 M 52 112 35 77 162 21 131 83 191

16 M 50 107 33 73 153 20 122 78 181

32 M 48 102 32 70 145 19 115 72 172

64 M 47 98 30 67 138 18 109 69 163

128 M 45 95 29 65 132 17 103 66 156

256 M 44 91 28 63 126 17 97 64 149

(a) (b)

#
b
u
b
b
l
e

s
o
r
t
p
a
s
s
e
s

Figure 4: (a) Number of bubble-sort passes for SSE combsort
(N = 256M, 𝑐ℎ𝑢𝑛𝑘 = 128K, B = 32); (b) the same for different
distributions.

than RW items, even though the compiler cannot keep all of them

in registers. This happens because the latency to offload some of

them onto the stack (i.e., L1 cache) is effectively hidden by the CPU

instruction-reorder buffer. Thus, it is sometimes possible to push

out𝑚 > RW sorted items in each iteration of 𝑃1 and achieve an

overall speed-up. This is shown for AVX-512 in Table 10, where

Origami uses 128 registers (i.e., 𝑐 = 2K), way more than available

in the system (i.e., 32), just before switching to 𝑃2. This allows it to

achieve run lengths of𝑚 = 2K using tiny sorters.

Compared to related work, Origami continues posting signif-

icant improvement margins, finishing the table with 22% better

performance under SSE, 71% under AVX2, and 65% under AVX-512.

Origami 𝐶3 (Independent Out-of-Cache). We now inspect Origami

performance in checkpoint𝐶3 using a single thread. The benchmark

still runs a chunked sort, except the total data size is 1 GB, i.e.,

exceeds cache capacity. As shown in Table 11, we achieve a 1.5−2.1×
speed-up over the fastest competitor. A few interesting observations

can be made about these results.

First, the discrepancy for 𝑐 = 128K between Tables 10 and 11 is

because the former sorts entirely in cache while the latter slides

a 𝑐-size window across a large buffer, which incurs a lot of main-

memory traffic. Second, a notable slowdown is visible for [15]

compared to Table 10. This is because the combsort in [15] includes

a bubble-sort phase at the end to put the data in order. As it turns out,

the number of bubble-sort passes may vary widely across chunks,

even with uniformly distributed keys. Figure 4(a) shows that some

of the 128K-size chunks trigger a huge number of passes, therefore

Table 12: Origami single-threaded speed (M/s) for 1 GB

B D1 D2 D3 D4 D5 D6 D7 D8 D9

S
c
a
l
a
r 32 47 52 52 52 47 47 49 47 47

64 43 47 47 47 43 44 45 43 44

64+64 25 27 27 27 25 25 25 25 25

S
S
E

32 91 90 90 90 91 91 92 91 90

64 50 49 49 50 50 50 50 50 49

64+64 35 34 34 34 35 35 35 35 34

A
V
X
2 32 126 126 125 124 126 126 127 126 125

64 48 48 48 48 48 48 48 48 47

64+64 34 34 34 34 34 34 35 34 34

A
V
X
-
5
1
2

32 149 145 145 145 148 149 149 149 146

64 65 63 64 63 64 64 65 64 63

64+64 27 26 26 26 26 27 26 26 26

significantly affecting the overall sort speed. To test sensitivity

of combsort to input workloads, we run additional tests with the

following distributions:

(D1) Uniformly random, generated by Mersenne Twister

(D2−4) All the same, sorted, and reverse-sorted
(D5) Almost sorted, where every 7

𝑡ℎ
key is set to KEY_MAX

(D6) Pareto, generated as min(ceil(𝛽 (1/(1 − 𝑢) − 1)), 10000),
where 𝛽 = 7 and 𝑢 ∼ uniform[0, 1]

(D7) Bursts of same keys, where the length of each subsequence

is drawn from D6 and the key from D1

(D8) Random shuffle, generated by randomly permuting D7

(D9) Fibonacci, wrapped around when it overflows N
Figure 4(b) indicates that vectorized combsort performs well

when all keys are the same, but then deteriorates into extremely

slow regimes with other types of input. In contrast, Table 12 con-

firms an earlier prediction that Origami is largely distribution-

insensitive. The numbers broadly follow the results from Table 5

and provide several points for discussion. First, for all vector ex-

tension sets and key type, we achieve a near constant speed for

all D1 − D9. In scalar, Origami receives a performance boost for

skewed distributions, particularly where the merged keys have

long back-to-back runs from one of the input streams (e.g., when all

keys are the same). These bursts of streaming memory reads allows

the relatively-slow scalar bmerge to become faster. Since SIMD

bmerge is already compute-bound, we do not get any advantage

from possibly faster memory access.

Second, within the same extension set, we may expect a constant

2× speed drop when going from B = 32 to B = 64. However,

this is not the case. For scalar, the two sorts remain within 10% of

each other since the number of CPU instructions (e.g., comparisons,

memory loads/stores) stays the same. Even though the memory

traffic of bmerge doubles, it is nowhere near the memcpy bandwidth.
Thus, the drop in speed is only minor. For vector registers, the

speed reduction is 1.8 − 2.6× since not only is W reduced by half

and the memory traffic is higher, but certain instructions become

more expensive on some of the architectures (e.g., SSE and AVX2

do not have a 64-bit min/max). The penalty is more noticeable for

AVX2/AVX-512 because they generally execute faster and get a

significant performance boost from the unrolled bmerge under 32-

bit keys, as shown in Table 5, but not as much under 64-bit.

Third, the speed-up factor between the platforms is quite a bit

lower than the ratio of theirW (e.g., AVX2 is only 1.33× faster than

269

Table 13: Origami parallel speed (M/s) on Skylake-X, 1 GB

B Speed (M/s) Speed-up

1C 2C 4C 8C 2C 4C 8C

S
c
a
l
a
r 32 47 74 147 282 1.6 3.1 6.0

64 43 75 149 273 1.7 3.5 6.4

64+64 25 44 84 162 1.8 3.4 6.5

S
S
E

32 91 179 352 687 2.0 3.9 7.6

64 50 94 185 361 1.9 3.7 7.2

64+64 35 70 139 260 2.0 4.0 7.4

A
V
X
2 32 126 248 495 950 2.0 3.9 7.5

64 48 95 189 369 2.0 3.9 7.7

64+64 34 70 137 254 2.1 4.0 7.5

A
V
X
-
5
1
2

32 149 286 565 1062 1.9 3.8 7.1

64 65 122 242 462 1.9 3.7 7.1

64+64 27 53 105 197 2.0 3.9 7.3

Table 14: Origami parallel speed (M/s) on dual Xeons, 64 GB

B Speed (M/s) Speed-up

1C 2C 4C 8C 16C 2C 4C 8C 16C

S
S
E

32 38 76 153 301 581 2.0 4.0 7.9 15.1

64 16 32 63 118 249 2.0 4.0 7.5 15.6

64+64 10 19 38 78 150 1.9 3.9 7.9 15.1

SSE for B = 32 despite doubling register size). For small item sizes,

using the latest extension set yields better performance; however,

this does not hold for larger items. For example, SSE wins on 64+64

key-value pairs, whereas AVX-512 is almost as slow as scalar. This

is due to expensive cross 128-bit lane data movements and AVX-512

mask_blend intrinsics.

Origami𝐶4 (Cooperative Out-of-Cache). To inspect our parallel-sort
performance, we use a 1-GB input of uniformly random keys and set

the number of threads to twice the number of physical cores. This

utilizes hyper-threading to maximally load up the CPU pipeline

and reduce stall durations. We also set each thread affinity masks

to a specific core to ensure better cache utilization.

Table 13 shows the full sort rate for multiple cores and the corre-

sponding speed-up factors over the serial (i.e., single-threaded) sort.

For scalar, the improvement is relatively poor because of the slow

mtree, as discussed in Section 6.4. Note that the single-threaded sort
here uses the fast unrolled bmerge_v3, which cannot be utilized

in mtree. Therefore, in this scenario, it is impossible to achieve

perfect scaling. For SIMD sorting, the situation is much better.

With hyper-threading and usage of load-balancing queues, Origami

avoids stragglers and produces excellent multi-core speedup, which

reaches 7.7× in one case, but generally stays in the low-to-mid 7s.

Both AVX2 and AVX-512 max out at roughly 1B/s with 32-bit keys.

As a baseline, std::sort posts around 11M/s regardless of item

size, which is 13.5× slower than single-threaded Origami on 32-bit

keys, 5.9× on 64-bit, and 3.2× on 64+64.

Not many publicly available SIMD implementations support

multi-threaded operation. The only exceptions are [14], which

reaches 179M/sec on all 8 cores of our machine using AVX2, and

[32], which peaks at 423M/sec using AVX-512, both limited to

B = 32. Additional results, shown in Table 14, focus on larger

(i.e., 64-GB) sorts on dual-socket server CPUs (Intel Xeon E5-2690)

with more cores (i.e., 16 total). Because this computer does not

support AVX2 or AVX-512, we limit benchmarks to SSE. The table

Table 15: Query runtime (sec) on dual Xeons

Size Single core All cores

(GB) MariaDB Origami MonetDB PostgreSQL Origami

IRLbot

2 201.6 4.8 45.2 108.3 0.4

8 777.8 20.9 162.9 357.1 1.7

TPC-H 10 129.1 2.1 6.8 32.1 0.2

Q1 30 374.5 7.4 20.1 96.5 0.6

100 1248.4 27.5 76.4 326.1 2.1

TPC-H 10 30.3 0.9 3.0 15.6 0.1

Q4 30 105.2 2.6 8.7 56.6 0.2

100 417.7 9.1 29.5 222.6 0.7

demonstrates an almost linear speed-up, reaching 15.6× on 64-bit

keys. Compared to Skylake-X used in prior experiments, each core

of this Xeon is 1.8 − 3.5× slower (depending on keys size), which

explains the generally low numbers in the table.

6.6 Database Queries
Our final test involves running SQL queries over existing DBMS

and comparing their performance to that of Origami on the same

task. The first dataset comes from IRLbot crawls [20], from which

we take the out-degree domain graph G and perform anti-spam

ranking on it. The goal is to organize the nodes in descending order

of in-degree, but first eliminate all edges from (likely malicious)

sources whose out-degree exceeds 1M. This is done by creating

two files – table 𝐴 containing (src, out-degree) pairs and table 𝐵

consisting of (src, dst) out-edges. All numbers are 4-byte integers,

the dataset size is 2 or 8 GB, and the load phase is excluded from

timing. The SQL query for this task is given by:

SELECT dst, COUNT(∗) as cnt
FROM A INNER JOIN B ON A.src = B.src
WHERE A.outdeg < 1000000
GROUP BY dst
ORDER BY cnt DESC;

Our second dataset comes from the database benchmark TPC-H,

for which we run standard queries Q1 and Q4. We modify their

filters to preserve almost all of the records and test performance

on 10, 30, and 100 GB datasets. We use the Xeon server specified

above, which has sufficient RAM (i.e., 256 GB of DDR3-1333) to

keep all of the data in memory. We also configure the DBMS to

avoid spilling the tables to disk. The result is shown in Table 15,

including MariaDB (which can run only a single thread per query),

MonetDB, and PostgreSQL. As seen in the table, Origami SSE is

37 − 60× faster in single-core scenarios and 30 − 113× faster than

the closest competitor in multi-core.

7 CONCLUSION
Origami offers a highly optimized mergesort framework that runs

at constant speed for different data distributions and gains a nearly

linear speed-up in multi-core environments. The proposed com-

ponents are flexible enough to accommodate future SIMD exten-

sion sets as the programmer is only required to write a few small

functions with architecture-specific intrinsics, while the remaining

algorithms remains unchanged. Future work will examine external-

memory sorting, longer key/value pairs, and incorporation of Ori-

gami into existing DBMS.

270

REFERENCES
[1] Arif Arman and Dmitri Loguinov. 2021. Origami Souce Code. Retrieved

December 13, 2021 from https://github.com/arif-arman/origami-sort

[2] Kenneth E. Batcher. 1968. Sorting networks and their applications. In Spring
Joint Computer Conference. 307–314.

[3] Guy E. Blelloch, Charles E. Leiserson, BruceM. Maggs, C. Greg Plaxton, Stephen J.

Smith, and Marco Zagha. 1991. A comparison of sorting algorithms for the

connection machine CM-2. In ACM SPAA. 3–16.
[4] Bronislava Brejová. 2001. Analyzing variants of Shellsort. Inform. Process. Lett.

79, 5 (2001), 223–227.

[5] Jing-Chao Chen. 2006. Efficient sample sort and the average case analysis of

PEsort. Theoretical computer science 369, 1-3 (2006), 44–66.
[6] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa

Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.

2008. Efficient implementation of sorting on multi-core SIMD CPU architecture.

VLDB Endowment 1, 2 (2008), 1313–1324.
[7] Y.B. Chiang. 2001. Sorting networks using k-comparators. (2001).

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

1990. Introduction to Algorithms (1st ed.). The MIT Press.

[9] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Optimization Reference

Manual. https://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf

[10] Intel Corporation. 2016. Intel VTune Profiler. Retrieved October 15,

2021 from https://software.intel.com/content/www/us/en/develop/tools/oneapi/

components/vtune-profiler.html

[11] Intel Corporation. 2021. Intel Memory Latency Checker. Retrieved October

15, 2021 from https://software.intel.com/content/www/us/en/develop/articles/

intelr-memory-latency-checker.html

[12] Amr Elmasry, Jyrki Katajainen, and Max Stenmark. 2012. Branch mispredictions

don’t affect mergesort. In International Symposium on Experimental Algorithms.
Springer, 160–171.

[13] Oded Green. 2014. When merging and branch predictors collide. In IA3@ SC.
33–40.

[14] Kaixi Hou, Hao Wang, and Wu-chun Feng. 2015. Aspas: A framework for

automatic simdization of parallel sorting on x86-based many-core processors. In

ACM on International Conference on Supercomputing. 383–392.
[15] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani. 2007.

AA-sort: A new parallel sorting algorithm for multi-core SIMD processors. In

International Conference on Parallel Architecture and Compilation Techniques
(PACT). IEEE, 189–198.

[16] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2014. Faster set intersection

with SIMD instructions by reducing branch mispredictions. VLDB Endowment 8,
3 (2014), 293–304.

[17] Hiroshi Inoue and Kenjiro Taura. 2015. SIMD-and cache-friendly algorithm for

sorting an array of structures. VLDB Endowment 8, 11 (2015), 1274–1285.
[18] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,

Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009. Sort

vs. hash revisited: Fast join implementation on modern multi-core CPUs. VLDB
Endowment 2, 2 (2009), 1378–1389.

[19] Donald E. Knuth. 1998. The Art of Computer Programming, Vol. III (2nd ed.).

Addison-Wesley.

[20] Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov. 2008.

IRLbot: Scaling to 6 Billion Pages and Beyond. InWWW. 427–436.

[21] Kathy J. Liszka and Kenneth E. Batcher. 1992. A Modulo merge sorting network.

In Symposium on the Frontiers of Massively Parallel Computation. 164–165.
[22] M. Douglas McIlroy. 1999. A killer adversary for quicksort. Software: Practice

and Experience 29, 4 (1999), 341–344.
[23] Daniel G. O’connor and Raymond J. Nelson. 1962. Sorting system with nu-line

sorting switch. US Patent 3,029,413.

[24] Tim Peters. 2021. Timsort. Retrieved October 15, 2021 from https://en.wikipedia.

org/wiki/Timsort

[25] Orestis Polychroniou and Kenneth A Ross. 2014. A comprehensive study of

main-memory partitioning and its application to large-scale comparison- and

radix-sort. In ACM SIGMOD. 755–766.
[26] Siddharth Santurkar. 2016. Speed up Sort in Peloton using AVX2. Retrieved

October 15, 2021 from https://github.com/sid1607/avx2-merge-sort

[27] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.

Lee, Daehyun Kim, and Pradeep Dubey. 2010. Fast sort on CPUs and GPUs: a

case for bandwidth oblivious SIMD sort. In ACM SIGMOD. 351–362.
[28] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-

lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-privilege-

boundary data sampling. In ACM SIGSAC Conference on Computer and Commu-
nications Security. 753–768.

[29] Paul Vitanyi. 2007. Analysis of sorting algorithms by Kolmogorov complexity

(A survey). In Entropy, Search, Complexity. Springer, 209–232.
[30] Alex Watkins and Oded Green. 2018. A Fast and Simple Approach to Merge and

Merge Sort using Wide Vector Instructions. In IEEE/ACM Workshop on Irregular
Applications: Architectures and Algorithms (IA3). IEEE, 37–44.

[31] Wikipedia. 2021. Median of Medians. Retrieved October 15, 2021 from https:

//en.wikipedia.org/wiki/Median_of_medians

[32] Tian Xiaochen, Kamil Rocki, and Reiji Suda. 2013. Register level sort algorithm on

multi-core SIMD processors. In Workshop on Irregular Applications: Architectures
and Algorithms. 1–8.

[33] Zekun Yin, Tianyu Zhang, André Müller, Hui Liu, Yanjie Wei, Bertil Schmidt,

and Weiguo Liu. 2019. Efficient Parallel Sort on AVX-512-Based Multi-Core and

Many-Core Architectures. In IEEE HPCC/SmartCity/DSS. 168–176.

271

https://github.com/arif-arman/origami-sort
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://en.wikipedia.org/wiki/Timsort
https://en.wikipedia.org/wiki/Timsort
https://github.com/sid1607/avx2-merge-sort
https://en.wikipedia.org/wiki/Median_of_medians
https://en.wikipedia.org/wiki/Median_of_medians

