North American Steel Construction Conference

Rules of Thumb for Steel Design

CONSTRUCTION CONFERENCE

Socrates A. loannides, Ph.D., S.E., is President and John L. Ruddy, P. E., is Chief Operating Officer, of Structural Affiliates
 International, Inc., in Nashville. This article is based on a paper scheduled to be presented at the 2000 North American Steel Construction Conference in Las Vegas.
with factored loads and LRFD or service loads and ASD in the final design.

Structural Depths:

Inevitably, a question raised in a project concept meeting is what will be the structural depth? Regularly, the participants are impressed by the response of the structural engineer and that positive impression lasts if the actual depths designed fall within the range of these early predictions. Therefore, it is important to have established rules of thumb, which allow structural depth predictions. The depth of the structural system is influenced by the span of the elements as well as such variables as the spacing of elements, loads and loading conditions, continuity, etc. Nonetheless, ratios of span to depth can often be relied upon to provide a guide and a starting point from which further refinement can be made. With the caution that variables other than span need to be considered, the information in Table 1 is presented.

It is convenient to remember that serviceable steel section depths are in the range of $1 / 2$ " of depth for each foot of span (L/24). Some people might find it easier to remember the following simplified rule where the length is expressed in feet and the depth of the member in inches:

Depth of Roof Beams, Roof Joists = 0.5*Length

Depth of Floor Beams, Floor Joists $=0.6^{*}$ Length

Depth of Composite Beams = 0.55*Length

	Table 1: Structural Depths	
System	${\mathbf{L} / \mathbf{d}_{\mathbf{s}}}$	Span Range
Steel Beam	20 to 28	0^{\prime} to 75^{\prime}
Steel Joist		
\quad Floor Member	20	8^{\prime} to 144^{\prime}
Rooof Member	24	
Plate Girder	15	40^{\prime} to 100^{\prime}
Joist Girder	12	20^{\prime} to 100^{\prime}
Steel Truss	12	40^{\prime} to 300^{\prime}
Space Frame	12 to 20	80^{\prime} to 300^{\prime}

Section Properties

Wide flange steel section properties can be estimated with reasonable accuracy when the member depth, width and foot-weight are known. Recalling that the density of steel is 490 pcf, the relationship between cross section area and foot-weight can readily be derived as:

$$
\mathrm{A}=\frac{\mathrm{Wt}}{3.4}
$$

The strong axis moment of inertia can be approximated using:

$$
I_{x} \approx D^{2} \frac{W t}{20}
$$

The radius of gyration is an important cross section property when considering column buckling. Both the strong axis and weak axis radius of gyration can be estimated using the member depth (D)

LeJeune has a wider selection of Tension Control bolt grades, diameters, and lengths in stock than anybody in the structural business. That means you get the bolts you need without delay or down time. Our qualified staff will service your needs, including specifications, packaging and testing requirements. All Lejeune high-strength bolts have both full domestic factory and mill certifications, traceable
to each and every keg. Power wrench rentals, sales, service and parts keep your jobs up and running. Field training and jobsite assistance are also part of our comprehensive approach to the ${ }^{*}$ LeJeune System: Our reputation is built on quality U.S. products and superior customer service. Let us show you why so many steel people ask for Leleunewe deliver!

and width (b) as:

$$
\begin{aligned}
& r_{y} \approx 0.26 \mathrm{~b} \\
& r_{x} \approx 0.45 \mathrm{D}
\end{aligned}
$$

Beams

The rapid determination of a steel section size can be made without reference to a steel manual using a very simple equation. If the moment capacity, depth and foot weight of the economy steel beams listed in the AISC Specification are tabulated with moment divided by the depth as the independent variable and foot weight as the dependent variable, a linear regression analysis results in a rather simple equation for $\mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi}$.
$W t \approx \frac{5 M}{D}$
The closest economy section of the depth used in the equation that has a foot weight greater than predicted by the equation indicates the beam that will sustain the moment. This equation was confirmed by the author using an alternate approach, coined "Visual Semi-rigorous Curve Fitting"3. If all the beam sections are included, a slope value in the linear equation of 5.2 yields closer approximations for $\mathbf{F}_{\mathbf{y}}=36 \mathrm{ksi}$.

Consider a beam spanning 30 feet supporting a 10 foot width of floor with a total supported load of 140 psf, resulting in a moment of 157.5 foot-kips. For an 18 " deep beam, the equation yields 43.75 pounds per foot. A W18×50 is the predicted section and the actual moment capacity is 176 foot-kips. If a beam depth of $21^{\prime \prime}$ is assumed, the equation yields 37.5 suggesting a W 21×44, which has a moment capacity of 162 foot-kips.

A similar formulation for steel having $\mathrm{F}_{\mathrm{y}}=\mathbf{5 0}$ ksi produces:
$W t \approx \frac{3.5 M}{D}$
For an $18^{\prime \prime}$ deep beam, the equation yields 30.6 pounds per foot, therefore, a $\mathrm{W} 18 \times 35$ is predicted. The actual capacity of a W18x35 beam with $\mathrm{Fy}=50 \mathrm{ksi}$ is 158 foot kips.

For common composite beam floor systems (e.g. $5^{1 / 2 \prime \prime}$ slabs with $3^{\prime \prime}$ composite deck, $41 / 2 "$ slab with $2 "$ composite deck,
etc.), the simplified equations yield relatively accurate foot weights if 70% to 75% of the simple span moment is used for M. Following are two more "Rules of Thumb" relating to composite construction and $\mathrm{Fy}=36$:

In ASD Number of shear studs required for Full Composite Action $=1.1^{*} \mathrm{Wt}$

In LRFD Number of shear studs required for Full Composite Action $=1.25^{*} \mathrm{Wt}$

COLUMNS

When the column axial capacity is plotted as a function of KI / r, an approximate linear relation can be observed. Certainly, the column curve is not linear, however an accurate approximation of column capacity for $\mathrm{Fy}=36 \mathrm{ksi}$ can be calculated using:
moment.

Hinge or splice location for cantilever or continuous roof systems is 15% to 25% of span length

Trusses

The foot weight of trusses utilizing Fy=36 ksi steel can be calculated by assuming $\mathrm{Fa}=22 \mathrm{ksi}$. The Chord Force
($F \mathrm{Ch}$) is then equal to the moment $(\mathrm{M}$) in foot-kips divided by de (center of top chord to center of bottom chord) in feet, resulting in a chord area of $\mathrm{M} / 22 \mathrm{de}$. By recognizing that $\mathrm{Wt}=\mathrm{A} 3.4$, converting de to inches and assuming that de =0.9D and that the total truss weight is equal to 3.5 times the chord weight then:
$W t \approx \frac{6 M}{D}$
$\mathrm{P} \approx \mathrm{A}\left(22.0-0.10 \frac{\mathrm{Kl}}{\mathrm{r}}\right)$

A similar formulation for steel having $\mathrm{F}_{\mathrm{y}}=\mathbf{5 0} \mathbf{k s i}$ produces:
$P \approx A\left(30.0-0.15 \frac{\mathrm{Kl}}{\mathrm{r}}\right)$
Thus, using the section property approximations in conjunction with a member foot-weight, width, depth and unsupported length, the capacity of a column can be approximated.

Roof Systems

A common approach to economy in steel roof systems of single story buildings is to cantilever girders over the columns. The ends of the cantilever support a reduced span beam. When this system is subjected to a uniform load and multiple equal spans are available, a cantilever length approximately equal to 15% (0.146) of the span length will result in the maximum moment in any span being equal to $1 / 16 \mathrm{wL} 2$. For end spans, negative and positive moments can be balanced using a cantilever length equal to 25% of the first interior span.

Another approach to economical roof systems is the use of plastic analysis. Although not as critical for this system, splice locations in the plastically designed continuous beams are usually chosen so that they are close to the point of zero

The same formulation using steel with Fy=50 ksi produces the following approximation:

$$
W t \approx \frac{4.5 \mathrm{M}}{D}
$$

These weight approximations include truss joint connection material weight.

Rigid Frame Analysis
 Approximations:

The following "Rules of Thumb" are useful in determining preliminary sizes for Rigid Moment Frames resisting Lateral loads. They are based on the traditional "Portal Frame" approach modified from the authors' experiences with "real" frames.
$M_{c o l} \approx \frac{1.2 H}{2} \cdot \frac{V_{\text {story }}}{n_{c o l}}$
$M_{\text {beam }} \approx M_{\text {cot }} / 2$ Interior Columns at Roof
$M_{\text {beam }} \approx M_{\text {col }} \quad$ Interior Columns Not at Roof
The moments in beams framing into exterior columns are half of the above values

Steel Weight Estimates

Cost is generally the basis for confirming a structural system since safety and functions are essential for any options considered. Economy is related to the weight of the structural steel although costs are influenced by many other parameters. Y et, weight can be a valuable indicator of cost and Rules of Thumb are useful in establishing an expectation for steel weight. A quick assessment of anticipated weight serves as a check of the reliability of the weight determined by more involved investigations.

Bracing is a cost-effective means of providing lateral load resistance for low to medium rise buildings. As the building height increases, the unit steel weight increases since columns are subjected to larger loading at the lower floors and lat-
eral load resisting components are subjected to greater loads for greater heights. Thus, one parameter influencing the steel weight is building height. A rough approximation for steel weight per square foot in a braced building using steel with Fy $=50 \mathrm{ksi}$ is:
$\mathrm{Wt}(\mathrm{psf})=$ stories $/ 3+7$
A three-story building would have a steel weight in the range of 8 psf and a 27 -story building would require 16 psf. Certainly, this relationship is an over simplification. Yet, it provides a value, which can be used to confirm that the results of a more detailed analysis are reasonable.

Tall Building Structural Systems

The late Fazlur Khan hypothesized that the appropriate structural system to resist lateral loads was directly related to building height. He predicted that structural economy could be realized using the appropriate system shown in Table 2.

DEKALB FASTENERS, INC. "Your Structural Fasteners Headquarters"

Distribution:
 Structural Bolts

A325 through A490 type 3 with accompanying nuts \& washers.

Rotational Capacity Test performed at our facility.

In house D.O.T. sampling for IN, IL and OH available for all product.

Manufacturing: Standard Anchor Bolts

Foundation Anchors in stock for immediate delivery.

Large Anchor Bolts and Tie Rods
Up to $6^{\prime \prime}$ in diameter and 50^{\prime} in length.

Welded Anchor Bolt Assemblies, U-Bolts and B-7 Threaded Studs.

100\% Domestic Material with Full Certifications
"Let Dekalb Fasteners be your ONE source for your Structural Fasteners"
P.O. Box 740 Auburn, IN 46706 (219) 925-5900 Fax (219) 925-5954 E-Mail toddb@fwi.com

Table 2:	
Stall Building Structural Systems	
<30	Lateral Load Resisting System
30 to 40	Rigid frame
41 to 60	Belt truss - shear truss
61 to 80	Framed tube
81 to 100	Truss - tube w/ interior columns
101 to 110	Bundled tube
111 to 140	Truss - tube without interior columns

- Run beams in short direction
- Optimum bay size is $30^{\prime} \times 40^{\prime}$ For Truss Joist and J oist roof systems:
- Run Girders in Long direction
- Optimum bay size is $40^{\prime} \times 40^{\prime}$

Miscellaneous

End rotation of a simple beam $=0.2$ radians
Deflection of simple span beam (reduction due to connections) $=80 \%$ of calculated
Roof Framing Systems
For Cantilevered or continuous roof beams:

Nomenclature

$A=A r e a\left(i n^{2}\right)$
$\mathrm{b}=$ Nominal member width (inches)
D $=$ Nominal member depth (inches)
$\mathrm{d}_{\mathrm{s}}=$ System depth (ft)
$F_{y}=Y$ ield strength of steel
$H=$ Story Height

I = Moment of Inertia (in ${ }^{4}$)
I = Column Length (inches)
$\mathrm{L}=$ Length (ft)
M = Bending moment (foot-kips)
$M_{\text {beam }}=$ Design Moment for Beam
$M_{\text {col }}=$ Design Moment for Column
$\mathrm{n}_{\text {col }}=$ Number of Columns (not bays) in the story of the Frame
P = Column Axial Capacity
$r_{x}=$ Strong Axis Radius of Gyration (inches)
$r_{y}=$ Weak Axis Radius of Gyration (inches)
S = Elastic Section Modulus (in3)
$V_{\text {story }}=$ Total Story Shear for the Frame
Wt = Foot weight of the steel beam (pounds per foot)

Wt(psf) = Weight of steel structure (psf)

Please Circle \# 113

