OSSPolice - Identifying Open-Source License
Violation and 1-day Security Risk at Large Scale

Ruian Duan, Ashish Bijlani, Meng Xu

Taesoo Kim, Wenke Lee

Georgia ACM CCS 2017
Tech

Background

* Open Source Software (OSS) is gaining popularity, e.g. GitHub
reported 20M users and 57M repos

* Mobile app market grows fast with over 2M apps on Play Store
* Developers reuse OSS as is for lots of benefits

* Legal risks and security risks arise

Risks in OSS use

=

q (—Z“_\ For now, GNU GPL is an
- \ enforceable contract, says US
federal judge!

* OSS licenses have constraints (e.g.
GNU GPL requires derivative works
to open source)

h Artifex Slaps Palm with PDF
Artifex Reader Copyright Suit

Equifax blames open-source
» 1-day vulnerabilities in stale 0SS EQUIFAX software for its record-breaking

versions are exploited by hackers security breach
Community Health Systems

&HS) Breach Possible due to

Heartbleed Vulnerability

Goal

* Design a tool, OSSPolice, to analyze Android apps for open-source
license violation and 1-day security risk by detecting reuse of OSS and
their versions at large scale

* Requirements
* Accurate detection for hundreds of thousands of OSS
* Accurate version pinpointing
 Efficient resource usage
* Fast search to support vetting a large number of Android apps

Overview and challenges

 Feature selection

e Source vs binary: automatically buildingsource code is hard, due to
dependencies, various build configs etc.

* Compare App against OSS
* Fused app binaries: multiple OSS can be linked or compiled into a single file

e Partial builds and internal code clones: not all OSS features are builtinto
libraries and OSS reuses other OSS

* |dentify OSS versions

* Cross-match of unique version features: fused app binaries and internal code
clones can confuse the provenance of unique features

Source vs binary

e C/C++ OSS are built into stripped native shared libraries (so files)

Bar.c

static bar() {
w="“world”

}

Foo.c

void foo() {
w="hello”...

,

}

package edu.gatech; .class edu/gatech/Foo
class Foo { : .method bar dass a ‘method a
bar(){printIn(“hello world”)}; const-string v1,"Hello World”

} 1% invoke-virtual '{vO{vl},printIn invoke-virtual {v0,v1},printin

const-string v1,"Hello World”

Feature selection

* C/C++ 0SS vs so files Srch: no graph based

: : Se .
 String literal Fast
* Clang-based lexerfor OSS and .rodata for libraries
e Exported function

. - ihrari 0 red
Clang-based parser for OSS and .dynsym for libraries r not'. 85 A) sha

Enough O

e Java OSS vs dex files

* String constant . 23% Of C/CH+ and

* Normalized class Un\qUeneSS' s have
 Capturesinteraction with framework A1% Java SS versio

* Function centroid unique features

e Capturesintra-procedural controlflow

Fused app binaries

* An app uses multiple OSS

. |BINNOSS|

edu.gatech.example

IBIN] (‘) OpenSSL || OkHttp
. |OSSNBIN| @ MuPDF MoPub
|0SS] OpenCV Log4j

* [terate N OSS has O(N) time complexity

* Flag all OSS being used at the same time
* Index OSS and their versions!

Flat indexing and matching

* Indexing: Maps features to OSS
* Matching: Lookup feature -> OSS mapping to identify OSS reuse

feature 1 »*| MuPDE J
edu.gatech.example feature 2 <
feature 3 » OpenCV ,J

* Flat indexing blow up table to 90G after indexing 7K OSS

* Indexing multiple versions of OSS further adds to the problem
* Given N OSS with F features and V versions, O(NFV') space complexity

Partial builds and internal code clones

repo
dir
file

Internal code clones confuses
third-party with core and

requires high match ratio to filter

L 2
L

a
opengl.cpp]! test-10.cppl

pdf-lex.c |dtest-dev.cpp{ jpeglib.h png.c
v . pngtest.c .
‘..ll" ..ll“
- 0 ads (e.g

10

Hierarchical indexing and matching

* Hierarchical Indexing
* Records source hierarchy to track internal clones

* Uses Simhash algorithm to generate ids for non-leaf nodes for deduplication

» Record unique features across versions via separate lists

featurel <— fijlel1 <> dir1 <*—> dir4 >

edu.gatech.example feature 2 <«— file 2 <«— dir 2 %dirs —
feature3 <«— file 3 «— dir3

MuPDF |

OpenCV |

* Hierarchical Matching

 NormScore (TF-IDF based) to promote unique parts when computing
matching ratio of a node

* Allow partial buildsby skipping nodes with low ratio
* Drop internal code clones by skipping nodes likely to be third-party

>

LibPNG |

11

Cross-match of unique version features

| MuPDF |
1.5.0 » V1.5
edu.gatech.example 1.6.0 —> V1.6
DF V1. - 1.2.46
ARG | | LibPNG |
LibPNG V1.2.46 foo_string V 1.2.46

int bar_func() —

V1.6.0

12

Collocation-based filtering

* Leverage collocation information in the indexing table and binaries
* Use NormScore to assign different weights to features

MuPDFV1.6 | ¢

edu.gatech.example 1.6.0

MuPDF V1.6 > int pdf_read()

LibPNG V1.2.46

LibPNG V1.6.0 | K

1.6.0
int png_read()

13

Implementation

* Data Collection
* Scrapy for crawling of OSS repos
e PlayDrone for crawling Android apps

* Feature Extraction
* Clang-based lexer and parser for C/C++ source
* Pyelftools for native binaries
» Soot-based parser for Java bytecode and Dex bytecode

e OSS Detection

* Redis key-value cluster for storing and querying indexing results
* Celery job scheduler for distributingwork to multiple servers

Evaluation

* FDroid Apps
* 4,469 apps, 579 with native libraries
e 295 C/C++ OSS uses, 7,055 Java OSS uses

e BAT: internal code clones
e LibScout: partial builds (code removal)

C/C++ OSS Evaluation Results

100 matches 100
80 80
60 60
40 40
20 20

0 0

Recall (%) Version

Precision (%)
B OSSPolice M BAT

Precision (%)

Precision (%)

Java OSS Evaluation Results
478 295

matches matches

Recall (%) Version

. . Precision (%)
B OSSPolice M LibScout

15

Measurement Dataset

e C/C++ OSS from GitHub
e 3,119 popularrepos and 60,450 OSS versions
* 29% repos are GPL/AGPL
* 11% repos are vulnerable with 5,611 severe CVEs (CVSS = 4.0)

e Java OSS from Maven and JCenter

e 4,777 popular artifacts, 77,308 artifact versions
o 2.3% artifacts are GPL/AGPL
e 1.7% artifacts are vulnerable with 452 severe CVE ids

* Android Apps from Google Play
e 1.6M apps, 515,812 with native libraries

Performance and Scalability

* Indexing
* 60,450 C/C++ repos and 77,308 Java repos
* Time cost is 1000s vs. 40s on average
* Memory grows sublinearly to 30GB and 9GB

* Matching

* Sampled 10,000 Google Play apps
* 80% of dex and so files finish within 100s and 200s

37.25

32.60
2 27.94
o 23.28
18.63
13.97
931}
4.66 |
0.00

(G

Memory usag

— C/C++ Memory Usage
— Java Memory Usage

0

10 20 30 40 50 60 70 80

Number of indexed repos(Thousands)

10° |
10 |

10' |

Matching Time (Seconds)

ol

0 10()

10!

102

T, T T T T,

+++ Native Library [7
** % Dalvik Binary ||

10° 107 10°

Number of Features (Thousands)

Popular libraries

* Long-tailed distribuf’\‘ 2f OSS uses

Top 10 detected C,' Top 10 detected Java O
100,000 Android and Goo "

90,000

80,000 W Codec ®Game ™ Font 120000 m Utils = Network = Social
' 100000
70,000 Network ® Audio ® Viewer 80000 Image ® Codec
60,000
50,000 60000
40,000 40000
30,000 20000
20,000 I I I 0
10,000 L o °
0 \S’ &OK S & & fobe F (JoK obz. \
e & oV &0 yvoW W
© L ¥ o) &0 °E S TL @ & ©
N Qé Q’b ef*Q o Q"’(\v %Q @‘5’2 ‘6&\ v A <<fo°® 3 N & & OV&
\ (o) N\ XS oA\

18

Legal Risks

* More than 40K potential GPL violators
* More violators using C/C++ than Java and encoding libraries dominate

Top 5 offended C/C++ OSS Top 5 offended Java OSS
40000 1400
35000 ‘ 1200
1000
30000
800
25000 600
20000 m Codec ® Utils = Compiler ;gg . ® Codec ® Communication
15000
0 [] — —
10000 .
N¢ S O > 3
5000 S))
- | — .\’_80 Q,é QQV 30 ,Qe
0 — .\,\Q, OQQ QJQ, QK(§’o egb
MuPDF FFmpeg PJSIP VLCand BZRTP @9 Q) D

X264 \'b
19

Legal Risks

* Why violating GPL/AGPL?

e MuPDF and iTextPDF are used due to lack of free alternatives

e OSS developersresponses
 MuPDF got new customers ©
* FFmpeg and VideoLAN have interest, but FFmpeg cannot enforce ©
* PJSIP not interested due to NDA, iText did notreply ®

* Awareness of OSS licensing terms
* None of the app developers provided source code yet ®

Security Risks

* More than 100K apps using vulnerable OSS versions

1,244 LibPNG and 4,919 OpenSSL
uses are not detected by App Security
Improvement Program (ASIP)

B C/C++ MJava

21

Security Risks

* Which versions of OSS do new
app developers choose?

e Both vulnerableand patched
OSS are being used

* When do developers update
OSS versions?

* ASIP mitigatesvulnerable OSS
usage, but still remains a
problem

[# Vuln. Usage = ASIP Deadline
[#Patched Usage = ASIP Notification

750 F ' ! ' ' o’ [—rer=
500 |- N - ‘ﬁ |
I ! ! ! ! _||-|HF||:I " !,n 1

nSSL. MoPub
[\©)
(9]
=)

288 ““llllllllll] ____;
2, 200 RIS
O (e T T s aanasa s T "> - -
g 2400f ' oW RN L mIE
T 1600+ HI
@) 808_ ! L __..u..-.nl'll'll'lﬁﬂﬂﬁﬁHHHHH_ oyl

an 240 YL LT

- oty
2013-05- 1131151 4-06- 1)1 5-01-0515.07-%y1 602081 6-08-24

Date

Timeline of OSS usage for the top 10K apps, 300K app versions

22

Discussion

* Checking license compliance requires manual efforts

* Obfuscation and optimization
e String encryption in dex files
* Function hidingin so files

* Version pinpointing
* Not all versions can be uniquelyidentified

* More programming languages (i.e. JS, Python) and platforms (i.e. iOS)

Conclusion

e OSSPolice: an accurate and scalable tool to identify license violations and
1-day security risks
* Hierarchicalindexingand matchingscheme
* Collocation-based unique featurefiltering

* A large scale measurement

* 1.6M free Google Play Store apps
e 40K cases of potential GPL/AGPL violations and 100K apps using vulnerable OSS

* Interestinginsights
* App developersviolate GPL/AGPL due to lack of free alternatives
* App developers usevulnerable OSS versions despite efforts from Google

