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Abst rac t .  The inference of genome rearrangement requires detailed 
gene maps of related species. For most multichromosomal species, how- 
ever, knowledge of chromosomal assignment of genes outstrips mapping 
data. Comparison of these species is thus a question of comparing sets of 
syntenic genes, without any gene order or gene orientation information. 
Given synteny data from present-day species, can we infer the synteny 
sets of ancestor species? How many chromosomes did these ancestors 
possess, and what genes were on each one? We first study the problem 
of calculating a syntenic edit distance between two genomes, based o n  

reciprocal translocation, chromosome fusion and fission. This distance is 
then used in the analysis of the median problem for synteny, and hence 
for a prelimary approach to phylogenetic inference of synteny. 

1 Introduction 

The recent interest in the inference of genome rearrangement is inspired by the 
ongoing construction of detailed gene maps of a few model organisms and or- 
ganelles [4, 2, 1]. For many more multichromosomal species, however, knowledge 
of chromosomal assignment of genes far outstrips any data on precisely where 
they are located on the chromosomal map. Two genes are said to be syntenic in 
an organism if they are assigned to the same chromosome. Comparison of species 
without maps is thus a question of comparing sets of syntenic genes, without 
any gene order or gene orientation information [5]. 

Since such intrachromosomal events as inversion and local transposition do 
not affect chromosomal assignment, they are not inferable from synteny data 
alone. Only interchromosomal events such as reciprocal translocation, chromo- 
some fusion and chromosome fission affect synteny and are hence inferable from 
synteny data. 

Given synteny data from present-day organisms, to what extent can we in- 
fer the synteny sets of ancestor organisms? How many chromosomes did these 
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ancestors possess, and what genes were on each one? To answer these ques- 
tions, we develop algorithms for a series of increasingly difficult problems. These 
algorithms are all computationally feasible for realistic da ta  sets, all provide up- 
per bounds on the true solutions, and all come demonstrably close to the true 
solutions as assessed by simulation and other means. 

The first problem is that  of calculating a syntenic edit distance between two 
genomes, based on translocation, fusion and fission. 

This distance is then used in the analysis of the median problem for synteny, 
namely the construction of a genome the sum of whose distances to three given 
genomes is miminal. 

The last problem is that of the optimization of the internal vertices of a 
given phylogenetic tree, given synteny data  from species representing each of 
the terminal vertices. Capitalizing on the method developed for this problem, 
we also sketch an approach to phylogenetic inference based on synteny data. 

2 Reciprocal Translocation and Synteny Sets 

For our purposes, a genome is a set of objects called genes, partit ioned into 
k subsets called synteny sets or chromosomes. A reciprocal translocation is an 
operation that  transforms two chromosomes A and B into (A - A') U B'  and 
(B - B ' ) U  A', respectively, where at least one of A' and B'  is a proper subset of 
A or B. A fusion occurs when, e.g. A' = A and B'  = the null set, and a fission 
when either A or B is replaced by the null set, in this formulation. 

The question becomes one of calculating how many operations - transloca- 
tions, fusions and fissions - it takes to convert one given genome to another. 

3 An Upper Bound Algorithm for Syntenic Distance 

Relabeling each gene in Genome 2 by its homologue's chromosome assignment 
in Genome 1, and collapsing duplicate instances of a label in a chromosome, we 
achieve a compact represention of the problem, e.g.: 

Genome i: 
Chromosome l:{x,y} Chromosome 2:{p,q,r} Chromosome 3:{a,b,c} 

Genome 2: 
Chromosome l:{p,q,x} Chromosome 2: {a,b,r,y,z} 

Compact representation of problem: {1,2},{I,2,3} 

Note that genes, such as c and z above, whose chromosomal assignments are 
known in only one of the genomes, are ignored in the compact representation 
and are not taken account of in the distance calculation. In contrast to some other 
sequence comparison problems, the absence of such genes does not represent a 
deletion or insertion process, simply a lack of scientific information about which 
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chromosome contains the gene, since almost all genes in one mammal ,  say, will 
have a counterpar t  in any other mammal .  

A solution consists of a series of translocations, fusions and fissions tha t  
t ransform Genome 2 to the k chromosomes of Genome 1, i.e. to {1}, {2}, ..., {k} 
(since we can assume without loss of generality tha t  all the genes in the one are 
also present in the other).  E.g.: 

{ 1 , 2 } , { 1 , 2 , 3 }  t r a n s f o r m e d  by t r a n s l o c a t i o n  t o  { 1 } , { 2 , 3 }  
{1},{2,3} transformed by fission to {i},{2},{3} 

distance = 2 

The other algorithms developed here loop extensively on the distance calculation 
so this has to be extremely time-efficient. The following heuristic is rapid and, 
as will be demonstra ted below, is relatively accurate. 

At each step, a first calculation finds a single label l to focus on, and the 
second determines the t ransformation it is involved in. We will describe them in 
reverse order. 

Suppose l appears  in r(l) chromosomes of Genome 2. 
If r(l)  = 1 and some of labels syntenic with l appear  in no other chromosome, 

we simply effect a fission to create a separate  chromosome {/}. 
If r(1) = 1, and all of the labels l' syntenic with l appear  in r(l ' )  > r m i n  > 1 

chromosomes, we effect a translocation, again to obtain a separate  {/} chro- 
mosome. Here, the second chromosome involved in the translocation contains a 
label l', syntenic with l, with r(l ')  = train, and, if there are several such, with a 
maximal  number  of terms syntenic with I. E.g.: 

{1,2,3,4},{2,3,5},{2,3,4},{4,5,6},{4,8,9} 

if I = 1, rmin ---- 3, l' = 2 or l' = 3, and the second chromosome in the transloca- 
tion is {2, 3, 4}, producing: 

{1}, {2,3,4},{2,3,5}, {4,5,6}, {4,8,9} 

If r(l) > 1, we effect r(1) - 2 fusions followed by one translocation, again to 
produce a separate  {/}. 

Knowing how to act on any specific label, we return to the original question, 
which label l should we focus on first? We establish the following priorities: 

1) any l for which r(l) = 1 
2) any l for which r(1) = 2 
3) if all r(1) > 2, pick l which minimizes r(l) and, if there are several such, 

which minimizes r(l ' )  for some label l' in the chromosome remaining from the 
last operat ion involving I. If  there are several such, choose l so tha t  after it is 
operated on, ~ z  r(l)  is minimized. 

The above procedure, while we have no guarantee of its optimality, is de- 
signed to choose an operation at each step in such a way as to set up the most  
advantageous situation possible for the next step. 
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3.1 Simulations and Tests 

The first test we designed is a validation, albeit indirect, of the accuracy of the 
method. To the extent that the algorithm produces the true minimum, then 
the result of converting Genome 1 to Genome 2 should be the same as the 
reverse operation, since the inverse of every translocation is a translocation, the 
inverse of every fission is a fusion and the inverse of every fusion is a fission. If 
the algorithm is a poor approximation, we might expect the results in the two 
directions to differ frequently. Based on 20,000 randomly constructed genome 
pairs designed to model data on mammals (17-26 chromosomes containing 17-26 
genes each), 65 % of the time the results of applying the algorithm in the two 
opposing directions were identical, 34 % of the time they differed by exactly 1, 
and in only 1% of the cases did they differ by 2 (or more). Of course, in some of 
the zero-difference cases both directions might have given identical suboptimal 
results, but this is unlikely to have exceeded 3 % of the cases, and the results 
are extremely unlikely to have been off by more than 1. In all further uses of 
the distance algorithm, it was applied in both directions and the minimum value 
chosen. 

To test the relation of syntenic distance to evolutionary history, we gener- 
ated random genomes by applying series of random translocations to { 1 },..., { k }. 
For numbers of translocations less than about k, the algorithm reconstructed the 
right number of translocations, and never too many. As the number of transloca- 
tions increased, the algorithm tended to underestimate the true number, finding 
shorter distances between the random genomes and {1}, ..., {k}. 

These results are summarized in Table 1. 

3.2 Complexi ty  Results  

Das Gupta, Jiang, Kannan, Li and Sweedyk [6] have proved the following results 
on the syntenic distance: 
�9 The synteny problem is NP-complete. 
�9 There is an approximation algorithm that achieves a factor of 2 approximation. 
�9 There is an algorithm that runs in time O(ddk c) to compute the syntenic 
distance exactly when this distance is d. (Useful when d is small.) 
�9 There is an ordering of the given sets such that the following algorithm performs 
at most d + logd moves: 
Let the input sets be St, $2 . . . .  , Sk in the chosen ordering. 

C u r r e n t s e t  = {} 
For i = l to k 

if there is an x in Curren t se t  or in Si and x does not occur in Sj for j > i 
Perform the translocation on Curren t se t  and Si yielding: 
the singleton set {x} 
and Curren t se t  = {Curren t se t  U Si} - {x}. 

else 
Curren t se t  = Curren t s e t  u Si. 
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Table 1. Underestimation of number of translocations generating a genome 

number number mean 
of of trans- distance 

chromosomes locations calculated 

10 

15 

number number mean 
of of trans- distance 

chromosomes locations calculated 

1 1 
4 3.86 
7 6.53 
10 7.4 
15 8.6 
16 9.53 
19 10.33 
1 1 
4 3.87 
7- 6.33 
1(} 9 
13 10.8 
16 12 
19 13.33 
22 13.6 

20 

25 

1 1 
4 3.73 
7 6.6 

10 9.13 
13 11.3 
16 13.6 
19 15.4 
22 16 
25 17.53 
1 1 
4 4 
7 6.53 
10 9.13 
13 11.47 
16 14.47 
19 15.6 
22 17.8 
25 19.2 
28 21 
31 22.47 

�9 For any constant factor approximation of the bipartite clique problem, a (1 + e) 
approximation can be obtained for the syntenic distance. 

4 T h e  M e d i a n  P r o b l e m  

Let d(Genome 1, Genome 2) be the syntenic distance between Genome 1 and 
Genome 2. Consider the simplest problem of phylogenetic inference, namely, the 
inference of the ancestral state in an unrooted tree with three terminal vertices. 
This is the median problem, defined for synteny data  as follows: Given three 
genomes 1, 2 and 3, we are required to construct a genome S such that  

d(S, 1) + d(S, 2) + d(S, 3). 

is minimized. For this to be non-trivial in the context of our syntenic distance, 
Genome S must be constrained to contain certain genes, at least those that are 
identified in all of Genomes 1,2 and 3, or in two out of the three genomes, or 
possibly in any of the three genomes. Otherwise, if S can be empty, then the sum 
of the three distances is trivially zero. However this constraint is formulated in 
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any particular context, we refer to it as the Median Content Constraint (MCC). 
In Section 5 below, we discuss how this constraint is the key to phylogenetic 
analysis based on synteny data. 

4.1 A Simple Heuristic 

As a preprocessing step, for any set of genes that  are syntenic in all three data  
species, it suffices to consider only one exemplar in the analysis. (The full set is 
restored after the algorithm has terminated.) Similarly for any set of genes that  
are syntenic in two species and unidentified in the other. 

As a first step, we choose any gene which must be in S according to the 
MCC, and define the initial chromosome in S to be one containing this gene. 

Then while there remain unassigned genes satisfying the MCC, if there is 
one that  can be added to an existing chromosome in S or which can initiate a 
new chromosome, without adding to the current overall cost, we do so. If not, 
we assign a gene to a pre-existing ancestral chromosome, or to a new chromo- 
some, according to which gene, and which assignment, minimizes the sum of 
the distances to the terminal nodes based on the partial gene set assigned to 
date. This may not be unique, and we may thus be obliged to work on several 
alternative solutions in parallel. I.e., there may be several such minimizing genes 
and minimizing chromosomal assignments, but we retain for further exploration 
only those solutions involving one such gene having a minimum number of al- 
ternative assigments. We also have an option of limiting the number of solutions 
being constructed in parallel (in practice, 10). 

The final assignment can then be improved by trying to move each gene in 
turn to a different chromosome and recalculating the sum of the three distances, 
iterating until no further improvement is possible. 

The algorithm attains a local minimum depending on the first gene chosen 
and the starting points for other searches during execution, as well as the optional 
limit on the number of stored partial solutions. The algorithm is repeated a 
number of times (in practice, 20) in the hope that  the best local minimum will 
be a global minimum.' 

5 O p t i m i z i n g  a G i v e n  P h y l o g e n y  

A method for the inference of ancestral synteny can be adapted from the it- 
erative improvement method of [3]. We assume that  the given phylogeny is an 
unrooted binary tree on n terminal nodes, each of which is associated with some 
real genome. Consider the n - 2 3-stars defined by each internal node and its 
three neighbors. A most parsimonious solution will have a reconstructed genome 
associated with each internal node, and each one must be a solution to the 
median problem determined by its neighbors: 

We can t ry  to find such a solution by starting with some initial solution and 
iteratively improving the stars on three vertices, by the heuristic for the median. 
This process will eventually converge to a local optimum. 
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5.1 T e s t s  o n  M a m m a l i a n  G e n o m e s  

We extracted synteny da ta  from the query system of the Mouse Genome Data-  
bank, for eleven mammal ian  genomes, where the number of genes identified as to 
chromosomal assignment ranges from a few dozen (cat, sheep, Chinese hamster) ,  
to a few thousand (human, mouse). 

baboon cow sheep pig Chinese hamster  

hu ~ ~mouse 

chimpanzee mink cat rat 
Fig. 1. Phylogenetic tree assumed to have generated comparative synteny data on 
mammalian genomes 

We assumed the phylogeny in Figure 1 and undertook to reconstruct  the 
ancestral genome syntenies through the above method.  Had all these species 
many identified genes in common, it would have sufficed to impose a weak MCC 
where only genes occurring in all three of the genomes were considered in the 
various median calculations. For the time being, however, there are not enough 
genes homologous in enough species throughout the mammal ian  phylogeny to 
use this MCC; some internal vertices could not be reconstructed at all. The 
incorporation of genes with homologues in only two of the three neighbors solves 
this problem. Indeed we a t t empted  to use the strongest MCC possible; to include 
all those genes occurring in only one of the three genomes as well, but this led to 
an intolerable explosion in the number  of alternative solutions to be considered. 
Thus we introduced a lightly a t tenuated constraint: include those genes in only 
one of the three genomes if they can be added after all the other genes are 
assigned chromosomes, in only one cost-/ree way. Thus for genes identified only 
in human and mouse, say, this MCC conceivably allows their syntenies to interact  
at some internal vertices, where the weaker MCCs would necessarily simply 
discard the evidence of these genes. 

As an initial solution, we assigned to each internal vertex a genome copied 
from a close terminal vertex. Each iteration of the algorithm thus involves the 
solution of 9 median problems. Table 2 summarizes the progress of the algori thm 
from iteration to iteration as it converged to a final solution of 109 translocations,  
fusions and fissions. 
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Table 2. Progress of algorithm in converging to local optimum in terms of number 
of chromosomes in ancestral genomes and total syntenic distance. Note that in first 
iteration, genes occurring only once in the neighborhood of an internal vertex have no 
effect on total cost, while in successive iterations many of these genes now occur twice in 
the neighborhood of the same internal vertices and do contribute to the cost. Note also 
that our relatively strong MCC results in hundreds of genes in each ancestral genome, 
though only a few dozen may be known in the species associated with neighboring 
terminal vertices 

ancestral iteration number of genes 
nodes 1 I 2 I 3 I 4 I 5 ingenome 

human-chimp 22 23 23 23 23 774 
primates 22 25 24 24 24 666 

sheep-cow 33 31 31 31 31 403 
artiodactyls 25 32 31 31 31 568 

primates-artiodactyls 21 25 31 31 31 693 
carnivores 17 17 19 19 19 606 

carnivores-rodent 18 20 20 20 20 635 
rodent 19 19 19 19 19 482 

mouse-rat 19 19 19 19 19 528 

total syntenic 
distance 

6 Phylogenet ic  Reconstruct ion 

The method for optimizing a given phylogenetic tree is based on the minimum 
number  of translocations, fusions and fissions necessary to account for the data,  
assuming tha t  tree is correct. I t  is a conceptually simple step to proceed to find 
the most parsimonious tree by exhaustive evaluation of the set of possible trees 
for these data.  Of course this is computat ionally not feasible for even a modera te  
size da ta  set because of the exponential growth of the number  of different trees 
as a function of the number  of terminal vertices, i.e. the number  of species. 

Our approach is feasible, however, for evaluating a limited number of com- 
peting hypotheses. As an illustration of this principle, we applied the method 
to the da ta  t reated in Section 5, this t ime assuming a tree derived from tha t  in 
Figure 1 by rotat ing the chimpanzee into the position occupied by the rat ,  the 
ra t  into the pig's position, and the pig into the chimpanzee's position. This tree 
required 117 translocations, fusions and fissions, clearly not as parsimonious as 
the tree in Figure 1. 

7 Further Work 

The problems addressed in this paper  should admit  bet ter  solutions than we 
have been able to find in this preliminary investigation, e.g., an exact algorithm 
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for the syntenic distance problem for realistic values of k, namely k ~ 25. The 
median problem is probably much harder, but  improvement permitting efficient 
calculation under the strong MCC should be possible. 
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