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Background

* Open Source Software (OSS) is gaining popularity, e.g. GitHub
reported 20M users and 57M repos

* Mobile app market grows fast with over 2M apps on Play Store
* Developers reuse OSS as is for lots of benefits

* Legal risks and security risks arise



Risks in OSS use
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Goal

* Design a tool, OSSPolice, to analyze Android apps for open-source
license violation and 1-day security risk by detecting reuse of OSS and
their versions at large scale

* Requirements
* Accurate detection for hundreds of thousands of OSS
* Accurate version pinpointing
 Efficient resource usage
* Fast search to support vetting a large number of Android apps



Overview and challenges

 Feature selection

e Source vs binary: automatically buildingsource code is hard, due to
dependencies, various build configs etc.

* Compare App against OSS
* Fused app binaries: multiple OSS can be linked or compiled into a single file

e Partial builds and internal code clones: not all OSS features are builtinto
libraries and OSS reuses other OSS

* |dentify OSS versions

* Cross-match of unique version features: fused app binaries and internal code
clones can confuse the provenance of unique features



Source vs binary

e C/C++ OSS are built into stripped native shared libraries (so files)

Bar.c

static bar() {
w="“world”

}

Foo.c

void foo() {
w="hello”...

,

}

package edu.gatech; .class edu/gatech/Foo
class Foo { : .method bar dass a ‘method a
bar(){printIn(“hello world”)}; const-string v1,"Hello World”

} 1% invoke-virtual '{vO{vl},printIn invoke-virtual {v0,v1},printin

const-string v1,"Hello World”




Feature selection

* C/C++ 0SS vs so files Srch: no graph based

: : Se .
 String literal Fast
* Clang-based lexerfor OSS and .rodata for libraries
e Exported function
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e Java OSS vs dex files

* String constant . 23% Of C/CH+ and

* Normalized class Un\qUeneSS' s have
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* Function centroid unique features

e Capturesintra-procedural controlflow



Fused app binaries

* An app uses multiple OSS

. |BINNOSS|

edu.gatech.example

IBIN] (‘) OpenSSL || OkHttp
. |OSSNBIN| @ MuPDF MoPub
|0SS] OpenCV Log4j

* [terate N OSS has O(N) time complexity

* Flag all OSS being used at the same time
* Index OSS and their versions!



Flat indexing and matching

* Indexing: Maps features to OSS
* Matching: Lookup feature -> OSS mapping to identify OSS reuse

feature 1 »*| MuPDE J
edu.gatech.example feature 2 <
feature 3 » OpenCV ,J

* Flat indexing blow up table to 90G after indexing 7K OSS

* Indexing multiple versions of OSS further adds to the problem
* Given N OSS with F features and V versions, O(NFV') space complexity




Partial builds and internal code clones
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Hierarchical indexing and matching

* Hierarchical Indexing
* Records source hierarchy to track internal clones

* Uses Simhash algorithm to generate ids for non-leaf nodes for deduplication

» Record unique features across versions via separate lists

featurel <— fijlel1 <> dir1 <*—> dir4 >

edu.gatech.example feature 2 <«— file 2 <«— dir 2 %dirs —
feature3 <«— file 3 «— dir3

MuPDF |

OpenCV |

* Hierarchical Matching

 NormScore (TF-IDF based) to promote unique parts when computing
matching ratio of a node

* Allow partial buildsby skipping nodes with low ratio
* Drop internal code clones by skipping nodes likely to be third-party

>

LibPNG |
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Cross-match of unique version features

| MuPDF |
1.5.0 » V1.5
edu.gatech.example 1.6.0 —> V1.6
DF V1. - 1.2.46
ARG | | LibPNG |
LibPNG V1.2.46 foo_string V 1.2.46

int bar_func() —

V1.6.0
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Collocation-based filtering

* Leverage collocation information in the indexing table and binaries
* Use NormScore to assign different weights to features

MuPDFV1.6 | ¢

edu.gatech.example 1.6.0

MuPDF V1.6 > int pdf_read()

LibPNG V1.2.46

LibPNG V1.6.0 | K

1.6.0
int png_read()
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Implementation

* Data Collection
* Scrapy for crawling of OSS repos
e PlayDrone for crawling Android apps

* Feature Extraction
* Clang-based lexer and parser for C/C++ source
* Pyelftools for native binaries
» Soot-based parser for Java bytecode and Dex bytecode

e OSS Detection

* Redis key-value cluster for storing and querying indexing results
* Celery job scheduler for distributingwork to multiple servers



Evaluation

* FDroid Apps
* 4,469 apps, 579 with native libraries
e 295 C/C++ OSS uses, 7,055 Java OSS uses

e BAT: internal code clones
e LibScout: partial builds (code removal)

C/C++ OSS Evaluation Results
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Java OSS Evaluation Results
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Measurement Dataset

e C/C++ OSS from GitHub
e 3,119 popularrepos and 60,450 OSS versions
* 29% repos are GPL/AGPL
* 11% repos are vulnerable with 5,611 severe CVEs (CVSS = 4.0)

e Java OSS from Maven and JCenter

e 4,777 popular artifacts, 77,308 artifact versions
o 2.3% artifacts are GPL/AGPL
e 1.7% artifacts are vulnerable with 452 severe CVE ids

* Android Apps from Google Play
e 1.6M apps, 515,812 with native libraries



Performance and Scalability

* Indexing
* 60,450 C/C++ repos and 77,308 Java repos
* Time cost is 1000s vs. 40s on average
* Memory grows sublinearly to 30GB and 9GB

* Matching

* Sampled 10,000 Google Play apps
* 80% of dex and so files finish within 100s and 200s
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Popular libraries

* Long-tailed distribuf’\‘ 2f OSS uses
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Legal Risks

* More than 40K potential GPL violators
* More violators using C/C++ than Java and encoding libraries dominate

Top 5 offended C/C++ OSS Top 5 offended Java OSS
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Legal Risks

* Why violating GPL/AGPL?

e MuPDF and iTextPDF are used due to lack of free alternatives

e OSS developersresponses
 MuPDF got new customers ©
* FFmpeg and VideoLAN have interest, but FFmpeg cannot enforce ©
* PJSIP not interested due to NDA, iText did notreply ®

* Awareness of OSS licensing terms
* None of the app developers provided source code yet ®



Security Risks

* More than 100K apps using vulnerable OSS versions

1,244 LibPNG and 4,919 OpenSSL
uses are not detected by App Security
Improvement Program (ASIP)

B C/C++ MJava
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Security Risks

* Which versions of OSS do new
app developers choose?

e Both vulnerableand patched
OSS are being used

* When do developers update
OSS versions?

* ASIP mitigatesvulnerable OSS
usage, but still remains a
problem

[ # Vuln. Usage = ASIP Deadline
[ #Patched Usage = ASIP Notification
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Discussion

* Checking license compliance requires manual efforts

* Obfuscation and optimization
e String encryption in dex files
* Function hidingin so files

* Version pinpointing
* Not all versions can be uniquelyidentified

* More programming languages (i.e. JS, Python) and platforms (i.e. iOS)



Conclusion

e OSSPolice: an accurate and scalable tool to identify license violations and
1-day security risks
* Hierarchicalindexingand matchingscheme
* Collocation-based unique featurefiltering

* A large scale measurement

* 1.6M free Google Play Store apps
e 40K cases of potential GPL/AGPL violations and 100K apps using vulnerable OSS

* Interestinginsights
* App developersviolate GPL/AGPL due to lack of free alternatives
* App developers usevulnerable OSS versions despite efforts from Google



