

Section 1: Why does Climate Change Matter?

Global Warming: A Hot Topic

- Data from diverse biological systems demonstrate the importance of temperature on performance across scales:
 - Molecules (enzymes)
 - Individuals (adult body size)
- Populations (population growth rate)
 - Regions (species richness)

Revised (2018)

Section 1: Why does Climate Change Matter?

Temperature is Critical

- Temperature impacts important biological processes, e.g., spread of disease vectors, species richness
- Temperature can affect performance at population level (New Simulated Experiment adapted from butterfly exercise previously in Section 5)
- Key elements of a performance curve (New Test-Your-Understanding Interactive)

Temperature Drives Performance Across Biological Scales

- Performance curves from other biological scales:
 - Organismal (adult body size)
 - Molecular (enzymes)

OTHER CHANGES TO SECTION 1: Edited text and questions throughout. Added 4 instant-feedback questions and 2 graded questions.

Section 2: Detecting Climate Change

- The Earth's Climate is Dynamic
- Climate vs. Weather
- **Detecting a Trend...**
 - Signal Strength
 - Extension: Regression analysis
 - Noise
 - Series Length
- Where to Seek Evidence of **Climate Change?**
 - Predicted changes
- The Temperature Instrumental Record
 - Spatial patterns
 - Extension: measuring temperature
 - Global Mean
 - Extension: time series
 - 1,300 Years of Temperature
 - Introduction to proxies
 - · Other Indicators of Climate Change
 - · A Coherent Picture of Climate Change

Revised (2018)

Section 2: Detecting Climate Change

- The Earth's Climate is Dynamic
- Climate vs. Weather
 - Anomalies (New)
- Detecting a Trend...
 - Noise
 - Series Length
 - Signal Strength
 - Eliminated data collection
 - · Simplified by removing p-values
 - Climate variability across scales (New)
- Is Earth's Climate Warming?
 - The climate system (New Interactive Diagram)
 - Predicting climate system responses to warming. (New Interactive Diagram)
- **Best Evidence of Change: Surface Temperature**
 - Instrumental record, global means (Updated)
 - Instrumental record, spatial patterns (Updated)
- More Evidence of Change from **Proxies**
 - Comparing proxy records (New Interactive Diagram)
- What Do Other Components of the Climate System Show?
 - Cryosphere (sea ice, glaciers, snow) (Updated)
 - Extension: snow cover decline (New)
 - Hydrosphere/hydrologic cycle (New interactive diagram)
 - Sea level rise (Updated) and ocean heat content (New)
 - Changes in biosphere growing season changes in U.S. (New interactive map)
- **A Coherent Picture of Climate** Change

OTHER CHANGES TO SECTION 2: Edited text and questions throughout.

Section 3: Earth's Climate and Climate Models

A Simple Climate Model

- Black-body model for Planet X
 - Distance
 - Solar Output
 - Albedo
 - Greenhouse gases
 - Extension: sister planets

Feedbacks to the Climate System

- Ice-albedo feedback
- Long-term C cycle

More Complex Physical Models

- Key features of General Circulation Models
- **Putting it All Together**
 - Model refinements
 - Extension: El Niño / La Niña

Model Verification

Reconstructions versus observations

Revised (2018)

Section 3: Earth's Climate and **Climate Models**

Climate Models: Why and How

- Black-body, defined (New Interactive Diagram)
- Extension: Shortwave vs. longwave radiation (New)

Modeling Temperature: Irradiation

- Black-body model for Earth (Revised)
- Distance
- Solar output

Modeling Temperature: Albedo

- Albedo of ice vs. forests (New Interactive Diagram)
- Extension: Drivers of albedo

Modeling Temperature: Greenhouse Gases

- Greenhouse gases, defined (New Narrated Video)
- Extension: Venus, Mercury and Mars compared (Revised)

Feedbacks to the Climate System

- Ice-albedo feedback (New Interactive Diagram)
- Cloud feedbacks (New)
- Extension: Additional Feedbacks (New)

Earth's Energy Budget

Earth's Energy Budget (New Narrated Video)

Sophisticated Climate Models

- GCMs summarized (New Narrated Video)
- Emergent properties of GCMs (New Narrated Video)
- Extension: El Niño / La Niña
- Extension: Polar vortex (New)
- Eliminated text on multiple components of GCMs

Recreating Historic Climate

Model verification (Updated)

OTHER CHANGES TO SECTION 3: Edited text and questions throughout.

Section 4: Humans and Climate Change

Attribution of Recent Climate Change

- Natural vs. anthropogenic forcings
- SimBio's simple attribution model

Can Solar Variation Explain Recent Warming?

SimBio model vs. observations

Can Greenhouse Gases Explain **Recent Warming?**

- Keeling curve
- SimBio model vs. observations

Can Human Actions Explain Recent Warming?

Extension: Milankovitch cycles

Climate Change in the 21st Century

- SimBio model forecast
- Model uncertainties
- Extension: El Niño / La Niña
- Extension: North Atlantic Oscillation

Future Drivers of Climate Change

- IPCC emission scenarios
- Projected changes

Spatial Distribution of Temperature Change

Extension: Predicted precipitation changes

Revised (2018)

Section 4: Humans and Climate Change

Attribution of Recent Climate Change

- Extension: Attribution vs. detection (Revised)
- Attribution relies on models (New)
- Removed SimBio's simple model

How Do Natural Forcings Affect Climate?

- Volcanic emissions, variation in solar output and orbital variations as forcings (Updated)
- Extension: Milankovitch cycles (Updated)
- Drivers of glacial cycles (New)
- Natural forcings role evaluated with NASA's GISS model output (New Interactive Diagram)

How Do Anthropogenic Forcings Affect Climate?

- Land-use change, aerosols, ozone, and greenhouse as forcings (Updated)
- Keeling curve

Why is Earth's Climate Warming?

- All potential forcings evaluated with NASA's GISS model output (New Interactive Diagram)
- Extension: Summary of recent climate forcings (New)
- Human fingerprints on climate change (New Interactive Diagram)

Projection Future Changes

- Key sources of uncertainty, projected changes in mean temperature (New Narrated Video)
- Spatial patterns (Updated)

Effects of Warming Cascade Through Climate System

(New Interactive Diagram)

Feedbacks Suggest Tipping Points

Extension: Critical tipping points (New)

OTHER CHANGES TO SECTION 4: Edited text and questions throughout. Moved discussion of effects on people to Section 5.

Section 5: Biological Consequences of Climate Change

- **Species Must Respond to Climate** Change
- Can Changes in Phenology Affect **Population Growth?**
 - Simulation: Trophic Mismatch
- **Climate Change and Fitness**
- **How Does Climate Change Affect Species Distribution?**
- **Evolutionary Responses**
 - Simulation: rate of environmental change
 - Extension: Performance curves evolve
 - Simulation: initial genetic variation
 - Generation time
- Climate Change will Affect Life
 - Extension: Evolutionary constraints

Revised (2018)

Section 5: Biological Consequences of Climate Change

- **Climate Change Will Pose Grave** Threats for Many Species (New)
 - Altered phenology (Revised)
 - Predict potential phenotypic mismatch of caribou and forage (New Interactive Diagram)
 - Compare predictions to data (New)
- **Direct and Indirect Effects of Climate** Change
 - Effects on species, people (New)
 - Extension: Fertilization effect
 - Extension: Ocean acidification
 - Cascading effects of sea-ice decline (New Interactive Diagram)
- How will life respond? (New)
 - Four potential responses (Updated)
 - Risk to tropical vs. temperate species (New Interactive Diagram)
- Individuals May Acclimate (New)
- Species Ranges May Shift (Revised)
 - Latitudinal Range Shifts (New Narrated Video)
- Who Can "Keep Up" With Climate Change?
 - Climate Velocity (New Narrated Video)
- Populations May Evolve (New)
 - Salmon example replaces fruit fly
- Which Populations Can Evolve Fast **Enough?**
 - Simulation: rate of environmental change (Revised)
 - Extension: Performance curves evolve
 - Simulation: initial genetic variation (Revised)
 - Simulation: generation time (New)
- The Changes to Come (New)

OTHER CHANGES TO SECTION 5: Edited text and questions throughout. Deleted butterfly phenology simulation and fitness discussion. Moved simulation in which performance curve is generated to Section 1.