

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

OSP-P Pneumatic Rodless Cylinders and Linear Guides

Catalog 0980

ENGINEERING YOUR SUCCESS.

\land WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application including consequences of any failure, and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated on the separate page of this document entitled "Offer of Sale".

© Copyright 2009 Parker Hannifin Corporation. All Rights Reserved

() ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Introduction	 Conversion Tables System Concept Modular Components Overview Control Examples Application Examples 	Introduction
Rodless Pneumatic Cylinders Series OSP-P	 Overview Rodless Pneumatic Cylinders Rodless Pneumatic Cylinders with Guides OSP-P Sensors & Service Parts Origa SENSOFLEX Measuring System 	Rodless Cylinders Series OSP-P
Aluminum Roller Guides Series GDL	 Linear Guide Features GDL Product Line Overview GDL Roller Guides / Accessories Wipers / Butt-jointed Rail Options 	Aluminum Roller Guides Series GDL
Safety Guide, Offer of Sale		Safety Guide, Offer of Sale

2D & 3D CAD Drawings can be downloaded from website www.parker.com/pneu/rodless

ATTENTION!

Contact PARKER-ORIGA for sizing software and/or technical assistance 630-871-8300

All dimensions are in European-Standard. Please convert all in US-Standard.

Conversion Table

Multiply	Ву	To Obtain
Millimeters	.03937	Inches
Newtons	.2248	Lbs.(F)
Newton-Meters	8.8512	In-Lbs
Kilograms	2.205	Lbs.
Inches	25.4	Millimeters
Lbs.(F)	4.448	Newtons
In-Lbs	.113	Newtons-Meters
Lbs.	.45359	Kilograms

0 ORIGA

Catalog 0980 Certifications

PARKER-ORIGA rodless pneumatic cylinders are the first rodless cylinders that have been approved for use in potentially explosive atmospheres in Equipment Group II, Category 2 GD

The Cylinders are to the ATEX Certification 94/9/EG (ATEX 95) for Pneumatic Components.

For ATEX Certification, consult factory for ordering assistance.

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Based on the ORIGA rodless cylinder, proven in world wide markets, PARKER-ORIGA now offers the complete solution for linear drive systems. Designed for absolute reliability, high performance, ease of use and optimized engineering the ORIGA SYSTEM PLUS satisfies even the most demanding applications.

ORIGA SYSTEM PLUS

is a totally modular concept which offers the choice of pneumatic or electric actuation, with guidance and control modules to suit the exact needs of individual installations. The actuators at the core of the system all have a common aluminum extruded profile, with double dovetail mounting rails on three sides, these are the principle building blocks of the system to which all modular options are directly attached.

SYSTEM MODULARITY

- Pneumatic Drive
- For all round versatility and convenience, combining ease of control and broad performance capability. Ideally suited for point-to point operations, reciprocating movements and simple traverse / transfer applications.

ORIGA

• Electric Screw Drive – For high force capability and accurate path and position control. • Electric Belt Drive – For high speed applications, accurate path and position control and longer strokes.

For additional information on electric linear actuators, please contact factory for OSP-E literature.

- Different guidance options provide the necessary level of precision, performance and duty for various applications.
- Compact solutions, which are simple to install and can be easily retrofitted.
- Valves and control options can be directly mounted to the actuator system.
- Diverse mounting options to provide total installation flexibility.

A4

A

* For information on Electric Linear Drives, contact factory for literature

			i
Basic Linear Drive Standard Version	1 ×	Linear Guides - SLIDELINE	
Series OSP-P Series OSP-E* Belt drive	0	 Series OSP-P Series OSP-E Screw drive* 	
Belt drive with integrated Guides Vertical belt drive with recirculating ball bearing guide • Series OSP-E* Screw drive (Ball Screw, Trapezoidal Screw)		Linear Guides – POWERSLIDE • Series OSP-P • Series OSP-E Belt drive* • Series OSP-E Seren drive*	
Air Connection on the End-face or both at One End		Linear Guides	
Series OSP-P		- PROLINE • Series OSP-P	
Clean Room Cylinder certified to DIN EN ISO 146644-1	9	Series OSP-E Beit drive Series OSP-E Screw drive*	
Series OSP-PSeries OSP-ESB	0	– STARLINE	
Bi-parting Version	2	Series OSP-P	
Series OSP-P		Linear Guides – KF	
Integrated 3/2 Way Valves	a.	Series OSP-P	9
Series OSP-P	Bo.	Heavy Duty Linear Guides	
Clevis Mounting	C Ba	Series OSP-P Series OSP-F Screw drive*	1 1 1
 Series OSP-P Series OSP-E Belt drive* Series OSP-E Screw drive* 	S.	Intermediate Stop Module	
End Cap Mounting	-	Series OSP-P	Contraction of the second
 Series OSP-P Series OSP-E Belt drive* Series OSP-E Screw drive* 	A Q Promotion	Brakes	
Mid-Section Support		Active Brakes	
Series OSP-P Series OSP-E Belt drive*		Passive Brakes	
Series OSP-E Screw drive* Inversion Mounting		Magnetic Switches	
 Series OSP-P Series OSP-E Belt drive* 	1	 Series OSP-P Series OSP-E Belt drive* Series OSP-E Screw drive* 	
Series OSP-E Screw drive*		SENSOFLEX – Measuring System	
Series OSP-P	10	Series SFI-plus	
Multiplex Connection	-	Variable Stop VS	
Series OSP-P		Series OSP-P with Linear Guide STL, KF, HD	- Line

-Parker

() ORIGA

www.comoso.com

Catalog 0980 Modular Components Overview

Λ

OSP-P Pneumatic Rodless Cylinders and Linear Guides Rodless Cylinders Series OSP-P

Theoretical Force at 6 bar (N) 47 120 285 443 754 1178 1870 3010 Effective Force at 6 bar (N) 32 78 250 420 640 1000 1550 2600 Modely (m/s) > 0.005 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 > 0.05 0.05 0.05 0.05	Linear Drives	OSP-P10	OSP-P16	OSP-P25	OSP-P32	OSP-P40	OSP-P50	OSP-P63	OSP-P80
Effective Force at 6 bar (N) 32 78 250 420 640 1000 1550 20.005 >0.005 0.005 0.005 0.005 <td>Theoretical Force at 6 bar (N)</td> <td>47</td> <td>120</td> <td>295</td> <td>483</td> <td>754</td> <td>1178</td> <td>1870</td> <td>3010</td>	Theoretical Force at 6 bar (N)	47	120	295	483	754	1178	1870	3010
Velocity v (m(s) > 0.005 I u I <thi< th=""> I I</thi<>	Effective Force at 6 bar (N)	32	78	250	420	640	1000	1550	2600
Magnetic Piston (three sides) × □ <th□< th=""> □ <th□< td=""><td>Velocity v (m/s)</td><td>> 0.005</td><td>> 0.005</td><td>> 0.005</td><td>> 0.005</td><td>> 0.005</td><td>> 0.005</td><td>> 0.005</td><td>> 0.005</td></th□<></th□<>	Velocity v (m/s)	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005	> 0.005
Lubrication - Prelubricated □< □< □< □< □< □< □< □< □< □< <th□< th=""> <th□< th=""> <th□< th=""></th□<></th□<></th□<>	Magnetic Piston (three sides)	Х							
Multiple Air Ports (4 × 90°) X □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □	Lubrication - Prelubricated								
Both Air Connection at End-face X O <tho< th=""> O O <</tho<>	Multiple Air Ports (4 x 90°)	Х							
Air Connection on the End-face X O <tho< th=""> O O <th< td=""><td>Both Air Connections at End-face</td><td>Х</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<></tho<>	Both Air Connections at End-face	Х	0	0	0	0	0	0	0
Cushioning □ <th< td=""><td>Air Connection on the End-face</td><td>Х</td><td>0</td><td>О</td><td>0</td><td>0</td><td>О</td><td>О</td><td>0</td></th<>	Air Connection on the End-face	Х	0	О	0	0	О	О	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cushioning								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cushioning Length (mm)	2,50	11	17	20	27	30	32	39
Pressure Range pmax (bar) 8.0 10 - + 80 -10 80 <td>Stroke Length (mm) ▲</td> <td>1 - 6000</td>	Stroke Length (mm) ▲	1 - 6000	1 - 6000	1 - 6000	1 - 6000	1 - 6000	1 - 6000	1 - 6000	1 - 6000
Temperature Range (°C) $*$ -10 + 80 -10 - + 80	Pressure Range pmax (bar)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Viton / Chemical Resistance O<	Temperature Range (°C) *	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80	-10 - + 80
Stainless Steel Parts O	Viton / Chemical Resistance	О	0	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stainless Steel Parts	0	0	0	0	0	0	0	0
Slow Speed Lubrication O	Clevis Mounting	0	0	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Slow Speed Lubrication	0	0	0	0	0	0	0	0
Tandem Piston O	Duplex Connection / Multiplex Connection	Х	on request	0	0	0	0	on request	on request
Basic Cylinder Image: Constraint of the system of the syste	Tandem Piston	0	0	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Basic Cylinder								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	F (N)	20	120	300	450	750	1200	1650	2400
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mx (Nm)	0.2	0.45	1.5	3	6	10	12	24
Mz (Nm) 0.3 0.5 3 5 8 15 24 48 SLIDELINE F (N) X 325 675 925 1500 2000 2500 2500 Mx (Nm) X 6 14 29 50 77 120 120 My (Nm) X 11 34 60 110 180 260 260 Mz (Nm) X 11 34 60 110 180 260 260 PROLINE X 11 34 60 110 180 260 260 PROLINE X 542 857 1171 2074 3111 X X Mx (Nm) X 12 39 73 158 249 X My (Nm) X 12 39 73 158 249 X POWERSLIDE X 1400 1400 - 3000 3000 3000 - 4000 X	My (Nm)	1	4	15	30	60	115	200	360
SLIDELINE F (N) X 325 675 925 1500 2000 2500 2500 Mx (Nm) X 6 14 29 50 77 120 120 My (Nm) X 11 34 60 110 180 260 260 Mz (Nm) X 11 34 60 110 180 260 260 PROLINE X 11 34 60 110 180 260 260 PROLINE X 542 857 1171 2074 3111 X X Mx (Nm) X 8 16 29 57 1111 X X My (Nm) X 12 39 73 158 249 X Mz (Nm) X 1400 1400 - 3000 3000 3000 - 4000 X X POWERSLIDE I 14 14 - 65 20 - 65 65 - 90	Mz (Nm)	0.3	0.5	3	5	8	15	24	48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SLIDELINE								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F (N)	Х	325	675	925	1500	2000	2500	2500
My (Nm) X 11 34 60 110 180 260 260 Mz (Nm) X 11 34 60 110 180 260 260 PROLINE X 542 857 1171 2074 3111 X X Mx (Nm) X 542 857 1171 2074 3111 X X Mx (Nm) X 8 16 29 57 111 X X My (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X POWERSLIDE X 1400 1400 - 3000 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 <td>Mx (Nm)</td> <td>Х</td> <td>6</td> <td>14</td> <td>29</td> <td>50</td> <td>77</td> <td>120</td> <td>120</td>	Mx (Nm)	Х	6	14	29	50	77	120	120
Mz (Nm) X 11 34 60 110 180 260 260 PROLINE X 542 857 1171 2074 3111 X X Mx (Nm) X 8 16 29 57 111 X X My (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X POWERSLIDE X 1400 1400 - 3000 1400 - 3000 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 <	My (Nm)	Х	11	34	60	110	180	260	260
PROLINE F (N) X 542 857 1171 2074 3111 X X Mx (Nm) X 8 16 29 57 111 X X My (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X POWERSLIDE X 1400 1400 - 3000 1400 - 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175<	Mz (Nm)	Х	11	34	60	110	180	260	260
F (N) X 542 857 1171 2074 3111 X X Mx (Nm) X 8 16 29 57 111 X X My (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X POWERSLIDE X 12 39 73 158 249 X X F (N) X 1400 1400 - 3000 1400 - 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175	PROLINE			0				0	
Mx (Nm) X 8 16 29 57 111 X X My (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X POWERSLIDE X 1400 1400 - 3000 1400 - 3000 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X STARLINE X X X X X X X	F (N)	Х	542	857	1171	2074	3111	Х	Х
My (Nm) X 12 39 73 158 249 X X Mz (Nm) X 12 39 73 158 249 X X POWERSLIDE F (N) X 1400 1400 - 3000 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X STARLINE X	Mx (Nm)	Х	8	16	29	57	111	Х	Х
Mz (Nm) X 12 39 73 158 249 X X POWERSLIDE F (N) X 1400 1400 - 3000 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X STARLINE K <td>My (Nm)</td> <td>Х</td> <td>12</td> <td>39</td> <td>73</td> <td>158</td> <td>249</td> <td>Х</td> <td>Х</td>	My (Nm)	Х	12	39	73	158	249	Х	Х
POWERSLIDE F (N) X 1400 1400 - 3000 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X STARLINE K K K K K K K	Mz (Nm)	Х	12	39	73	158	249	Х	Х
F (N) X 1400 1400 - 3000 3000 3000 - 4000 X X Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X STARLINE X X X X X X X	POWERSLIDE								
Mx (Nm) X 14 14 - 65 20 - 65 65 - 90 90 - 140 X X My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X STARLINE	F (N)	Х	1400	1400 - 3000	1400 - 3000	3000	3000 - 4000	X	Х
My (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X Mz (Nm) X 45 63 - 175 70 - 175 175 - 250 250 - 350 X X STARLINE STARLINE Image: Constraint of the second s	Mx (Nm)	Х	14	14 - 65	20 - 65	65 - 90	90 - 140	X	Х
Mz (Nm) × 45 63 - 175 70 - 175 175 - 250 250 - 350 × × STARLINE	My (Nm)	Х	45	63 - 175	70 - 175	175 - 250	250 - 350	X	X
STARLINE	Mz (Nm)	Х	45	63 - 175	70 - 175	175 - 250	250 - 350	Х	Х
	STARLINE		-						
F (N) × 1000 3100 3100 4000-7500 × ×	F (N)	Х	1000	3100	3100	4000-7500	4000-7500	Х	Х
Mx (Nm) × 15 50 62 150 210 × ×	Mx (Nm)	Х	15	50	62	150	210	Х	Х
My (Nm) × 30 110 160 400 580 × ×	My (Nm)	Х	30	110	160	400	580	Х	Х
Mz (Nm) × 30 110 160 400 580 × ×	Mz (Nm)	Х	30	110	160	400	580	Х	Х
- Variable Stop X O O O O X X	- Variable Stop	Х	0	О	0	0	О	Х	Х
KF Guide	KF Guide								
F (N) X 1000 3100 3100 4000-7500 X X	F (N)	Х	1000	3100	3100	4000-7500	4000-7500	Х	Х
Mx (Nm) X 12 35 44 119 170 X X	Mx (Nm)	Х	12	35	44	119	170	Х	Х
My (Nm) X 25 90 133 346 480 X X	My (Nm)	Х	25	90	133	346	480	X	Х
Mz (Nm) X 25 90 133 346 480 X X	Mz (Nm)	Х	25	90	133	346	480	Х	Х
- Variable Stop X O O O O X X	- Variable Stop	Х	0	0	0	0	0	X	X

ORIGA

www.comoso.com

Catalog 0980 Modular Components Overview

OSP-P Pneumatic Rodless Cylinders and Linear Guides Rodless Cylinders Series OSP-P

Linear Drives	OSP-P10	OSP-P16	OSP-P25	OSP-P32	OSP-P40	OSP-P50	OSP-P63	OSP-P80
HD Heavy Duty Guide								
F (N)	Х	Х	6000	6000	15000	18000	Х	Х
Mx (Nm)	Х	Х	260	285	800	1100	Х	Х
My (Nm)	Х	Х	320	475	1100	1400	Х	Х
Mz (Nm)	Х	Х	320	475	1100	1400	Х	Х
- Variable Stop	X	Х	0	0	0	0	Х	Х
- Intermediate Stop Module	×	×	0	×	×	X	X	×
Active Brake								
Braking Force at 6 bar (brake surface dry) (N)	×	×	350	590	900	1400	2170	4000
SLIDELINE SL / PROLINE PL with Brakes								
Active Brake								
SL Braking Force at 6 bar (brake surface dry) (N)	X	Х	325	545	835	1200	Х	×
PL Braking Force at 6 bar (brake surface dry) (N)	X	Х	on request	on request	on request	on request	Х	X
Passive Brake Multibrake								
SL Braking Force at 6 bar (brake surface dry) (N)	×	×	470	790	1200	1870	2900	2900
$\ensuremath{\text{PL}}$ Braking Force at 6 bar (brake surface dry) (N)	X	х	315	490	715	1100	-	-
Magnetic Switches								
Standard Version	О	О	О	О	О	О	О	О
T-Nut Version	О	О	О	О	О	0	О	О
Displacement Measuring Systems								
SFI-plus Incremental	×	Х	О	0	0	0	О	О
Integrated Valves 3/2 WV NO VOE	×	×	О	0	0	О	on request	on request
Mountings								
End Cap Mounting / Mid-Section Support	О	О	О	О	О	О	О	О
Inversion Mounting	×	О	О	О	О	О	О	О
Shock Absorber for Intermediate Positioning	×	х	on request	on request	on request	on request	X	х
Adaptor Profile / T-Nut Profile	×	О	О	0	0	О	X	×
Special Cylinders								
Special Pneumatical Cushioning System	X	on request	X	×				
Clean Room Cylinders to DIN EN ISO 14644-1	X	0	О	0	×	Х	X	×
Bi-parting Version	×	×	×	×	О	×	×	×
High-Speed up to 30 m/s	×	on request	on request	on request	×	х	X	×

□ = Standard Version

 \blacktriangle = Longer Strokes on Request

* = other temperature Ranges on Request

() ORIGA

 O = Option

X = Not Applicable

www.comoso.com

Catalog 0980 Examples

Circuit diagram for end of stroke application. Intermediate positioning is also possible.

The cylinder is controlled by two 3/2-way valves (normally open). The speed can be adjusted independently for both directions. Circuit diagram for end of stroke application. Intermediate positioning is also possible.

The cylinder is controlled by a 5/3-way valve (middle position pressurized). The speed can be adjusted independently for both directions.

The optional integrated VOE Valves offer optimal control, and allow accurate positioning of intermediate positions and the lowest possible speeds.

Fast/Slow speed cycle control with pneumatic brake for accurate positioning at high velocities. Additional 3/2-way valves with adjustable throttle valves at the exhaust of the standard directional control valves for two displacement speeds in each direction of the piston's travel. The valve controlling the brake is activated after the slow speed cycle is activated.

ORIGA

The combination of an OSP-cylinder with the passive MULTIBRAKE as shown here, allows accurate positioning and safety in case of loss of pneumatic air pressure.

ORIGA SYSTEM PLUS – rodless linear drives offer maximum flexibility for any application.

The high load capacity of the piston can cope with high bending moments without additional guides.

The mechanical design of the OSP-P allows synchronized movement of two cylinders.

Integrated guides offer optimal guidance for applications requiring high performance, easy assembly and maintenance free operation.

Optimal system performance by combining multi-axis cylinder combinations.

For further information and assembly instructions, please contact your local PARKER-ORIGA dealer.

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Rodless Pneumatic Cylinders Series OSP-P

Standard Rodless Pneumatic Cylinders	
System Concepts & Components	B2-B5
Technical Data	B7-B9
Dimensions	B10-B15
Active Brakes	B16-B19
Accessories (Mounts & Supports)	B20-B29
Ordering Information	B30
Clean Room Cylinders	
Technical Data	B31-B32
Dimensions	B33
Ordering Information	B34

() ORIGA

Bi-parting Rodless Cylinders

Technical Data	B35
Dimensions	B36
Ordering Information	B37

ORIGA SYSTEM PLUS – INNOVATION FROM A PROVEN DESIGN

A completely new generation of linear drives which can be simply and neatly integrated into any machine layout.

A NEW MODULAR LINEAR DRIVE SYSTEM

With this second generation linear drive PARKER-ORIGA offers design engineers complete flexibility. The well known ORIGA cylinder has been further developed into a combined linear actuator, guidance and control package. It forms the basis for the new, versatile ORIGA SYSTEM PLUS linear drive system.

All additional functions are designed into modular system components which replace the previous series of cylinders.

Combined clamping

for inner and

MOUNTING RAILS ON 3 SIDES

Mounting rails on 3 sides of the cylinder enable modular components such as linear guides, brakes, valves, magnetic switches etc. to be fitted to the cylinder itself. This solves many installation problems, especially where space is limited.

> Corrosion resistant steel outer sealing band and robust wiper system on the carrier for use in aggressive environments.

Proven corrosion resistant steel inner sealing band for optimum sealing and extremely low friction. The modular system concept forms an ideal basis for additional customerspecific functions.

> Magnetic piston as standard - for contactless position sensing on three sides of the cylinder.

outer sealing band with dust cover.

Stainless steel screws optional.

> Optimized cylinder profile for maximum stiffness and minimum weight. Integral air passages enable both air connections to be positioned at one end, if desired.

Low friction piston seals for optimized running characteristics

End cap can be rotated to any one of the four positions (before or after delivery) so that the air connection can be in any desired position.

www.comoso.com

Catalog 0980 System Concept & Components

OSP-P Pneumatic Rodless Cylinders and Linear Guides Standard Rodless Pneumatic Cylinders

B3

www.comoso.com

OPTIONS AND ACCESSORIES FOR SYSTEM VERSATILITY

SERIES OSP-P

STANDARD VERSIONS OSP-P10 to P80

Pages B7-B15

Standard carrier with integral guidance. End cap can be rotated 4 x 90° to position air connection on any side

Magnetic piston as standard. Dovetail profile for mounting of accessories and the cylinder itself.

BASIC CYLINDER OPTIONS

CLEAN ROOM CYLINDERS

Page B31-B34

For use in clean room applications, certified with the IPA-Certificate (to DIN EN ISO 14644-1).

The special design of the linear drive enables all emissions to be led away.

STAINLESS VERSION

For use in constantly damp or wet environments. All screws are A2 quality stainless steel

SLOW SPEED OPTIONS

Specially formulated grease lubrication facilitates slow, smooth and uniform piston travel in the speed range from 0.005 to 0.2 m/s.

Minimum achievable speeds are dependent on several factors. Please consult our technical department.

Slow speed lubrication in combination with Viton[®] on demand.

Oil free operation preferred.

VITON® VERSION

For use in an environment with high temperatures or in chemically aggressive areas.

0.005 m/s

INTEGRATED VOE VALVES

Page B14

The complete compact solution for optimal cylinder control.

JOINT CLAMP CONNECTION Page B28

The joint clamp connection combines two OSP-P cylinders of the same size into a compact unit with high performance.

MULTIPLEX CONNECTION

Page B29

The multiplex connection combines two or more OSP-P cylinders of the same size into one unit.

The orientation of the carriers can be freely selected.

BOTH AIR CONNECTIONS AT ONE END

Page B13

For simplified tubing connections and space saving.

B4

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

OORIGA

www.comoso.com

All seals are made of Viton[®].

Sealing bands: Stainless steel

END-FACE AIR CONNECTION

Page B12 To solve special installation problems.

ACCESSORIES

MAGNETIC SWITCHES TYPE RS, ES, RST, EST

Pages B102-B108

For electrical sensing of end and intermediate piston positions, also in EX-Areas.

CLEVIS MOUNTING

Page B20-B21

Carrier with tolerance and parallelism compensation for driving loads supported by external linear guides.

INVERSION MOUNTING

Page B22

The inversion mounting transfers the driving force to the opposite side, e.g. for dirty environments.

END CAP MOUNTING Page B23 For end-mounting of the cylinder.

MID-SECTION SUPPORT

Page B24

For supporting long cylinders or mounting the cylinder by its dovetail rails.

() ORIGA

Cha	racteristics			Pressures quoted as gauge pressure						
Cha	racteristics	Symbol	Unit	Description						
Gen	eral Features									
Туре				Rodless cylinder						
Serie	es			OSP-P						
Syst	em			Double-acting, with cushioning, position sensing capability						
Mou	nting			See drawings						
Air C	Connection			Threaded						
Amb temp	ient perature range	Tmin Tmax	°C ℃	-10Other temperature ranges+80on request						
Weig	ght (mass)		kg	See table below						
Insta	Illation			In any position						
Med	ium			Filtered, unlubricated compressed air (other media on request)						
Lubr	ication			Permanent grease lubrication (additional oil mist lubrication not required) Option: special slow speed grease						
	Cylinder Profile			Anodized aluminum						
	Carrier (piston)			Anodized aluminum						
	End caps			Aluminum, lacquered / Plastic (P10)						
al	Sealing bands			Corrosion resistant steel						
ater	Seals			NBR (Option: Viton®)						
ž	Screws			Galvanized steel Option: stainless steel						
	Dust covers, wipers			Plastic						
Max.	operating pressure	pmax	bar	8						

Weight (mass) kg		
Cylinder series	Weight (Mass) kg
(Basic cylinder)	At 0 mm stroke	per 100 mm stroke
OSP-P10	0.087	0.052
OSP-P16	0.22	0.1
OSP-P25	0.65	0.197
OSP-P32	1.44	0.354
OSP-P40	1.95	0.415
OSP-P50	3.53	0.566
OSP-P63	6.41	0.925
OSP-P80	12.46	1.262

Size Comparison

Rodless Pneumatic Cylinder

ø 10-80 mm

Series OSP-P..

Standard Versions:

- · Double-acting with adjustable end cushioning
- · With magnetic piston for position sensing
- Long-Stroke Cylinders for stroke lengths up to 41m (consult factory)

Special Versions:

- With special pneumatic cushioning system (on request)
- Clean room cylinders ٠ (see page B31-B34)
- Stainless steel screws
- Slow speed lubrication
- Viton® seals •
- Both air connections on one end
- Air connection on the end-face
- Integrated Valves
- · End cap can be rotated 4 x 90° to position air connection as desired
- Free choice of stroke length up to 6000 mm, Long-Stroke version (Ø50-80mm) for stroke lengths up to 41m

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

www.comoso.com

B

Loads, Forces and Moments

Choice of cylinder is decided by:

- Permissible loads, forces and moments
- Performance of the pneumatic end cushions. The main factors here are the mass to be cushioned and the piston speed at start of cushioning (unless external cushioning is used, e. g. hydraulic shock absorbers).

The adjacent table shows the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation. Load and moment data are based on speeds $v \le 0.5$ m/s.

When working out the action force required, it is essential to take into account the friction forces generated by the specific application or load.

Cushioning Diagram

Work out your expected moving mass and read off the maximum permissible speed at start of cushioning.

Alternatively, take your desired speed and expected mass and find the cylinder size required.

Please note that piston speed at start of cushioning is typically ca. 50% higher than the average speed, and that it is this higher speed which determines the choice of cylinder. If these maximum permissible values are exceeded, additional shock absorbers must be used.

O ORIGA

OSP-P Pneumatic Rodless Cylinders and Linear Guides Standard Rodless Pneumatic Cylinders

Cylinder	Theoretical	Effective	max	. Mome	ents	max	Cushion
Series (mm Ø)	Action Force at 6 bar (N)	Action Force F _A at 6 bar (N)	Mx (Nm)	My (Nm)	Mz (Nm)	Load F (N)	Length (mm)
OSP-P10	47	32	0.2	1	0.3	20	2.5 *
OSP-P16	120	78	0.45	4	0.5	120	11
OSP-P25	295	250	1.5	15	З	300	17
OSP-P32	483	420	3	30	5	450	20
OSP-P40	754	640	6	60	8	750	27
OSP-P50	1178	1000	10	115	15	1200	30
OSP-P63	1870	1550	12	200	24	1650	32
OSP-P80	3016	2600	24	360	48	2400	39

* A rubber element (non-adjustable) is used for end cushioning.

To deform the rubber element enough to reach the absolute end position would require a Δp of 4 bar!

If the permitted limit values are exceeded, either additional shock absorbers should be fitted in the area of the center of gravity or you can consult us about our special cushioning system – we shall be happy to advise you on your specific application.

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Permissible Support Spacings: OSP - P10 - P32

Mid-Section Supports

To avoid excessive bending and oscillation of the cylinder, mid-section supports are required dependent on specified stroke lengths and applied loads. The diagrams show the maximum possible support spacings depending on the load.

Bending up to max. 0.5 mm is permissible between supports. The mid-section supports are clamped on to the dovetail profile of the cylinder tube. They are also able to take the axial forces.

ORIGA

Cylinder Stroke and Dead Length A

- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.

Tandem Cylinder

Two pistons are fitted: dimension "Z" is optional. (Please note minimum distance "Zmin").

- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.
- Stroke length to order is stroke + dimension "Z"

Please note:

To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.

Dimensions of Basic Cylinder OSP-P10

End Cap/Air Connection Series OSP -P10

Dimensi	Dimension Table (mm)																									
Cylinder Series	Α	В	С	D	Е	G	Н	I	J	к	L	м	Ν	Ρ	R	S	w	X	Y	Zmin	CF	EM	EN	FB	FH	ZZ
OSP-P10	44.5	12	19	M5	12	М3	5	6	60	8.5	22	22.5	17.5	10.5	3.4	16	22.5	31	М3	64	32	9.5	2	17	17	6

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Dimensions of Basic Cylinder OSP - P16-P80

End Cap/Air Connection can be rotated 4 x 90° Series OSP-P16 to P32

Cylinder Stroke and Dead Length A

- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.

Tandem Cylinder

Two pistons are fitted: dimension "Z" is optional. (Please note minimum distance "Zmin").

- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.
- Stroke length to order is stroke + dimension "Z"

Please note:

Carrier

To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.

Series OSP-P16 to P80

Y x ZZ

End Cap/Air Connection can be rotated 4 x 90° Series OSP-P40 to P80

ORIGA

Dimension Table (mm)

Cylinder Series	A	в	С	D	Е	G	н	I	J	к	М	0	S	v	X	Y	z	BW	ВΧ	BY	CF	EN	FB	FH	zz
OSP-P16	65	14	30	M5	18	M3	9	5.5	69	15	23	33.2	22	16.5	36	M4	81	10.8	1.8	28.4	38	3	30	27.2	7
OSP-P25	100	22	41	G1/8	27	M5	15	9	117	21.5	31	47	33	25	65	M5	128	17.5	2.2	40	52.5	3.6	40	39.5	8
OSP-P32	125	25.5	52	G1/4	36	M6	15	11.5	152	28.5	38	59	36	27	90	M6	170	20.5	2.5	44	66.5	5.5	52	51.7	1
OSP-P40	150	28	69	G1/4	54	M6	15	12	152	34	44	72	36	27	90	M6	212	21	3	54	78.5	7.5	62	63	10
OSP-P50	175	33	87	G1/4	70	M6	15	14.5	200	43	49	86	36	27	110	M6	251	27	-	59	92.5	11	76	77	10
OSP-P63	215	38	106	G3/8	78	M8	21	14.5	256	54	63	107	50	34	140	M8	313	30	_	64	117	12	96	96	16
OSP-P80	260	47	132	G1/2	96	M10	25	22	348	67	80	133	52	36	190	M10	384	37.5	-	73	147	16.5	122	122	20

www.comoso.com

OSP-P Pneumatic Rodless Cylinders and Linear Guides **Standard Rodless Pneumatic Cylinders**

Air connection D

GхH

С

Е

Air Connection on the End-Face #5

In some situations it is necessary or desirable to fit a special end cap with the air connection on the end-face instead of the standard end cap with the air connection on the side. The special end cap can also be rotated $4 \times 90^{\circ}$ to locate the cushion adjustment screw as desired. Supplied in pairs.

Note: Position #2 is the standard location.

Dimension	lable (mm)							
Cylinder Series	В	С	D	E	G	Н	вх	BW
OSP-P16	14	30	M5	18	M3	9	1.8	10.8
OSP-P25	22	41	G1/8	27	M5	15	2.2	17.5
OSP-P32	25.5	52	G1/4	36	M6	15	2.5	20.5
OSP-P40	28	69	G1/4	54	M6	15	3	21
OSP-P50	33	87	G1/4	70	M6	15	-	27
OSP-P63	38	106	G3/8	78	M8	21	_	30
OSP-P80	47	132	G1/2	96	M10	25	-	37.5

Series OSP-P16 to P32

Ж

В

Cushion adjustment screw

ORIGA

Series OSP-P16

Single End Porting

A special end cap with both air connections on one side is available for situations where shortage of space, simplicity of installation or the nature of the process make it desirable. Air supply to the other end is via internal air passages (OSP-P25 to P80) or via a hollow aluminum profile fitted externally (OSP-P16). In this case the end caps cannot be rotated.

Please note:

When combining the OSP-P16 single end porting with inversion mountings, RS magnetic switches can only be mounted directly opposite to the external air-supply profile.

Series OSP-P25

Series OSP-P32 to P80

DimensionTable(mm)

Cylinder Series	В	C	D	E	G	Н	I,	l ₂	вх	BW	EN	EN ₁	EN ₂	FA	FB	FC	FE	FG	FL	FN
OSP-P16	14	30	M5	18	M3	9	5.5	-	1.8	10.8	3	-	-	12.6	12.6	4	27	21	36	-
OSP-P25	22	41	G1/8	27	M5	15	9	-	2.2	17.5	-	3.6	3.9	-	I	Ι	I	-	-	-
OSP-P32	25.5	52	G1/8	36	M6	15	12.2	10.5	Ι	20.5	-	-	-	-	I	-	Ι	-	-	15.2
OSP-P40	28	69	G1/8	54	M6	15	12	12	-	21	-	-	-	-	-	-	-	-	-	17
OSP-P50	33	87	G1/4	70	M6	15	14.5	14.5	-	27	-	-	-	-	I	-	١	-	-	22
OSP-P63	38	106	G3/8	78	M8	21	16.5	13.5	-	30	-	-	-	-	-	-	-	-	-	25
OSP-P80	47	132	G1/2	96	M10	25	22	17	-	37.5	-	-	-	-	-	-	-	-	-	34.5

ORIGA

www.comoso.com

Integrated 3/2 Way Valves VOE

For optimal control of the OSP-P cylinder, 3/2 way valves integrated into the cylinder's end caps can be used as a compact and complete solution. They allow for easy positioning of the cylinder, smooth operation at the lowest speeds and fast response, making them ideally suited for the direct control of production and automation processes.

Characteristics:

- · Complete compact solution
- Various connection possibilities: Free choice of air connection with rotating end caps with VOE valves, Air connection can be rotated 4 x 90°, Solenoid can be rotated 4 x 90°, Pilot Valve can be rotated 180°
- High piston velocities can be achieved with max. 3 exhaust ports
- Minimal installation requirements
- Requires just one air connection per valve
- Optimal control of the OSP-P cylinder
- Excellent positioning characteristics
- Integrated operation indicator
- Integrated exhaust throttle valve
- Manual override indexed
- · Adjustable end cushioning
- Easily retrofitted please note the increase in the overall length of the cylinder!

Integrated 3/2 Way Valves VOE Series OSP-P25, P32, P40 and P50

Characteristics 3/2Way Valves VOE Characteristics 3/2 Way Valves with spring return (A) Pneumatic diagram VOE-25 VOE-32 VOE-40 VOE-50 Type Actuation electrical Basic position $P \rightarrow A$ open, R closed Type Poppet valve, non overlapping Mounting integrated in end cap Installation in any position G 1/8 Port size G 1/4 G 3/8 G 3/8 -10°C to +50°C * Temperature Operating pressure 2-8 bar

24 V DC

2,5 W

/

/ 100%

IP 65 DIN 40050

* other temperature ranges on request

Nominal voltage

Duty cycle

Power consumption

Electrical Protection

230 V AC, 50 Hz

6 VA

Dimensions VOE Valves OSP-P25 and P32

DimensionTable(mm)

Cylinder Series	AV	BV	с	cv	DV	V1	V2	V3	V4	V5	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
OSP-P25	115	37	41	47	G1/8	11	46	90.5	22	30	18.5	32.5	2.5	3.3	18.5	26.5	20.5	24	5	4	14	G1/8
OSP-P32	139	39.5	52	58	G1/4	20.5	46	96	22	32	20.5	34.7	6	5	20.5	32	26	32	7.5	6	18	G1/4

Dimensions VOE Valves OSP-P40 and P50

Cylinder Series	AV	вv	с	cv	DV	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
OSP-P40	170	48	69	81	G3/8	24	46	103	22	33	M5	6.7	24	42	8.3	8.3	24	39	42	32	7.5	6	18	G1/4
OSP-P50	190	48	87	82	G3/8	24	46	102	22	33	M5	4.5	24	42	12.2	12.2	24	38	44	32	7.5	6	18	G1/4

() ORIGA

www.comoso.com

SYSTEM PLUS

Series AB 25 to 80 for linear drive Series OSP-P

OSP-P Pneumatic Rodless Cylinders and Linear Guides **Active Brakes**

Forces	and Weigh	its					
Series	For linear drive	Max. braking force (N) (¹	Brake pad way (mm)	Linear driv 0 mm stroke	Mass (kg) ve with brake increase per 100mm stroke	brake*	Order No. Active brake
AB 25	OSP-P25	350	2.5	1.0	0.197	0.35	20806
AB 32	OSP-P32	590	2.5	2.02	0.354	0.58	20807
AB 40	OSP-P40	900	2.5	2.83	0.415	0.88	20808
AB 50	OSP-P50	1400	2.5	5.03	0.566	1.50	20809
AB 63	OSP-P63	2170	3.0	9.45	0.925	3.04	20810

(1 -at6bar

AB 80 OSP-P80

both chambers pressurized with 6 bar Braking surface dry -oil on the braking surface will reduce the braking force

4000

3.0

1.262 * Please Note:

18.28

The mass of the brake has to be added to the total moving mass when using the cushioning diagram.

5.82

20811

Brake Housing

P

Features:

- · Actuated by pressurization
- · Released by spring actuation
- · Completely stainless version
- · Holds position, even under changing load conditions

For further technical data, please refer to the data sheets for linear drives OSP-P (page B7)

Note:

For combinations Active Brake AB + SFI-plus + Magnetic Switch contact our technical department please.

DimensionTable (r	nm)									
Series	A	В	J	X	Y	Z	CF	DA	DB	FT
AB 25	100	22	117	29.5	43	13	74	4	M5	50
AB 32	125	25.5	151.4	36	50	15	88	4	M5	62
AB 40	150	28	151.4	45	58	22	102	7	M5	79.5
AB 50	175	33	200	54	69.5	23	118.5	7.5	M5	97.5
AB 63	215	38	256	67	88	28	151	9	G1/8	120
AB 80	260	47	348	83	105	32	185	10	G1/8	149

() ORIGA

www.comoso.com

End Cap Mountings

On the end-face of each cylinder end cap there are four threaded holes for mounting the cylinder. The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

Material:

3

Series OSP-P25, P32: Galvanized steel The mountings are supplied in pairs.

Material:

Series OSP-P40,P50, P63, P80: Anodized aluminum The mountings are supplied in pairs. Stainless steel version on request.

DimensionTable (mm)

	•										
Series	E	øU	АВ	AC	AD	AE	AF	CL	DG	Order No Type A3	Type C3
AB 25	27	5.8	27	16	22	45	49	2.5	39	2060	-
AB 32	36	6.6	36	18	26	42	52	3	50	3060	-
AB 40	54	9	30	12.5	24	46	60	-	68	-	20339
AB 50	70	9	40	12.5	24	54	72	-	86	-	20350
AB 63	78	11	48	15	30	76	93	-	104	_	20821
AB 80	96	14	60	17.5	35	88	110	-	130	-	20822

Series OSP - P25 and P32 with Active Brake AB: Type A3

Series OSP-P40, P50, P63, P80 with Active Brake AB: Type C3

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Catalog 0980 **Mid-Section Supports**

N

D 80

D 63

D 50

D 40

D 32-

D 25

2600

2400

2200 2000

1800

1600

1200 1000

800

600

400

200

LoadF 1400 F‡

Mid-Section Support

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive.

The diagrams show the maximum permissible unsupported length in relation to loading. Deflection of 0.5 mm max. between supports is permissible. The Mid-Section supports are attached to the dovetail rails, and can take axial loads.

Mid-Section Supports

Note to Type E3:

Mid-Section supports can only be mounted opposite of the brake housing.

Stainless steel version available on request.

www.comoso.com

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Н \oplus DR DK DO DM DP DN

Series OSP-P25 to P80 with Active Brake AB: Type E3

(Mounting from above / below with through-bolt)

0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 m

DimensionTable(mm)

Series		1	٨F	DE	рн	אס	рм	DN	DO	P	DO	DR	20	Order No
361163	0	00				DR				DF	DQ		03	Type E3
AB 25	5.5	10	49	16	65	26	40	47.5	36	50	34.5	35	5.7	20353
AB 32	5.5	10	52	16	68	27	46	54.5	36	50	40.5	32	5.7	20356
AB 40	7	_	60	23	83	34	53	60	45	60	45	32	_	20359
AB 50	7	_	72	23	95	34	59	67	45	60	52	31	_	20362
AB 63	9	_	93	34	127	44	73	83	45	65	63	48	_	20453
AB 80	11	-	110	39.5	149.5	63	97	112	55	80	81	53	_	20819

Distance k

Ш

AF

<u>øU</u>U

øU

S

DQ

ЪŢ

(किप्पी

F

Accessories for linear drives with Active Brakes - please order separately

ORIGA

Description	For detailed information, see page no.
Clevis mounting	B21
Adaptor profile	B25
T-groove profile	B26
Connection profile	B27
Magnetic switch (can only be mounted opposite of the brake housing)	B102-B108
Incremental displacement measuring system SFI-plus	B113-B115

Linear Drive Accessories ø 10 mm Clevis Mounting

B

For Linear-drive • Series OSP-P

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.

In the drive direction, the mounting has very little play.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- · Tilting sideways
- Horizontal compensation

DimensionT	able (m	ım)												
Series	øR	V	AR	AS	НН	КК	LL	ММ	NN*	PP	SS	TT	Orde Standard	er No. Stainless
OSP-P10	3.4	3.5	2	27	2	26	19	11.5	1	24	20	10	20971	-

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Series OSP-P16 to 32

Series OSP-P40 to 80

Please note:

When using additional inversion mountings, take into account the dimensions in page B22.

Linear Drive Accessories ø 16-80 mm Clevis Mounting

For Linear-drive • Series OSP-P

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.

In the drive direction, the mounting has very little play.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- · Horizontal compensation

A stainless steel version is also available.

DimensionTable (mm)

											_				_	_	
Series	J	Q	Т	øR	HH	КК	LL	ММ	NN*	00	PP	SS	ST	TT	UU	Orde Standard	er No. Stainless
OSP-P16	69	10	M4	4.5	3	34	26.6	10	1	8.5	26	28	20	10	11	20462	20463
OSP-P25	117	16	M5	5.5	3.5	52	39	19	2	9	38	40	30	16	21	20005	20092
OSP-P32	152	25	M6	6.6	6	68	50	28	2	13	62	60	46	40	30	20096	20094
OSP-P40	152	25	M6	-	6	74	56	28	2	13	62	60	46	-	30	20024	20093
OSP-P50	200	25	M6	—	6	79	61	28	2	13	62	60	46	-	30	20097	20095
OSP-P63	256	37	M8	—	8	100	76	34	3	17	80	80	65	-	37	20466	20467
OSP-P80	348	38	M10	-	8	122	96	42	3	16	88	90	70	-	42	20477	20478

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

ORIGA

www.comoso.com

Linear Drive Accessories ø 16-80 mm

Inversion Mounting

For Linear-drive • Series OSP-P

In dirty environments, or where there are special space problems, inversion of the cylinder is recommended.

The inversion bracket transfers the driving force to the opposite side of the cylinder. The size and position of the mounting holes are the same as on the standard cylinder.

Stainless steel version on demand.

Please note:

Other components of the OSP system such as **mid-section supports**, **magnetic switches** and **the external air passage for the P16**, can still be mounted on the free side of the cylinder.

When combining single end porting with inversion mountings, RS magnetic switches can only be mounted directly opposite to the external air-supply profile.

Important Note:

May be used in combination with Clevis Mounting, ref. dimensions in pages B20-B21.

ORIGA

DimensionTable(mm)

			-						
Series	v	x	Y	вС	BE	вн	BJ	zz	Order No.
OSP-P16	16.5	36	M4	69	23	33	25	4	20446
OSP-P25	25	65	M5	117	31	44	33.5	6	20037
OSP-P32	27	90	M6	150	38	52	39.5	6	20161
OSP-P40	27	90	M6	150	46	60	45	8	20039
OSP-P50	27	110	M6	200	55	65	52	8	20166
OSP-P63	34	140	M8	255	68	83.5	64	10	20459
OSP-P80	36	190	M10	347	88	107.5	82	15	20490

B22

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Series OSP-P10 : Type A1

Series OSP-P16 to 32: Type A1

Series OSP-P40 to 80:Type C1

Linear Drive Accessories ø 10-80 mm End Cap Mountings

For Linear-drive

Series OSP-P

On the end-face of each end cap there are four threaded holes for mounting the actuator.

The hole layout is square, so that the mounting can be fitted to the bottom, top or either side, regardless of the position chosen for the air connection.

Material:

Series OSP-P10 – P32: Galvanized steel. Series OSP-P40 – P80: Anodized aluminum.

The mountings are supplied in pairs.

DimensionTable (mm)												
Series	E	ØU	AB	AC	AD	AE	AF	CL	DG	Order N Type A1	No. (* Type C1	
OSP-P10	-	3.6	12	10	14	20.2	11	1.6	18.4	0240	-	
OSP-P16	18	3.6	18	10	14	12.5	15	1.6	26	20408	_	
OSP-P25	27	5.8	27	16	22	18	22	2.5	39	2010	_	
OSP-P32	36	6.6	36	18	26	20	30	3	50	3010	-	
OSP-P40	54	9	30	12.5	24	24	38	-	68	-	4010	
OSP-P50	70	9	40	12.5	24	30	48	-	86	-	5010	
OSP-P63	78	11	48	15	30	40	57	-	104	-	6010	
OSP-P80	96	14	60	17.5	35	50	72	_	130	_	8010	

(*= Pair

Ö ORIGA

www.comoso.com

DimensionTable (mm) - Series OSP-P16 to P80

ORIGA

Series	R	U	UU	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DS	DT	EF	ЕМ	EN	EQ	Order No. Type E1 Type D1	
OSP-P16	M3	3.4	6	15	20	29.2	24	32	36.4	18	30	27	6	3.4	6.5	32	20	36.4	27	20435	20434
OSP-P25	M5	5.5	10	22	27	38	26	40	47.5	36	50	34.5	8	5.7	10	41.5	28.5	49	36	20009	20008
OSP-P32	M5	5.5	10	30	33	46	27	46	54.5	36	50	40.5	10	5.7	10	48.5	35.5	57	43	20158	20157
OSP-P40	M6	7	-	38	35	61	34	53	60	45	60	45	10	-	11	56	38	63	48	20028	20027
OSP-P50	M6	7	-	48	40	71	34	59	67	45	60	52	10	-	11	64	45	72	57	20163	20162
OSP-P63	M8	9	-	57	47.5	91	44	73	83	45	65	63	12	-	16	79	53.5	89	69	20452	20451
OSP-P80	M10	11	-	72	60	111.5	63	97	112	55	80	81	15	-	25	103	66	118	87	20482	20480

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

www.comoso.com

For Linear-drive Series OSP-P

Note on Types E1 and D1 (P16 – P80):

The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the center of the actuator is different.

Stainless steel version on demand.

Catalog 0980 **Adaptor Profile**

Dimensions

Linear Drive Accessories ø 16-50 mm **Adaptor Profile**

For Linear-drive Series OSP-P

Adaptor Profile OSP

- A universal attachment for mounting of valves etc.
- · Solid material

Dimension Table (mm)												
Series	Α	В	С	D	E	F	L	X	Orde Standard	er No. Stainless		
OSP-P16	14	20.5	28	M3	12	27	50	38	20432	20438		
OSP-P25	16	23	32	M5	10.5	30.5	50	36	20006	20186		
OSP-P32	16	23	32	M5	10.5	36.5	50	36	20006	20186		
OSP-P40	20	33	43	M6	14	45	80	65	20025	20267		
OSP-P50	20	33	43	M6	14	52	80	65	20025	20267		

() ORIGA

www.comoso.com

B

DimensionTable(mm)

		,	_								
Series	ТА	ТВ	тс	TD	TE	TF	TG	тн	TL	Orde Standard	r No. Stainless
OSP-P16	5	11.5	14	28	1.8	6.4	12	27	50	20433	20439
OSP-P25	5	11.5	16	32	1.8	6.4	14.5	34.5	50	20007	20187
OSP-P32	5	11.5	16	32	1.8	6.4	14.5	40.5	50	20007	20187
OSP-P40	8.2	20	20	43	4.5	12.3	20	51	80	20026	20268
OSP-P50	8.2	20	20	43	4.5	12.3	20	58	80	20026	20268

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Catalog 0980 Connection Profile

Dimensions

Linear Drive Accessories ø 16-50 mm Connection Profile

For combining

- Series OSP-P with system profiles
- Series OSP-P with Series OSP-P

DimensionTable (mm)													
Cylinder Series	for mounting on the carrier of	A	В	С	D	E	F	G	Н	L	X	Order No.	
OSP-P16	OSP25	14	20.5	28	8.5	12	27	5.5	10	50	25	20849	
OSP-P25	OSP32-50	16	23	32	8.5	10.5	30.5	6.6	11	60	27	20850	
OSP-P32	OSP32-50	16	23	32	8.5	10.5	36.5	6.6	11	60	27	20850	
OSP-P40	OSP32-50	20	33	43	8	14	45	6.6	11	60	27	20851	
OSP-P50	OSP32-50	20	33	43	8	14	52	6.6	11	60	27	20851	

Possible Combinations

Ö ORIGA

B27

www.comoso.com

OSP-P Pneumatic Rodless Cylinders and Linear Guides Linear Drive Accessories

Linear Drive Accessories ø 25-50 mm Joint Clamp Connection

B

For connection of cylinders of the Series OSP-P

The joint clamp connection combines two OSP-P cylinders of the same size into a compact unit with high performance.

Features

- · Increased load and torque capacity
- Higher driving forces

Included in delivery:

- 2 clamping profiles with screws
- 1 mounting plate with fixings

Dimension Table (mm)													
Cylinder Series	с	J	LA	LB	LC	LD	LE	LF	LG	LH			
OSP-P25	41	117	52	86	10	41	M5	100	70	85			
OSP-P32	52	152	64	101	12	50	M6	130	80	100			
OSP-P40	69	152	74	111	12	56	M6	130	90	110			
OSP-P50	87	200	88	125	12	61	M6	180	100	124			

ORIGA

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless

Catalog 0980 Multiplex Connection

Dimensions

DimensionTable (mm)

Cylinder	^	м	1.4			Order No.		
Series		IVI		LC		Standard	Stainless	
OSP-P25	41	31	52	84.5	53.5	20035	20193	
OSP-P32	52	38	64	104.5	66.5	20167	20265	
OSP-P40	69	44	74	121.5	77.5	20036	20275	
OSP-P50	87	49	88	142.5	93.5	20168	20283	

Linear Drive Accessories ø 25-50 mm Multiplex Connection

For connection of cylinders of the Series OSP-P

The multiplex connection combines two or more OSP-P cylinders of the same size into on unit.

Features

• The orientation of the carriers can be freely selected

Included in delivery:

2 clamping profiles with clamping screws

Ö ORIGA

B29

www.comoso.com

Ordering Instructions / Part Numbering System for OSP-P Rodless Basic Pneumatic Series 6 7 8 9 10 11 12-16 17 18 19 20 21 22 23 24 25 OSPP 25 1 1 0 0 0 0 0 0 0 01100 0 0 0 0 0 Bore Seals Stroke Piston Dovetail Version Mountings Cover 10 0 Standard Viton 0 None 0 Standard 16 1 Without 25 S Special Floating х Switches / Mount Cover 32 Measuring Rail (NR25) 40 Lubrication System S Special Joint 50 Standard 0 0 none Clamp 63 Slow Speed 1 8 1 NO Reed-Plate 80 add. Carriage 4 Food KL3045 (All (NR24) except 10mm) 5 Clean Room 0 Without S Special Qty. 2 **Piston Style** S Special s Special NC Reed-2 0 Standard KL3048 (All Guides / Brakes / Corrosion Resist. 1 Tandem except 10mm) **End Cap Mounts** Inversion Mounts Hardware S Special Qty. 2 0 Without 0 Non e 0 Standard PNP 3 1 A1 (10,16,25,32) AB Activebrake KL3054+4041 Α Stainless 1 Air Connections / Porting 2 A2 (16,25,32) (All except M Inversion (NR30) S Special 0 Standard (position #2) 3 A3 (25,32) 10mm) Qty. 2 Ν Joint Clamp 4 NPN 1 End Face (position #5) 4 B1 (25,32) (25.32.40.50) KL3060+4041 6 B3 (16) 2 Single End Porting S Special (All except Left Stand (pos #2), 7 B4 (25,32) 3 10mm) Qty. 2 Right End Face (pos #5) 8 B5 (32) **Cushioning / Stops** 5 NO Reed-4 Right Stand (pos #2), 9 C1 (40,50,63,80) KL3045 0 Standard Left End Face (pos #5) (10mm only) A C2 (40,50) S Special 6 Single End Porting **B** C3 (40,50,63,80) 6 PNP End Face 3049+4041 C C4 (40,50) 3/2 Way Valve VOE (10mm only) Α **End Cap Position** Note: Comes in pairs 24V = (25,32,40,50) Qty. 2 0 I+r 0° = In Front (pos #2) B 3/2 Way Valve VOE 7 PNP 1 I+r 90° = Underneath (pos #3) 220V~/110V= (25,32,40,50) 3753+4041 2 I+r 180° = At the Back (pos # 4) (10mm only) С 3/2 Way Valve VOE Qty. 2 48V=(25,32,40,50) 3 I+r 270° = Same Face as Outerband (pos #2,1) 3/2 Way Valve VOE 4 I 90° = Underneath; r 0° = In Front (pos #3,2) X 21240 SFI Е 0,1mm 110V~ (25,32,40,50) 5 | 180° = At the Back; r 0° = In Front (pos #4,2) Y 21241 SFI S Special I 270° = Same Face as Outerband; r 0° = In Front (pos #1,2) 6 1mm Notes: 10mm bore can only have 7 I 0° = In Front; r 90° = Underneath (pos #2, 3) Z 4650 SFA standard port locations. 8 I 180° = At the Back; r 90° = Underneath (pos #4,3) Single End Porting on 16mm bore, S Special 9 I 270° = Same Face as Outerband; r 90° = Underneath (pos #1,3) then end caps cannot be rotated. Note: 2 switches **A** $10^\circ = \text{In Front}$; r $180^\circ = \text{At the Back}$ (pos #2,4) will be supplied. For different quantity. **B** 190° = Underneath; r 180° = At the Back (pos #3,4) please order as a С I 270° = Same Face as Outerband; r 180° = At the Back (pos #1,4) separate line item D I 0° = In Front; r 270° = Same Face as Outerband (pos #2,1) Е 1 90° = Underneath; r 270° = Same Face as Outerband (pos #3,1) F | 180° = At the Back; r 270° = Same Face as Outerband (pos #4,1)

Note: Position #2 is the standard location.

S Special

Parker Hannifin Corporation Parker-Origa Glendale Heights, Illinois www.parker.com/pneu/rodless