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TEM
 

of Collagen Fibrils in 
Human Brain Arteries

Rubber reinforced with 
carbon-black and

 
fabric

TEM
 

of a triblock
 

copolymer 
with cylindrical morphology

Thermoplastic Elastomers
(Self-Assembled Nanodomains) 

fPS~ 50 nm

BCC HX-Cyl. Gyroid Lamellar

Soft solids reinforced with fibers



• Complex
 

initial microstructure
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• Nonlinear
 

constitutive matrix phase and fibers

• Microstructure evolution (geometric nonlinearity)

• Development of instabilities

Issues in constitutive modeling of FREs



Problem setting: Lagrangian
 

formulation
Kinematics
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Problem setting: macroscopic response
Definition:  relation between the volume averages of 

the stress and deformation gradient over RVE
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•
 

Phenomenological models

( ) ( ) ( )iso aniW F I I G I IF = +1 2 4 5, ,
Merodio, Horgan, Ogden, 

Pence, Rivlin, Saccomandi, 

among others

Formulated on the basis of invariants

Existing analytical approaches

−
 

“Linear comparison”
 

variational
 

estimates for general loading 
conditions and isotropic constituents (LP & Ponte Castañeda

 
2006a,b)

•
 

Homogenization/Micromechanics models

Incorporate direct information from microscopic properties

−
 

Estimates for special loading conditions, and special matrix and
 

fiber 
constituents (He et al., 2006; deBotton

 
et al., 2006)



fiber failure (local)

Classes of 
instabilities

Material fiber debonding
 

(local)
matrix  cavitation

 
(local)

Geometrical
short wavelength (local)

long wavelength
 

(global)

Geymonat, Müller, Triantafyllidis

 

(1993)
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•
 

The loss of strong ellipticity
 

of the macroscopic response of the 
fiber-reinforced elastomer, as characterized by the effective 
stored-energy function           , denotes the onset of long 
wavelength instabilities 

W F( )

Stability and failure



LP (2006)

Microstructure evolution
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Information on microstructure evolution is important to identify
 and understand the microscopic mechanisms

 
that govern the 

macroscopic behavior. For that we need information about the 
local fields ( )F X



New Approach:
Iterated Homogenization



Iterated dilute homogenization

Ad-infinitum...

Step 1:
 

iterated-dilute homogenization

Homogenization

dilute phase

LP, J. App. Mech. (2010)
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Strategy:
 

Construct a particulate distribution of fibers (               )

 

within a      
hyperelastic

 

material

 

for which it is possible to compute exactly

 

the 
effective stored-energy function
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Auxiliary dilute problem: sequential laminates

Rank-1 or simple laminate
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distributional function

 

related to the two-point statistics 
of fiber distribution in the undeformed

 

configuration

When the matrix

 

phase is dilute:

Rank-2 laminate

... ad-infinitum ...

matrix phase

inclusion phase

Step 2:
 

sequential laminates

Idiart, JMPS (2008)



( )
S

W W
c W W S
c

F +
F

n
é ù¶ ¶ê ú- - ⋅ - Ä =
ê ú¶ ¶ë û

ò (1)
0

0

max ( ) d 0x x x
w

w w

•
 

The effective stored-energy function        can be finally shown to be given 
by the following Hamilton-Jacobi

 
equation

subject to the initial condition
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Iterated homogenization framework

the time

 

variable is

the spatial

 

variable is

the Hamiltonian
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(initial fiber concentration)
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•
 

Consider the following perturbed problem
 

for

subject to the initial condition

W W UF F Ft= +(2)( ,1) ( ) ( )

Wt

Iterated homogenization framework: local fields

LP & Idiart, J. Eng. Math. (2010)
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•
 

The computations
 

amount to solving appropriate Hamilton-Jacobi
 equations, which are fairly tractable

•
 

The proposed IH method provides access to local fields, which in turn    
permits the study of the evolution of microstructure

 
and the onset of 

instabilities

•
 

In the limit of small deformations as              , the IH  formulation reduces 
to the HS lower bound

 
for fiber-reinforced random media

F I

•
 

In the further limit of dilute fiber concentration              , the IH  formulation 
recovers the

 
exact result of Eshelby

 
for a dilute distribution of ellipsodial

 fibers

c 0 0

Remarks on the iterated homogenization approach
• The proposed IH method provides solutions for       in terms of          and          

and the one-
 

and
 

two-point statistics
 

of the random distribution of fibers
W W (1) W (2)



Application to
Fiber-Reinforced 

Neo-Hookean
 

Solids 



Neo-Hookean
 

matrix
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Closed-form solution for 
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Macroscopic Instabilities

fiber failure (local)

Classes of 
instabilities

Material fiber debonding
 

(local)
matrix  cavitation

 
(local)

Geometrical
short wavelength (local)

long wavelength (global)
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Macroscopic
 

Instabilities

Observations

•
 

Macroscopic instabilities may only occur when the deformation in the fiber 
direction,  as measured by        , reaches a sufficiently large compressive

 value

I4
crI £4 1

•
 

The condition states that instabilities may develop whenever the
 

compressive 
deformation  along the fiber direction reaches a critical value determined by 
the ratio of hard-to-soft

 
modes of deformation
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Hard mode

Soft mode



LP (2006), LP & Idiart

 

(2010)

Microstructure evolution
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The average shape

 

and orientation

 

of the fibers in the deformed configuration 
are characterized by the Eulerian

 

ellipsoid
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is the average deformation gradient in the fibers. In the IH   
framework, it is solution of the pde

LP, Idiart, & Li (2010)

Microstructure evolution
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Sample 
Results
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Axisymmetric
 

compression at an angle φ0
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Axisymmetric
 

compression at an angle φ0
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Axisymmetric
 

compression at an angle φ0
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Large-deformation 
stress-strain response
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Macroscopic instability at

LP, Idiart, & Li (2010)



Axisymmetric
 

compression at an angle φ0

Effect of fiber orientation
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Axisymmetric
 

compression at an angle φ0

Effect of fiber orientation
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Evolution of fiber orientation



The rotation of the fibers
 

— which depends critically on the relative 
orientation between the loading axes and the fiber direction —

 
can act as a 

dominant geometric softening mechanism.

Remarks

•
 

It was found that the long axes of the fibers rotate away from the axis of   
maximum compressive loading

 
towards the axis of maximum tension. 

•
 

Loadings with predominant compression along the fibers lead to larger 
rotation of the fibers, which in turn lead to larger geometric softening of the 
constitutive response, and in some cases —

 
when the heterogeneity 

contrast between the matrix and the fibers is sufficiently high —
 

also to the 
loss of macroscopic stability.



The results of this work can help understanding the behavior of many
 

other
solids with oriented microstructures

Remarks

Polystyrene Ellipsoids2 m
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Reinforced Elastomers

 

(Wang and Mark 1990)

Liquid crystal elastomers

 

(Nishikawa and Finkelmann1999)
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and Maker (1985)

where

•
 

For the aligned plane-strain loading of a laminate
 

the onset of 
macroscopic instabilities occurs at
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Contact with earlier work with laminates
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Contact with experiments

Jelf

 

& Fleck (1992)

Matrix: Silicone —
 

Young’s Modulus     E(1)

 

= 2.9 MPa

Fibers: Spaghetti — Young’s Modulus   E(2)

 

= 69 MPa
Volume fraction

 
c0

 

= 31%

Experimental setup

IH prediction



•
 

An iterated homogenization approach in finite elasticity has been proposed 
to construct exact (realizable) constitutive models for fiber-reinforced 
hyperelastic

 
solids

•
 

Because the proposed formulation grants access to local fields, it can be used 
to thoroughly study the onset of failure and the evolution of microstructure 
in fiber-reinforced soft solids with random microstructures

•
 

As a first application, closed-form results were derived for fiber-reinforced 
Neo-Hookean

 
elastomers

•
 

These ideas can be generalized to more complex systems of soft 
heterogeneous media with random microstructures 

Final remarks

•
 

The required analysis reduces to the study of tractable Hamilton-Jacobi
 equations
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