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The large size and complexity of the modern embedded systems pose great challenges to design

and validation. At the so called electronic system level (ESL), designers start with a specification

model of the system and follow a systematic top-down design approach to refine the model to

lower abstraction levels step-by-step by adding implementation details. ESL models are usually

written in C-based System-level Description Languages (SLDLs), and contain the essential

features, such as clear structure and hierarchy, separate computation and communication, and

explicit parallelism. The validation of ESL models typically relies on simulation. Fast yet

accurate simulation is highly desirable for efficient and effective system design.

In this dissertation, we present out-of-order parallel discrete event simulation (OoO PDES), a

novel approach for efficient validation of system-level designs by exploiting the parallel capabil-

ities of todays multi-core PCs for system level description languages. OoO PDES breaks the

global simulation-cycle barrier of traditional DE simulation by localizing the simulation time

into each thread, carefully delivering notified events, and handling a dynamic management of

simulation sets. Potential conflicts caused by parallel accesses to shared variables and out-of-

order thread scheduling are prevented by an advanced predictive static model analyzer in the
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compiler. As such, OoO PDES allows the simulator to effectively exploit the parallel processing

capability of the multi-core system to achieve fast speed simulation without loss of simulation

and timing accuracy.

We perform simulation experiments on both highly parallel benchmark examples and real-

world embedded applications, including a JPEG image encoder, an edge detector, a MP3 audio

decoder, a H.264 video decoder, and a H.264 video encoder. Experimental results show that

our approach can achieve significant simulation speedup on multi-core simulation hosts with

negligible compilation cost.

Based on our parallel simulation infrastructure, we then propose a tool flow for dynamic race

condition detection to increase the observability for parallel ESL model development. This

helps the designer to quickly narrow down the debugging targets in faulty ESL models with

parallelism. This approach helps to reveal a number of risky race conditions in our in- house

embedded multi-media application models and enabled us to safely eliminate these hazards.

Our experimental results also show very little overhead for race condition diagnosis during

compilation and simulation.

Overall, our work provides an advanced parallel simulation infrastructure for efficient and ef-

fective system-level model validation and development. It helps embedded system designers to

build better products in shorter time.
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1 Introduction

Embedded computer systems are special purpose information systems that are embedded in

larger systems to provide operations without human intervention [1]. They are pervasive and

ubiquitous in our modern society with a wide application domain, including automotive and

avionic systems, electronic medical equipments, telecommunication devices, industrial automa-

tion, energy efficient smart facilities, mobile and consumer electronics, and others. Embedded

computer system is one of the most popular computational systems in our current informa-

tion era [1]. In 2002, more than 98 percent of all the microprocessors produced worldwide are

used for embedded computer systems [2]. The global market for embedded technologies is also

tremendously big and increasing rapidly. Ebert et al. stated in [3] that “the worldwide market

for embedded systems is around 160 billion euros, with an annual growth of 9 percent”. We

can expect that more and more products we use in our daily life will be based on embedded

computer systems in the future.

Following the “Dortmund” definition of embedded computer systems in [1], both hardware and

software are critical for embedded system design.

The hardware for embedded systems is usually less standard than general purpose computer

systems [1]. Embedded computer systems often consist of a large set of input devices, heteroge-

neous processors, and customized memory components. A huge range of input devices are used

in embedded systems to collect the information from the user and the external environment. To

name a few, sensor devices detect the physical qualities of the external environment, such as
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temperature, humidity, velocity, acceleration, brightness, etc; analog-to-digital converters dis-

cretize continuous physical quantities into values in the discrete domain; and sample-and-hold

circuits convert continuous time into discrete signals [1]. The input information is then sent

to the processing units in the system for computation and decision making to generate system

intelligence and automation.

Modern embedded system platforms usually compose various types of processing elements

into the system, including general-purpose CPUs, application-specific instruction-set proces-

sors (ASIPs), digital signal processors (DSPs), dedicated hardware accelerators implemented

as application-specific integrated circuits (ASICs), and intellectual property (IP) components.

Moreover, embedded systems usually use customized memory hierarchies due to its tight perfor-

mance, power, and size constraints. Since embedded systems are usually designed to a specific

target application, the memory system is allowed to be tailored accordingly by using customized

memory components and architectures, such as caches with different configurations and manage-

ment strategies, scratch-pad memory, streaming buffers, DRAM, and multiple SRAMs [4]. As

a whole system, the hardware components are connected in a network and communicate with

each other via different communication protocols, such as time triggered protocol (TTP/C)

[5] for safety-critical systems, controller area network (CAN) for automation systems [6], AR-

INC 629 for civil aircraft databuses [7], FlexRay for automotive communication network [8],

Advanced Micro-controller Bus Architecture (AMBA) for system-on-chip design [9], and Time-

Triggered Ethernet (TTEthernet) for predictable and deterministic real-time communication

[10]. With the advance in semiconductor technology, many embedded systems can now be in-

tegrated entirely onto a single die which result in complex System-on-Chip (SoC) architectures

[11, 12].

The software of modern embedded computer systems is often tightly coupled with the underlying

heterogeneous hardware platform and external physical processes [13]. Timeliness, concurrency,

and constraints on the available resources are several most important features for embedded
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software. In order to interact with the physical world, embedded software usually needs to

process and response in real-time. Correctness is not only depends on the functionality but

also on the time frame. With multiple components integrated in one system and the external

physical processes which are fundamentally running in parallel, embedded software also needs to

handle concurrency of the whole system, such as monitoring multiple sensors to get inputs and

processing information on different computational components at the same time. Furthermore,

embedded software also need to take resource constraints into consideration in order to meet the

product requirement. Resource constraints include power consumption, memory size, thermal

sensitivities, available computing capabilities, and so on.

The general embedded software stack usually consists of multiple components including appli-

cation software, middleware or adapter layer, operating system or real-time operating system

(RTOS), device drivers, boot firmware, communication protocol stacks, and hardware abstrac-

tion layer [11]. Compared to the traditionally constraint embedded applications, large applica-

tion software, which is written in complex programming languages such as C/C++ and Java,

is commonly used in today’s embedded systems. The programming flexibility introduced by

the high-level programming languages results in higher software productivity as well as product

innovation. Embedded operating systems enable and manage the concurrency, process schedul-

ing, and resource sharing in the whole system. A real-time operating system (RTOS) , which is

widely used in nowadays’ embedded systems, facilitates the construction of the systems under

certain real-time constraints in line with the timeliness requirement of the design. The rest of

the software components are often categorized as Hardware-depend Software (HdS) due to the

fact that they interact closely with the underlying hardware platform to provide configurability

and flexibility. As was defined in [11] by Ecker et al., HdS is specifically built for a particular

hardware block, implements a system’s functionality together with the hardware, and provides

the application software with an interface to easily access the hardware features.
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1.1 System-level Design

The large size, complexity and heterogeneity of today’s embedded systems imposes both the-

oretical and engineering challenges on system modeling, validation, debugging, synthesis, and

design space exploration, in order to build up a satisfying system within a short time-to-market

design period.

Fig. 1.1 shows the design challenge statistically . Moore’s law predicts that the capability of

hardware technology doubles every eighteen months, whereas the hardware design productivity

in the past few years is estimated to increase at 1.6x over the same period of time. On the other

hand, since the hardware productivity improved over he last several years by putting multiple

cores on to a single chip, the additional software required for hardware (HdS) doubles over

every ten months. However, the productivity especially for HdS is far behind which is doubling

only every five years. There are growing gaps between the technology capabilities and the real

hardware and software productivities over the years. This tells that System-on-Chip design

productivity cannot follow the pace of the nano-electronics technology development which is

characterized by Moore’s Law. Hence, design methodologies become a popular research topic

to tackle those design challenges of embedded systems in the recent decade.

System-level Design is a promising solution to improve the design productivity [14]. The 2004

edition of the International Technology Roadmap for Semiconductors (ITRS) places system-

level as “a level above RTL including both hardware and software design” [15]. Here, “Hard-

ware” (HW) consists processing elements, buses, hardwired circuits and reconfigurable cells. It

implements the circuit element in the system. “Software” (SW) includes embedded codes in

programming languages, configuration data, etc. It defines the functionality that is performed

on the underlying hardware. ITRS also states that there are two independent degrees of design

freedom in system-level, behavior which defines the system functionality and architecture which

defines the system platform [16].
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Figure 1.1: Hardware and software design gaps versus time (source [11])

System-level design is a holistic approach to address the design challenges that are brought

by the radical increase in the complexity of both embedded hardware and software. At the

system-level, the designer treats the intended system as a whole entity and focuses on the func-

tional specification or algorithm which is independent from the hardware platform or software

implementations. With a complete picture of the entire system, the hardware and software

can be designed jointly (co-design) at the same time. It also makes global system optimization

possible and more efficient. Moreover, system-level design can often rely on guided automatic

approaches to add more details to get the final implementation. For instance, the designer can

map a functional module in the system-level model to a processor and run it as regular software

program or synthesize the module into a specific hardware unit by using high-level synthesis

tools. With the help of designer guided refinement tools, system-level design can therefore

increase productivity dramatically.
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1.1.1 Levels of Abstraction

Abstraction is a natural process in system-level design which allows the designers to handle the

complexity of the entire system without the distraction of the low-level implementation details.

According to Doemer in [17], “a well-known solution for dealing with complexity is to exploit

hierarchy and to move to higher levels of abstraction”.
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Figure 1.2: Levels of abstraction in SoC design (source [18])

As shown in Fig. 1.2, raising the level of abstraction results in fewer numbers of components

to handle. In particular, an implemented system may contain tens of millions of transistors.

Gate-level abstracts the transistor-level by using logic gates and flip-flops which are composed

of specific sets of transistors. Then, register-transfer level (RTL) typically reduces the number

of components to several thousands. This may further be represented by a couple of processor

elements which construct one system. The reducing number of components in higher abstraction

levels helps to maintain a system-level overview in a simple way. Ideally, the designer can start

at the pure functional level and gradually refine the design to lower abstraction levels with more

implementation details with the help of system-level design tools.

The idea of abstraction levels is realized by using models in the design process. Models are the

abstraction of the reality. They are built for different abstraction levels to reflect the features

that are critical to the corresponding level.
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The advantage of having different levels of abstraction allows the designer to only focus on

the critical features of a certain abstraction level and ignore the unneeded lower-level details.

However, this cannot be achieved without cost. Hiding more implementation details can in

turn cause the loss of accuracy, such as timing, number of pins and interrupts. It is a trade-off

between more focused view of design and accuracy for timing and physical design metrics.

1.1.2 The Y-Chart

Gajski’s Y-Chart [19] is a conceptual framework to coordinate the abstraction levels in three

design domains (the axes), i.e. behavior (functionality), structure (architecture), and physical

layout (implementation). The behavioral domain defines the functionality of the system, i.e.

the output in terms of the input over time. The structural domain describes the architecture

of the hardware platform including processing elements (PEs) and communication elements

(CEs). The physical domain specifies the implementation details of the structure, such as the

size and position of the components, the printed circuit board, and the port connection between

components.

StructureBehavior

Physical

System

Processor

RTL

Transistor

Gate

Level

System-level Design

Figure 1.3: System-level design in the Y-Chart (source [17])

The level of abstractions are identified by the dashed concentric circles, increasing from tran-
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sistor level to system-level in the Y-Chart. They are orthogonal to the design domains which

are instead represented as axes.

Design flows are illustrated as paths in the Y-Chart. For instance, the behavior of the design

can first be mapped to the structure description at the system-level, and then be refined to lower

abstraction levels along the structure axis to a final implementation. Another design flow may

start from the system-level function description in programming, refine the design to behavioral

processor-level first with controllers and datapaths, and follow the structural synthesis flow

down to physical layouts.

The heart of system-level design is the platform mapping from the behavior onto the structure

[20]. This is illustrated as the arrow on the outmost circle in Fig. 1.3.

1.1.3 System-level Design Methodologies

Computer Aided Design (CAD) tools are introduced to automate the design process which is

too complex for the designers to do manually due to the advances in technologies. CAD tools

usually follow sets of stringent rules and use dedicated component libraries to make the design

process more efficient and manageable. The aggregation of models, components, guidelines

and tools is called design methodology [13]. Design methodologies evolve with technologies,

applications, as well as design group foci.

The bottom-up design methodology starts from the lowest abstraction level, and generates

libraries for the next higher level by each level (Fig. 1.4a). For example, the transistor level

generates the library for the logic gates and flip-flops in the logic level with N-type and P-type

transistors. Floorplan and layout are needed for all the levels by using this approach. The

advantage of this methodology is that each abstraction level has its own library with accurate

metric estimation. The disadvantage is that optimal library for a specific design is difficult to

achieve since parameters need to be tuned for all the library components at each level.
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The top-down design methodology starts with the highest abstraction level to convert the func-

tional description of the system into a component netlist at each abstraction level (Fig. 1.4b).

Component functions are decomposed with further details step by step down to the lower ab-

straction levels. System layout is only needed at the lowest transistor level. The advantage of

this approach is that high-level customization is relatively easy without implementation details,

and only a specific set of transistors and one layout is needed for the whole process. The dis-

advantage is that it is difficult to get the accurate performance metrics at the high abstraction

levels without the layout information.

The meet-in-the-middle design methodology is a combination of the bottom-up and top-down

approaches. In this flow, the three design aspects, i.e. behavior, structure, and physical, meet

at different abstraction levels. For example, as shown in Fig. 1.4c, the functional specification

is synthesized down into processor components; whereas RTL components from the library

construct the processor components up with a system layout. The RTL components from

the library are generated through a bottom-up process with their own structure and layout.

Therefore, the three design domains meet at the processor level. Physical design and layout are

required for three times in this flow: first for the standard cells, second for RTL components,

and last for the system.

Fig. 1.4d shows an alternative flow where the three domains meet at the RTL level. In this flow,

the system behavior description is mapped onto a certain architecture with PEs and CEs; then

the behavior models of the PEs and CEs are synthesized into RTL components; whereas the

RTL components are synthesized with logic components. The system layout can be generated

by combining the logic components through floor planing and routing, since logic components

has already have their own layout with standard cells. This flow requires physical design and

layout for two times, one for the standard cells, and the other for the system.

The advantage for the meet-in-the-middle design methodology is that it can provide more ac-

curate metrics at high abstraction levels than the top-down approach; and requires less layout
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and libraries than the bottom-up one. The disadvantage is that while the metrics accuracy is

increasing, the easiness for optimization decreases; and more than one layout and libraries are

still required.
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(c) Meet-in-the-middle (meet at the Processor level)
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Figure 1.4: System-level design methodologies (source [13])

Other design methodologies, such as platform methodology, system methodology, and FPGA

methodology that have been discussed in [13] are more product oriented. These methodolo-

gies are commonly used in companies and design groups for building products with their own

platform components.
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1.1.4 Electronic System-Level Design Process

In this dissertation, we will focus on the so called Electronic System-Level (ESL) Design which

aims at a systematic top-down design methodology to successively transform a given high-level

system description into a detailed implementation. There are three backbone aspects for ESL

design: specification, validation, and refinement.

The starting point for ESL design is the specification of the system. The specification is a pure

functional model in which the algorithm of the intended design is captured and encapsulated in

computation modules, i.e. behaviors, and the communication between the behaviors is described

through abstract communication modules, i.e. channels. The specification model should be

complete with all features that are essential to system-level design, but also abstract without

unnecessary implementation details such as timing and interrupts. It also needs to be executable

so that the designer can verify the model with the design expectations. Typically, specification

models are written in programming languages and can be compiled for execution. As the initial

formal description of the system, the specification model serves as the golden reference to the

other models that will be refined at lower abstraction levels.

Once having the system specification, validation is needed to check its correctness. Typically,

ESL design models are validated through simulation. Simulation is a dynamic process to vali-

date the functionality and the metrics of the model in terms of the execution output for given

input vectors. The speed of simulation on the simulation host is often slower than the execution

speed of the real implemented system. Moreover, since simulation is driven by input vectors,

unless exhaustive simulation with all the possible input vectors are performed, simulation based

validation cannot cover all the cases.

Validation can also be performed through static model analysis, which is often called verifi-

cation. Verification usually refers to the approach of using formal methods to prove certain

characteristics of the model. In contrast to simulation, verification can yield 100% coverage on
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all the possible cases. However, the complexity of verification can grow exponential while the

size of the model grows. Thus, it is only possible to verify small designs.

Refinement is the process of adding more implementation details into the model, including

architecture mapping, scheduling strategies, network connections, communication protocols,

and so on. In ESL design, refinement is often guided by the designers’ decisions and performed

automatically with the help of CAD tools.

A sequence of ELS model refinement at different abstraction levels is described in the following

paragraphs.

After building and validating the specification model, the architecture of the system will be

determined with respect to the number and types of processing elements, memory compo-

nents, and their connectivities. PEs include programmable and nonprogrammable component.

Programmable PEs are generic embedded processors like ARM [21], MIPS [22], LEON [23],

ColdFire [24], Blackfin [25], and MicroBlaze [26] processors, as well as digital signal processors

(DSPs). Non-programmable elements are customized hardware accelerators or non-instruction

set computer components [27]. In the architecture mapping step, the designer first decide the

HW/SW partition among the functional modules. Performance-critical modules are usually

implemented as dedicated HW units and the rest of them are compiled and executed as SW on

programmable PEs. It is a trade-off between high-speed high-cost HW implementation and low-

cost less efficient SW execution. Also, the parameters for the PEs, including clock frequency,

memory size, width of the address bus, are adjusted in this step for specific applications.

The second refinement step is to decide the scheduling strategies on programmable processing

elements. Multiple behaviors can be mapped onto a single host PE and run as software. Proper

scheduling mechanism is needed to decide the execution order of the tasks on the PEs since

the computational resources available can be fewer than the number of mapped behaviors.

Scheduling can be static or dynamic. In case of static scheduling, the constraints such as

behavior workload and dependencies should be known by analyzing the model beforehand and
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will not change during execution time. In case of dynamic scheduling, operating system is often

used to map behaviors onto tasks and manage them under priority-based or round-robin style

scheduling schemes.

The third refinement step is network allocation. This step determines the connectivities among

the PEs in the system. For example, there is a generic processor and several HW accelerators

in the system. They communicate with each other via the CPU bus of the processor. Thus,

the processor will be specified as the master of the bus while the HW accelerators as the slaves.

Port interfaces also need to be allocated for each PEs so as to properly connect to the bus.

The next refinement is for communication. The communication of the system is described and

encapsulated in the channel modules in the specification model, and is mapped to virtual buses

in the architecture model. In this step, the virtual buses are replaced with actual ones for specific

protocols. The communication protocols are then implemented by inlining the communication

code into the PEs, i.e. bus drivers in the operating system. If two buses with different protocols

need to exchange data, transducers need to be inserted to bridge the gap between them.

The system refinement process is completed with the backend tasks. The goal of the backend is

to create a final optimized implementation for each component in the design. The customized

hardware units and transducers need to be synthesized into RTL netlists written in VHDL

or Verilog. The software code needs to be generated, either in C or assembly, and compiled

for the corresponding processors. The implementation model is at the lowest abstraction level

and contains all the information, including functionality, structure, communication and timing

with respect to the actual implementation. It is bus-cycle accurate for the communication and

clock-cycle accurate for the computation on the processors.

Moreover, in ESL design, estimation techniques are often used to measure the metrics of the

system models, such as timing, power consumption, workload, etc. Similar to validation, estima-

tion can be performed statically by model analysis, or dynamically by simulation and profiling.

There is also a trade-off between the estimation accuracy and speed. Estimation is faster but
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less accurate on the models at higher abstraction levels than on the ones at lower abstraction

levels. It should be emphasized that validation and estimation needs to be performed at the

end of each aforementioned refinement step to ensure that the refined model still meets the

design requirements.

1.2 Validation and Simulation

In system-level design, abstract models are built for better understanding on the system, and

refinement and optimization for the final implementation. Simulation is critical in the design

process for both validation and estimation which check the models according to the intended

design constraints.

1.2.1 Language Support for System-level Design

System-level models need to be executable for efficient validation and estimation. They are

typically described in programming languages. Programming languages are designed for the

convenience of making the computer systems behave according to human beings’ thoughts.

Various languages are proposed to improve the work of system design. We will review some of

those design languages for embedded system in this section.

Hardware Description Languages (HDLs)

The goal of a hardware description language is to concisely specify the connected logic gates. It

is originally targeted at simulation and a mixture of structural and procedural modeling.

VHDL [28, 29] and Verilog [30, 31] are the most popular languages for hardware modeling and

description. Both of them have discrete event semantics and ignore the idle portions of the sys-

tem for efficient simulation. They describe the hardware system in hierarchy by partitioning the
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system into functional blocks which could be primitives, other blocks, or concurrent processes.

HDLs often describe the system as finite-state machines (FSMs), datapath and combinatorial

logic. The described system could be simulated to verify its correctness and be synthesized into

real hardware circuits.

HDLs support the lower level description of an embedded system. However, they could not

ignore those implementation details like pins, wires, clock cycles. Thus, it is too complicated to

describe a whole system and the simulation will take a very long time.

Software Languages

Software languages describe sequences of instructions for a processor to execute. Most of them

use sequences of imperative instructions which communicate through the memory, an array of

numbers that hold their values until changed.

Machine instructions are typically limited to do simple work, say, adding two numbers. There-

fore, high-level software languages aim to specify many instructions concisely and intuitively.

The C programming language [32] provides expressions, control-flow constructs, such as

conditionals, loops and recursive functions. The C++ programming language [33] adds

classes to build new data types, templates for polymorphic code, exceptions for error handling,

and a standard library for common data structures. The Java programming language [34]

provides automatic garbage collection, threads, and monitors for synchronization. It is quite

suitable for writing applications on different embedded system platforms [35].

However, software language does not have the ability to explicitly describe hardware behaviors

like signals, events, and timing.
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System-level Description Languages (SLDLs)

System-level description languages (SLDLs), such as SpecC [36, 18, 37], SystemC [38, 39, 40]

and SystemVerilog [41], are available for modeling and describing an embedded system at

different abstraction levels.

SpecC is a system-level description language as well as a system level design methodology. It

is based on the C language and a true superset of ANSI-C [42]. In addition to the constructs in

ANSI-C, SpecC has the a minimal set of extensions to support the requirements of system-level

modeling, such as structural and behavioral hierarchy, concurrency, communication, synchro-

nization, timing, exception handling, and explicit state transitions.

SpecC uses the same discrete-event simulation semantics as Verilog and VHDL [43]. It is

executable and synthesizable [18].

SystemC is a C++ library which facilitates both system and RTL modeling. It builds systems

from Verilog- and VHDL-like modules, each of which has a collection of I/O ports, instances of

other modules or processes written in C++. SystemC is the de-facto language for system-level

design in industry.

SystemC and SpecC are conceptually equivalent. However, the two languages have some dis-

tinctions in semantics and implementation details. We will discuss the SpecC and SystemC

SLDLs in more detail in Section 1.5.

SystemVerilog is the industry’s first unified hardware description and verification language

(HDVL) standard. It is a major extension of the Verilog language. SystemVerilog supports mod-

eling and verification at the “transaction” level of abstraction by the support of assertion-based

verification (ABV). It also provides a set of extensions to address advanced design requirements,

like modeling interfaces, removing os restrictions on module port connections, allowing any data

type on each side of the port, etc. Object-oriented techniques are new features for modeling
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hardware and testbenches.

1.2.2 System Simulation Approaches

Typically, system-level design validation is based on simulation. The functional behavior of

the model is defined by the software semantics of the underlying C/C++ language, and the

synchronization and communication is defined by the execution constructs for the system-level

or hardware description language.

Simulation is an approach to perform experiments using the computer implementation of a

model. There are three types of computer-based simulation in classical thinking: discrete event,

continuous, and MonteCarlo. Nance articulated the definitions of these simulations in [44] as

follows:

“Discrete event simulation utilizes a mathematical/logical model of a physical

system that portrays state changes at precise points in simulated time. Both the

nature of the state change and the time at which the change occurs mandate precise

description.

Continuous simulation uses equational models, often of physical systems, which

do not portray precise time and state relationships that result in discontinuities [...].

Examples of such systems are found in ecological modeling, ballistic reentry, or large

scale economic models.

Monte Carlo simulation [...] utilizes models of uncertainty where representa-

tion of time is unnecessary [...]. Typical of Monte Carlo simulation is the approx-

imation of a definite integral by circumscribing the region with a known geometric

shape, then generating random points to estimate the area of the region through the

proportion of points falling within the region boundaries.”

In short, the notion of time is emphasized and the simulation states evolve only at discrete time
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points in discrete event (DE) simulation. DE simulation can be deterministic with no degree

of randomness, or stochastic with some random variables. Continuous simulation changes the

value of the variables continuously with respect to time. The system state is usually tracked

based on differential equations. Monte Carlo simulation approximates the probability of out-

comes for a system with some degree of randomness. It often requires repetitive trials, and the

representation of time is not important.

1.2.3 Discrete Event Simulation

Digital systems are naturally discrete. The behavior of a system is usually described in state

transitions at discrete time points, i.e. clockcycles. Therefore, both system-level description

languages (SLDLs) and hardware description languages (HDLs) use discrete event (DE) se-

mantics for simulating the communication and synchronization in the system. A simulation

is deterministic if multiple simulation runs using the same input value always yield the same

results.

Discrete event simulation generally operates on a sequence of events which happen at discrete

instants in time. The state of the system is changed when an event occurs at a particular time.

No state change is assumed to happen between two consecutive events so that the simulation

can be performed in a discrete way. In SLDL simulation, the simulation state is updated when

two types of “events” occur:

• A synchronization event is notified to trigger the behavior (module) that is waiting on it;

• The simulation time is advanced.

The simulation cycle reflects the timing information of the model. It is represented by a two-

tuple of (time, delta) which is global to all the behaviors (modules). The time-cycle repre-

sents the exact timing such as delay or execution time in the system model. The delta-cycle

is a special notion in SLDLs and HDLs to interpret the zero-delay semantic in digital systems.
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As is defined in [38], delta-cycle lasts for an infinitesimal amount of time and is used to impose

a partial order of simultaneous actions. Delta-cycles do not advance the actual time, but reflect

the order of event deliveries and signal updates within a particular time-cycle. There can be

multiple delta-cycles in one time-cycle.

It should be emphasized that the discrete event semantics define the execution order of the

behaviors (modules) in SLDL models. Conceptually, the behaviors within the same simulation

cycle, i.e. (time, delta) are allowed to simulate concurrently. However, the thread execution

order in the same delta-cycle can be non-deterministic.
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Figure 1.5: Scheduler for discrete event simulation

During simulation, the behaviors (modules) in the models are mapped to working threads (pro-

cesses) with respect to their behavioral structure (i.e. sequential execution, parallel execution,

pipeline execution, or finite-state machine execution, etc.) and start to execute the code. The

threads suspend themselves when they need to wait for an event to happen or the simulation

time advances to a specific point. A thread can also suspend itself after forking some chil-

dren threads for execution and wait for them to join. When all the threads in simulation are

suspended, the DE scheduler will start to work.
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The scheduler is the heart of a discrete event simulation. Fig. 1.5 shows the basic scheduling

flow for the SLDL discrete event simulation. The steps are summarized as follows:

1. The scheduler checks if there is any thread th that is ready to resume the execution. If

so, proceed to step 2 ; otherwise, goto step 3.

2. The scheduler picks up a thread th that is ready to resume its execution, and issues the

thread th to run. Scheduling stops.

3. If there is a thread th that is waiting on an event e and the event e is notified, mark the

thread th as READY to resume its execution. Check all the wait-on-an-event threads and

mark them to be READY if the waited events are notified. Then, clear all the notified

events and increment the delta-cycle. Proceed to step 4.

4. If there is any thread th that is ready to resume its execution, goto step 2 ; otherwise,

proceed to step 5.

5. The scheduler picks up the wait-for-timing-advance threads with the earliest time advance

t, mark them as READY to resume execution, and updates the simulation time to t

(update the time-cycle). Proceed to step 6.

6. If there is any thread th that is ready to resume its execution, goto step 2 ; otherwise,

simulation finishes. Deadlock exists in the model if there are still some suspended threads.

Note that there are two loops in the scheduling process. The inner loop which mainly covers step

3 and step 4 manages the delta-cycle advances. The outer one which includes the inner loop,

step 5 and step 6 further takes care of the time-cycle advances. The two loops are implemented

in this way since there can be multiple delta-cycles within a particular time-cycle.

The scheduler can be implemented as a dedicated thread that runs infinitely until the sim-

ulation stops, i.e. the function exit(0) is called in the working thread. The working threads

and the scheduler can work alternatively during simulation through thread synchronization.
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The scheduler can also be implemented as a function and called by the working threads when

scheduling is needed. This can reduce the overhead of context switching that is unavoidable by

using a dedicated thread (Section 3.5).

1.3 Dissertation Goals

The large size and complexity of modern embedded systems with heterogeneous components,

complex interconnects, and sophisticated functionality pose enormous challenges to system val-

idation and debugging. While system-level design methodology provides a systematic flow for

modeling and refinement, fast yet accurate simulation is a key to enabling effective and efficient

model validation, performance estimation, and design space exploration.

The multi-core technology allows multiple threads in one program to run concurrently. It holds

the promise to map the explicit parallelism in system-level models onto parallel cores in the

multi-core simulation host so as to reduce the simulator run time.

However, the reference DE simulation kernels for both SpecC and SystemC are using cooperative

multi-threading library which is not scalable on multi-core simulation platforms. Moreover, the

DE execution semantics tend to run each module in a certain order so as to properly update

the shared global simulation time. The logic parallelism expressed in the model cannot exploit

the concurrency during simulation. In other words, discrete event simulation for system-level

description languages is slow due to its kernel implementation and the sequential execution

semantics.

This dissertation aims at leveraging multi-core parallel technology for fast discrete event sim-

ulation of system-level description languages. The following aspects are the goals for the work

in this dissertation:

• define a model of computation which can capture system-level features, such as parallel
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execution semantics, and can be expressed precisely in both SystemC and SpecC SLDLs.

• propose and design a SLDL simulation framework that:

– can utilize multi-core computational resource effectively

– is safe for multi-thread synchronization and communication

– is transparent for the designer to use

– respect the execution semantics defined in the SLDL language reference manual

(LRM)

• improve observability of parallel execution and the debugging process for building system-

level models with parallelism

1.4 Dissertation Overview

This dissertation is organized as follows:

After the introduction to the research background of this work in Chapter 1, a new model of

computation for system-level design, namely ConcurrenC, is defined in Chapter 2. The essential

features for system-level design can be reflected in the ConcurrenC model and be expressed in

system-level description languages. Chapter 2 lays the research context for the work in this

dissertation.

Chapter 3 describes the simulator kernel extension for synchronous parallel discrete event sim-

ulation (SPDES). The cooperative user level threads are replaced with operating system kernel

level threads so as to allow real parallelism during simulation. The SpecC simulator kernel is

extended for scheduling concurrent threads with respect to the discrete event execution seman-

tics. More importantly, thread synchronization and communication are protected by automatic

code instrumentation which is transparent to the users.
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Chapter 4 proposes the idea of the out-of-order parallel discrete event simulation (OoO PDES).

This advanced simulation approach breaks the global simulation time barrier to allow threads in

different simulation cycles to run in parallel. With the help of code analysis performed statically

at compile time and conflict-aware scheduling at run time, out-of-order parallel simulation can

significantly increase simulation parallelism without loss of simulation correctness or timing

accuracy. The segment graph data structure is highlighted in this chapter as the backbone for

OoO PDES.

Chapter 5 focuses on optimizations for the out-of-order parallel discrete event simulation. First,

the static code analysis algorithm is optimized by using the concept of instance isolation. Then,

an optimized scheduling approach using prediction is discussed. These two optimizations lead

to significant simulation speedup with negligible compilation overhead.

Chapter 6 gives a comparison among the three discrete event simulation kernels for system-level

description languages, i.e. the traditional sequential, the synchronous parallel, and the out-of-

order parallel simulation kernels. An outlook on the experimental results is also presented.

Chapter 7 extends the utilization of the parallel simulation infrastructure to detect race con-

ditions in parallel system-level models. Parallel accesses to shared variables can be captured

during simulation and reported to the designers to narrow down the debugging targets. A tool

flow for this debug process is proposed in this chapter.

Finally, Chapter 8 summarizes the contributions of the work in this dissertation and concludes

with a brief discussion on the future work.

1.5 Related Work

We will describe the relevant research work in this section. A brief overview on the SpecC

and SystemC languages are given in Section 1.5.1 and Section 1.5.2. Then, the SpecC design
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flow, the System-on-Chip Environment (SCE), is discussed in Section 1.5.3. Multi-core tech-

nology and multithreaded programming is briefly reviewed in Section 1.5.4. Finally, the related

research work for efficient system-level model validation and simulation will be presented in

Section 1.5.5.

1.5.1 The SpecC Language

The SpecC language is a system-level description language as well as a design methodology.

It was invented by D. Gajski’s group from the Center for Embedded Computer Systems at

the University of California, Irvine [18]. SpecC is an superset of the ANSI-C language with

extended constructs to describe hardware and system features. We will give an overview on

these constructs as follows:

• Structural Hierarchy

A SpecC program is a collection of classes of type behavior , channel , and interface .

Behavior is the class for describing the computation in the design. The definition of it

consists of a set of ports, member variables, member methods, instances of child behaviors,

and a mandatory main method. Interface is the abstract class for the declaration of

communication functions. Channel is the class which implements the interface functions

for the communication in the design.

Fig. 1.6 shows the block diagram of a SpecC model with two behaviors b1 and b2 nested

in the parent behavior b, and communicating via channel ch through interface ports and

a shared variable v through variable ports. The three types of SpecC classes can directly

reflect the structure of the design in the form of a hierarchical network of behaviors and

channels. The description of computation and communication can also be easily separated.

Basically, all C programs are valid SpecC descriptions. However, instead of starting from

the main function, the SpecC program execution starts from the main method in the
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b1 b2

v

chB

(a) Block diagram of a SpecC model
(source [17])

  behavior B(in int p1, out int p2) 
  {
    int v;         
    double_handshake_channel ch;
    B1 b1 (p1, v, ch); 
    B2 b2 (p2, v, ch);    

    void main()
    {
         par{ b1.main();
                 b2.main(); }
    }
  };

(b) The SpecC source code

Figure 1.6: The block diagram and source code of a SpecC model

behavior named Main.

• Types

SpecC supports all the data types in the C language:

– basic types, such as char, int and double;

– composite types such as arrays and pointers;

– user-defined types such as struct, union and enum.

Moreover, SpecC also supports type bool for boolean data, type bit vectors for describing

hardware features, and type event for synchronization and exception handling.

• Behavioral Hierarchy

Behavioral hierarchy describes the dynamic execution order of the child behaviors in time.

SpecC supports two types of composition of child behaviors: sequential and concurrent.

Sequential execution can be specified as a set of sequential statements (Fig. 1.7a), or as a

finite state machine (FSM) with a set of explicit state transitions (Fig. 1.7b). Concurrent

execution can be specified as a set of behavior instances running in parallel (Fig. 1.7c) or
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in a pipelined fashion (Fig. 1.7d).

b1

b2

bn

 
  behavior B_seq
  {
    B b1, b2, …, bn;
  
    void main (void)  
    {
      b1.main();
      b2.main(); 
      ...
      bn.main();
    }
  };

B_seq

… 

(a) Sequential Execution

b1 b2

bn

 
  behavior B_fsm
  {

    B b1, b2, …, bn;

  

    void main (void)  
    {

      fsm { b1:  
                b2: {if(…) goto b2;  
                       if (…) goto bn;}  
                …

                bn: {if(…)…; break; }  
      }

  };

B_fsm

… 

(b) FSM Execution

b1

b2

bn

 
  be  B_par
  {
    B b1, b2, …, bn;
  
    void main (void)  
    {
      .�� { b1.main();
              b2.main();
              … 
              bn.main();
    }
  };

/�.��

… 

(c) Parallel Execution

b1

b2

bn

 
  be  B_pipe
  {
    B b1, b2, …, bn;
  
    void main (void)  
    {
      pipe { b1.main();  
                b2.main();
                … 
                bn.main();
    }
  };

B_pipe

… 

(d) Pipelined Execution

Figure 1.7: SpecC behavioral hierarchy block diagram and syntax [18]

More specifically, according to [18], the execution semantics for behavioral hierarchy is

defined as follows :

– Sequential: Behavior B seq has n child behaviors (b1, b2, ..., bn) running in a

sequential order indicated as the arrows in Fig. 1.7a. The execution of B seq starts

from the execution of b1 and terminates when bn finishes. The execution of the child

behaviors has a total order starting from b1, then b2, ..., and bn at last. Here, bi

starts its execution right after bi−1 finishes. The execution of the child behaviors do

not overlap. Only one behavior is running at a time.

– Finite state machine: a special case of sequential execution where the execution

order of the child behaviors are described by state transitions. The state transitions

are determined dynamically at run time by the state condition variables that are

specified in the SpecC program.
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As shown in Fig. 1.7b, behavior B fsm is a FSM with n states (b1, b2, ..., bn) wrapped

in the fsm keyword. The initial state is b1 and the final state is bn. One state transits

to another which is specified after the goto-statement when the condition in the if -

statement is true. The states in FSM also run sequentially without overlap.

– Parallel: Behavior B par has n concurrent child behaviors (b1, b2, ..., bn) separated

with dotted lines. Syntactically, parallel composition is specified by using the par

keyword.

The child behaviors are logically running in parallel and mapped onto separate

threads during simulation. They start altogether when B par starts. B par ter-

minates when all the child behaviors complete their execution. Parallel execution in

SpecC is a powerful construct for modeling explicit concurrency in the system-level

models. While SystemC supports explicit expression of concurrency by using pro-

cesses of type sc method, the execution semantics for parallel execution is slightly

different between SpecC and SystemC. We will discuss the difference in more detail

in Section 3.2.

– Pipeline: a special form of parallel execution and unique in SpecC. It is specified

with the pipe keyword wrapping around the child behaviors that are running in a

pipelined fashion. Similar to parallel execution, all the child behaviors are mapped

to separate threads during simulation. However, they will be executed as a pipeline.

As shown in Fig. 1.7d, when behavior B pipe starts its first iteration, only b1 is

executed. When b1 finishes, b1 and b2 will be executed in parallel in the second

iteration. The second iteration completes when both b1 and b2 finish their execution.

Then, b3 joins b1 and b2 in the third iteration when the three of them run in parallel.

This keeps going with bi joins b1 to bi−1 in the ith iteration and run in parallel.

Finally, after the nth iteration, all the child behaviors run in parallel and continue

to execute till all the behaviors finish their execution in the previous iteration. The
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child behaviors in pipelined execution are separated via dotted lines in the SpecC

block diagram, and the order of joining execution is indicated with the arrows.

The total number of iteration for pipeline execution can be specified as infinite or a

fixed positive integral number.

• Communication

Communication in SpecC can be described in shared variables or channels between

behaviors.

As shown in Fig. 1.6, the communication variable v is defined in behavior B and is

connected to the ports of behavior b1 and b2. Shared variables represent the wire for

communication when connected to the ports of behaviors. The value will be hold as in

memory and can be accessed by either of the connected behaviors.

The communication in SpecC can also be represented by leaf channels or hierarchical

channels. Leaf channels are virtual high-level channels which are not related to a real

implementation, such as a bus protocol. Hierarchical channels are channels which con-

tain children channel instances. They can represent more complex channels, such as a

communication protocol stack.

The channels usually have their own member variables and functions for communication.

Typically, the communication functions in the channels are available to the connected

behaviors through the ports of type interface.

• Synchronization

Synchronization is required for the cooperation and communication among concurrent

behaviors. SpecC defines the data-type event as the basic unit of synchronization, and

uses them in the wait, notify and notifyone statement.

The wait statement suspend the current thread and does not resume the thread until the

event that is waited on is notified. The notify statement notifies one or multiple events so

28



as to trigger all the threads that are waiting on those events. The notifyone is a variant of

notify. It also notifies one or multiple events but only triggers one thread that are waiting

on the events. Which suspended thread to trigger by the notifyone statement depends on

the implementation of the SpecC simulator.

• Exception Handling

SpecC supports two types of exception handling: interrupt and abortion .

When interrupt happens, the interrupted behavior will suspend to let the interrupt han-

dling behavior to take over the execution. After the handling behavior completes, the

interrupted behavior will resume its execution. In contrast to interrupt, an aborted be-

havior will not resume its execution after the exception handling behavior finishes.

Syntactically, interrupts and abortions are implemented by using the try-interrupt and

try-trap constructs respectively. The interrupted (aborted) behavior is wrapped in the

try block. It is sensitive to a list of events, each of them is associated with an exception

handling behavior and wrapped in the interrupt (trap) block.

• Timing

There are two types of timing specification in SpecC: exact timing and timing con-

straints.

The exact timing specifies the delay and execution time in the model. Syntactically, it

is implemented by using the waitfor construct with an integral argument which indicates

the amount of time to wait.

The timing constraints specify the design expectation on the duration of a set of labelled

statements or behaviors. The constraints do not affect the simulation scheduling. They

are only validated dynamically at runtime and fail if the logic timing does not meet the

specified constraints. Syntactically, timing constraints are implemented by using the do-

timing and range constructs.
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• Persistent Annotation

Persistent annotation is specified by using the note construct in SpecC. It is similar to a

comment in the C language which adds additional annotations in the program to increase

the readability. However, in contrast to comments, persistent annotations will not be

removed by the SpecC compiler so that the other synthesis tools can utilize them as

guidelines from the designer.

• Library Support

For flexible component handling and speedy compilation, SpecC supports the concept

of library. Precompiled design modules can be added into a SpecC design by using the

import construct.

Fig. 1.8 shows the compilation flow for a SpecC design. The SpecC compiler (scc) starts with

a SpecC source code file (Design.sc) with suffix .sc be processed by the Preprocessor generating

an output of .si file (Design.si). Next, the preprocessed SpecC design is fed into the Parser

to build the SpecC internal representation (SIR) data structure in the memory. Then, the

Translator generates the C++ description of the design (Design.cc and Design.h). Finally, the

C++ program is compiled and linked by the standard C++ compiler to build the executable

binary image for simulation.

The SIR data structure is the computer representation of the SpecC design. The Refinement

tools for SpecC design are based on the SIR data structure, and can modify it based on the

designers’ requirements. The Exporter can dump the SIR in the memory into a binary .sir file.

The Importer can read a .sir file and build the SIR data structure in the memory.

The work in this dissertation is using the SpecC language. We will extend the simulation kernel

and the compiler support for SpecC. More details on the syntax and features of SpecC can be

found in [18].
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Figure 1.8: Compilation flow for a SpecC Design (source [45])

1.5.2 The SystemC Language

SystemC has a layered language architecture. As shown in Fig. 1.9 1, SystemC is built entirely

on the C++ standard. The core language is composed of a discrete-event simulation kernel

and some abstract constructs for describing system elements, such as modules, ports, processes,

events, interfaces, channels, etc. Alongside the core language is a set of basic Data-Types for

logic values, bits and bit-vectors, fixed-pointer numbers, and so on. The elementary channels are

depicted above the core language and data-types for generic applicable models, such as signal,

semaphores, and first-in-first-out buffers (FIFOs). More standard and methodology-specific

channels can be built on top of the elementary channels.

Similar as SpecC, SystemC also has the constructs for system-level design, such as time model,

module hierarchy for structure and connectivity management, concurrency models, and com-

1Not all the blocks in Fig. 1.9 are considered as part of the SystemC standard. Only the one with double borders
belong to the SystemC standard.
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Figure 1.9: SystemC language architecture (source [38])

munication management between concurrent units, all of which are not normally available in

software languages [39]. In particular, the base class sc module is the base class for all the Sys-

temC modules which specifies the structure and hierarchy in the system. SC METHOD and

SC THREAD are the macros to define simulation processes. SC METHOD is a member

function of an sc module without simulation time (cycle) advance, whereas SC THREAD is

the one which allows time to pass and behaves similar to a traditional software thread. sc port ,

sc interface , and sc channel are the constructs for describing communication. Last but not

least, SystemC also supports the concepts of event (sc event), sensitivity , and notification

for the synchronization among concurrent SystemC threads.

1.5.3 The System-on-Chip Environment (SCE) Design Flow

The experimental applications used in this dissertation are developed and refined in the System-

on-Chip Environment (SCE) framework [46].
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The SCE framework supports a systematic top-down flow based on the specify-explore-refine

methodology [13]. It is a framework for SpecC-based heterogenous MPSoC design which may

comprise embedded software processors, custom hardware components, dedicated intellectual

property blocks, and complex communication stacks.
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Figure 1.10: Refinement-based design flow in the SCE framework (source [46])

The SCE flow starts with a specification model of the intended design, and then refines the model

with increasing amount of detail to a final implementation which is pin- and cycle-accurate. The

model refinement is performed by a set of tools that are integrated in the SCE framework with

a large database library of pre-designed components. Most importantly, the SCE flow keeps

33



the designer in the loop to make critical design decisions through an interactive graphical user

interface with powerful scripting capabilities.

As an overview shown in Fig. 1.10, the SCE framework has four refinement stages and one

backend stage for refinement synthesis:

• Architecture Exploration allows the designer to allocate the intended hardware platform

with software processors, hardware accelerators, and communication units that are pro-

vided by the SCE library. The designer can then map the modules in the specification

onto different components in the allocated platform. After the decisions for architecture

allocation and mapping are made, the refinement tool in SCE automatically partitions

the specification and generates a new model to reflect the architecture mapping.

• Scheduling Exploration allows the designer to choose the scheduling strategies for the

software processors. SCE offers both dynamic and static scheduling strategies such as

priority-based, round-robin, or first-come-first-serve algorithms. The SCE refinement tool

will then automatically insert abstract RTOS models which support real-time scheduling,

tasks management and synchronization, preemption, and interrupt handling, into the

refined model.

• Network Exploration is the stage where the designer specifies the communication topology

of the entire system and maps the abstract channels onto network busses and bridges

from the SCE library. At the end of the network exploration phase, the SCE tool will

automatically replace the channel modules with the communication components from the

database, and establish the point-to-point communication links.

• Communication Synthesis automatically refines the point-to-point links into an imple-

mentation with actual bus protocols and wires. As a result, a pin- and bit-accurate com-

munication model is obtained. In addition to the pin-accurate model (PAM), SCE can

alternatively generate a corresponding Transaction Level Model (TLM) with abstractions
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for bus transactions for the purpose of fast simulation.

In the exploration phases, the designers are highly involved in the process for making design

decisions. The SCE tool takes care of the automatic model refinement based on the designer’s

choices. Moreover, the SCE tool validates the models after each exploration stage and provides

estimation numbers of the platform. The designer can then tune their design choices for further

optimization.

After the system refinement steps, the SCE tool will perform the backend tasks as follows:

• RTL Synthesis implements the hardware units in the model. The SCE tool automatically

produces the structural RTL model from the behavior model of the hardware components.

The RTL description can either be in Verilog HDL for further logic synthesis or in SpecC

SLDL for system simulation.

• Software Synthesis generates the program code running on the software processors. The

SCE tool supports a layer-based software stack executing on the programmable software

processors. The software stack includes the application code, the configured RTOS, and

the inlining communication code. The software is then cross-compiled and linked as

a binary image which can be executed on the final target platform as well as in the

instruction-set simulator within the system context.

The SCE framework is based on the SpecC SLDL and uses discrete event (DE) simulation for

model validation and performance estimation after each exploration stage.

1.5.4 Multi-core Technology and Multithreaded Programming

Moore’s law predicts that the chip performance doubles every 18 months. While the increasing

clock frequency, the shrinking size of the transistors, and the reducing operating voltage were

the major contributing factors to chip performance improvement, they are no longer easy to

achieve due to material physical limitations, such as the power consumption and heat dissipation
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issues [47].

Multi-core technology has become more and more popular in the recent one decade as an al-

ternative way to achieve more computational capability without hitting the “power wall” 2 or

breaking the physical limitations. Basically, a multi-core processor is a computing compo-

nent with two or more central processing units (CPUs) in a single physical package. The CPUs

on a multi-core chip may have their own or shared cache units, register sets, floating-point pro-

cessing units, and other resources. They share the main memory. In contrast to several single

core chips, a multi-core processor is easier to cool down since the CPUs are usually simpler with

fewer transistors. As such, multi-core processors can provide more processing capability with

less heat dissipation.

The biggest challenge for utilizing the multi-core technology is how to program the software that

can run efficiently on the underlying platform. The programming philosophy for most of the

existing software languages is fundamentally sequential. It is not trivial to rewrite sequential

program with parallelism, nor to write parallel ones from scratch. Moreover, high multi-core

CPU utilization requires balanced workload among the cores. This is very difficult to achieve

since the partitioning problem is known to be NP-complete [49].

Multithreaded programming is widely used for abstracting concurrency in the software. In com-

puter science, a process is an instance of computer program that can be executed, and a thread

is a light-weight process. Processes usually have their own address space and resources. On the

other hand, threads within one process share resources such as memory, code text, global data,

and files.

A multithreaded program is a process which has multiple active threads at run time. Each thread

executes its own set of sequential instructions and can run in parallel with the other threads.

Multithreaded program can have true concurrent execution on multi-core computer platforms.

2As defined in [48], “power wall” means the limit on the amount of power a microprocessor chip could reasonably
dissipate.
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In such cases, programming discretions need to be taken to manage threads synchronization

properly, avoid race conditions on shared variables, and avoid execution deadlocks.

Multithreaded programming is supported as libraries and constructs in some capacity in most

high-level programming languages. C/C++ supports standardized multithreaded API libraries,

such as Posix Threads [50, 51], OpenMP [52], and Message Passing Interface [53]. Accesses

to the native threads APIs are also available on different operating systems, such as Native

Posix Thread Library (NPTL) on Linux [54] and Win32 Threads on Windows [55]. Java has

language-level multithreading support, such as the Runnable interface, the Thread class, and

the “synchronized” key word. The logic threads in Java programs are mapped to native ones in

the underlying operating system through the Java Virtual Machine (JVM). Some interpreted

languages, such as Ruby and Python, support limited multithreading with a Global Interpreter

Lock (GIL) to prevent concurrent interpreting on multiple threads. There are also languages

that are particularly designed for parallel programming, such as Erlang [56], Cilk [57, 58], CUDA

[59, 60], and so on.

1.5.5 Efficient Model Validation and Simulation

Parallel Discrete Event Simulation (PDES) is a well-studied subject in the literature [63, 64, 65].

Two major synchronization paradigms can be distinguished, namely conservative and optimistic

[64]. Conservative PDES typically involves dependency analysis and ensures in-order execution

for dependent threads. In contrast, the optimistic paradigm assumes that threads are safe to

execute and rolls back when this proves incorrect. Often, the temporal barriers in the model

prevent effective parallelism in conservative PDES, while rollbacks in optimistic PDES are

expensive in implementation and execution.

Distributed parallel simulation, such as [63] and [66], is a natural extension of PDES. Distributed

simulation breaks the design model into modules, dispatches them on geographically distributed

hosts, and then runs the simulation in parallel. However, model partitioning is difficult and the
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network speed becomes a simulation bottleneck due to the frequently needed communication in

system-level models.

Related work on improving simulation speed in the broader sense can be categorized into soft-

ware modeling and specialized hardware approaches.

Software techniques include the general idea of transaction-level modeling (TLM) [67], which

speeds up simulation by higher abstraction of communication; and source-level [68] or host-

compiled simulation [69] which abstract the computation from the target platform. Generally,

these approaches trade-off simulation speed against a loss in accuracy, for example, approximate

timing due to estimated or back-annotated values.

Temporal decoupling proposed by SystemC TLM [70] also trades off timing accuracy against

simulation speed. Simulation time is incremented separately in different threads to minimize

synchronization, but accuracy is reduced. Our approach proposed in Chapter 4 also localizes

simulation time to different threads, but fully maintains accurate timing.

Specialized hardware approaches include the use of Field-Programmable Gate Array (FPGA)

and Graphics Processing Unit (GPU) platforms. For example, [71] emulates SystemC code on

FPGA boards and [72] proposes a SystemC multithreading model for GPU-based simulation.

[73] presents a methodology to parallelize SystemC simulation across multi-core CPUs and

GPUs. For such approaches, model partitioning is difficult for efficient parallel simulation on

the heterogeneous simulator units.

Other simulation techniques change the infrastructure to allow multiple simulators to run in

parallel and synchronize as needed. For example, the Wisconsin Wind Tunnel [74] uses a

conservative time bucket synchronization scheme to synchronize simulators at a predefined

interval. Another example [75] introduces a simulation backplane to handle the synchronization

between wrapped simulators and analyzes the system to optimize the period of synchronization

message transfers. Both techniques significantly speedup the simulation, however, at the cost
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of timing accuracy.
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2 The ConcurrenC Model of Computation

Embedded system design in general can only be successful if it is based on a suitable Model

of Computation (MoC) that can be well represented in an executable System-level Description

Language (SLDL) and is supported by a matching set of design tools. While C-based SLDLs,

such as SystemC and SpecC, are popular in system-level modeling and validation, current tool

flows impose serious restrictions on the synthesizable subset of the supported SLDL. A properly

aligned and clean system-level MoC is often neglected or even ignored.

In this chapter, we propose a new MoC, called ConcurrenC, that defines a system-level of

abstraction, fits system modeling requirements, and can be expressed in both SystemC and

SpecC SLDLs [76].

2.1 Motivation

For system-level design, the importance of abstract modeling cannot be overrated. Proper

abstraction and specification of the system model is a key to accurate and efficient estimation

and the final successful implementation.

Register-Transfer Level (RTL) design is a good example to show the importance of a well-

defined model of computation. Designers describe hardware components in hardware description

languages (HDL), i.e. VHDL and Verilog. Both languages have strong capabilities to support

different types of hardware structures and functionalities. By using the HDL, designers use
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Abstraction
Schematics Language MoC Tool

Level

RTL
VHDL, FSM, Synopsys Design Compiler
Verilog FSMD Cadence RTL Compiler

...

ESL
MIP

P1M

MIP

P1M P2

SpecC, PSM, SoC Environment [46]
SystemC TLM (?) Synopsys System Studio

ConcurrenC ! ...

Table 2.1: System-level design in comparison with the well-established RTL design

Finite State Machines (FSMs) to model controllers or other parts of their design. Thus, FSM

plays a crucial role as a formal model behind the languages. In other words, the FSM model

in the mind of the designer is described syntactically in the VHDL or Verilog language to

implement a hardware design.

Note that commercial computer aided design (CAD) tools cannot synthesize all the VHDL /

Verilog statements. Instead, special design guidelines are provided to restrict the use of specific

syntax elements, or to prevent generation of improper logics, e.g. latches.

The importance of the model in system design is the same as in RTL. Table 2.1 compares the

situation at the system-level against the mature design methodology at the RTL. RTL design

is supported by the strong MoCs of FSM and FSMD, and well-accepted coding guidelines exist

for the VHDL and Verilog languags, so that established commercial tool chains can implement

the described hardware. It is important to notice that here the MoC was defined first, and the

coding style in the respective HDL followed the needs of the MoC.

At the Electronic System Level (ESL), on the other hand, we have the popular C-based SLDLs

SystemC and SpecC which are more or less supported by early academic and commercial tools

[46, 77]. As at RTL, the languages are restricted to a (small) subset of supported features,

but these modeling guidelines are not very clear. Moreover, the MoC behind these SLDLs is

unclear. SpecC is defined in context of the Program State Machine (PSM) MoC [36], but so is

SpecCharts [78] whose syntax is entirely different. For SystemC, one could claim Transaction
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Level Model (TLM) as its MoC [38], but a wide variety of interpretations of TLM exists.

We can conclude that in contrast to the popularity of the C-based SLDLs for ESL modeling and

validation, and the presence of existing design flows implemented by early tools, the use of a

well-defined and clear system-level MoC is neglected. Instead, serious restrictions are imposed

on the usable (i.e. synthesizable and verifiable) subset of the supported SLDL. Without a clear

MoC behind these syntactical guidelines, computer-aided system design is difficult. Clearly, a

well-defined and formal MoC is needed to tackle the ESL design challenge.

2.2 Models of Computation (MoCs)

Edwards et al. argue in [79] that the design approach should be based on the use of formal

methods to describe the system behavior at a higher level of abstraction. A Model of Compu-

tation (MoC) is such formal method for system design. MoC is a formal definition of the set

of allowable operations used in computation and their respective costs [80]. This defines the

behavior of the system is at certain abstract level to reflect the essential system features. Many

different models of computation have been proposed for different domains. An overview can be

found in [78] and [81].

Kahn Process Network (KPN) is a deterministic MoC where processes are connected by

unbounded FIFO communication channels to form a network [82]. Dataflow Process Network

(DFPN) [82], a special case of KPN, is a kind of MoC in which dataflow can be drawn in graphs

as process network and the size of the communication buffer is bounded. Synchronous dataflow

(SDF) [83], Cyclo-static dataflow (CSDF) [84], Heterochronous dataflow (HDF) [85], Parame-

terized Synchronous dataflow (PSDF) [86], Boolean dataflow (BDF) [87], and Dynamic dataflow

(DDF) [88] are extended MoCs from the DFPN to provide the features like static scheduling,

predetermined communication patterns, finite state machine (FSM) extension, reconfiguration,

boolean modeling, and dynamic deadlock and boundedness analysis. These MoCs are popular
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for modeling signal processing applications but not suited for controller applications.

Software/hardware integration medium (SHIM) [89] is a concurrent asynchronous de-

terministic model which is essentially an effective KPN with rendezvous communication for

heterogeneous embedded systems.

Petri Net [90], an abstract, formal model of information flow, is a state-oriented hierarchical

model, especially for the systems that being concurrent, distributed, asynchronous, parallel,

non-deterministic or stochastic activities. However, it is uninterpreted and can also quickly

become incomprehensible with any system complexity increase.

Dataflow Graph (DFG) and its derivatives are MoCs for describing computational intensive

systems [36]. It is very popular for describing digital signal processing (DSP) components but

is not suitable to represent control parts which are commonly found in most programming

languages.

Combined with Finite State Machine (FSM) which is popular for describing control sys-

tems, FSM and DFG form Finite State Machine with Datapath (FSMD) in order to describe

systems requiring both control and computation. Superstate Finite-State Machine with Data-

path (SFSMD) and hierarchical concurrent finite-state machine with Datapath(HCFSMD) are

proposed based on FSMD to support the hierarchical description ability with concurrent system

features for behavioral synthesis.

Program State machine (PSM) [78] is an extension of FSMD that supports both hierarchy

and concurrency, and allows states to contain regular program code.

Transaction-level modeling (TLM) [38] is a well-accepted approach to model digital systems

where the implementation details of the communication and functional units are abstracted and

separated. TLM abstracts away the low level system details so that executes dramatically faster

than synthesizable models. However, high simulation speed is traded in for low accuracy, while

a high degree of accuracy comes at the price of low speed. Moreover, TLM does not specify a
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well-defined MoC, but relies on the system design flow and the used SLDL to define the details

of supported syntax and semantics.

2.3 ConcurrenC MoC

Although we have the mature and industrially used system-level description languages, like

SpecC and SystemC, we do not have a formal model for both of them. In this section, we

will discuss the close relationship and tight dependencies between SLDLs (i.e. syntax), their

expressive abilities (i.e. semantics), and the abstract models they can represent. In contrast to

the large set of models the SLDL can describe, the available tools support only a subset of these

models. To avoid this discrepancy that clearly hinders the effectiveness of any ESL methodology,

we propose a novel MoC, called ConcurrenC, that fits the system modeling requirements and

the capabilities of the supporting tool chain and languages.

Generally speaking, ConcurrenC should be a system-level FSM extension with support for

concurrency and hierarchy. As such, it falls into the PSM MoC category. The ConcurrenC

model needs clear separation of concerns on computation and communication. In the realm

of structure abstraction, a ConcurrenC model consists of blocks, channels and interfaces, and

fully supports structural and behavioral hierarchy. Blocks can be flexibly composed in space

and time to execute sequentially, in parallel/pipelined fashion, or by use of state transitions.

Blocks themselves are internally based on C, which the most popular programming language

for embedded applications. In the realm of communication abstraction, we intentionally use

a set of predefined channels that follow a typed message passing paradigm rather than using

user-defined freely programmable channels.
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2.3.1 Relationship to C-based SLDLs

More specifically, ConcurrenC is tailored to the SpecC and SystemC SLDLs. ConcurrenC ab-

stracts the embedded system features and provides clear guidelines for the designer to efficiently

use the SLDLs to build a system. In other words, the ConcurrenC model can be captured and

described by using the SLDLs.

SpecC

Abstraction
Descriptive

Capability

SystemC

ConcurrenC
SpecC

Models

SystemC

Models

SLDLs

MoCs MoCs

SLDLs

Figure 2.1: Relationship between C-based SLDLs SystemC and SpecC, and MoC ConcurrenC

Fig. 2.1 shows the relationship between the C-based SLDLs, SystemC and SpecC, and the

MoC, ConcurrenC. ConcurrenC is a true subset of the models that can be described by SpecC

and SystemC. This implies that ConcurrenC contains only the model features which can be

described by both languages. For example, exception handling, i.e. interrupt and abortion, is

supported in SpecC by using the try-trap syntax, but SystemC does not have the capability

to handle such exceptions. On the other hand, SystemC supports the feature for waiting a

certain time and for some events at the same time, which SpecC does not support. As shown in

Fig. 2.1, features that are only supported by one SLDL will not be included in the ConcurrenC

model.

Moreover, ConcurrenC excludes some features that both SpecC and SystemC support (the

shadow overlap area in Fig. 2.1). We exclude these to make the ConcurrenC model more

concise for modeling. For example, ConcurrenC will restrict its communication channels to

a predefined library rather than allowing the user to define arbitrary channels by themselves.

This allows tools to recognize the channels and implement them in an optimal fashion.
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2.3.2 ConcurrenC Features

A ConcurrenC Model can be visualized in four dimensions as shown in Fig. 2.2. There are three

dimensions in space, and one in time. The spatial dimensions consist of two dimensions for

structural composition of blocks and channels and their connectivity through ports and signals

(X, Y coordinates), and one for hierarchical composition (Z-axis). The temporal dimension

specifies the execution order of blocks in time, which can be sequential or FSM-like (thick

arrows), parallel (dashed lines), or pipelined (dashed lines with arrows) in Fig. 2.2.
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Figure 2.2: Visualization of a ConcurrenC Model in three spatial and one temporal dimensions

The detailed features of the proposed ConcurrenC MoC are listed below:

• Communication & Computation Separation Separating communication from com-

putation allows “plug-n-play” features of the embedded system [36]. In ConcurrenC, the

communication contained in channels is separated from the computation part contained in

blocks so that the purpose of each statement in the model can be clearly identified whether

it is for communication or computation. This also helps for architecture refinement and
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hardware/software partitioning.

• Hierarchy Hierarchy eliminates the potential explosion of the model size and significantly

simplifies comprehensible modeling of complex systems.

• Concurrency The need for concurrency is obvious. A common embedded system will

have multiple hardware units work in parallel and cooperate through specified commu-

nication mechanisms. ConcurrenC also supports pipelining in order to provide a simple

and explicit description of the pipelined data flow in the system.

• Abstract Communications (Channels) A predefined set of communication channels

is available in ConcurrenC. We believe that the restriction to predefined channels not only

avoids coding errors by the designer, but also simplifies the later refinement steps, since

the channels can be easily recognized by the tools.

• Timing The execution time of the model should be evaluable to observe the efficiency

of the system. Thus, ConcurrenC supports wait-for-time statements in similar fashion as

SystemC and SpecC.

• Execution The model must be executable in order to show its correctness and obtain

performance estimation. Since a ConcurrenC model can be converted to SpecC and

SystemC, the execution of the model is thus possible.

2.3.3 Communication Channel Library

For ConcurrenC, we envision two type of channels, channels for synchronization and data trans-

fer. For data transfer, ConcurrenC limits the channel to transfer data in FIFO fashion (as in

KPN and SDF). In many cases, these channels make the model deterministic and allow static

scheduling. For KPN-like channels, the buffer size is infinite (Q∞) which makes the model

deadlock free but not practical. For SDF-like channels, the buffer size is fixed (Qn). Double-

handshake mechanism, which behaves in a rendezvous fashion, is also available as a FIFO with
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buffer size of zero (Q0). Signals are needed to design a 1-N (broadcasting) channel. Fur-

thermore, shared variables are allowed as a simple way of communication that is convenient

especially in software. Moreover, FIFO channels can be used to implement semaphore which is

the key to build synchronization channels. In summary, ConcurrenC supports the predefined

channel library as shown in Table 2.2.

Channel Type Receiver Sender Buffer Size

Q0 Blocking Blocking 0

Qn Blocking Blocking n

Q∞ Blocking – ∞

Signal Blocking – 1

Shared Variable – – 1

Table 2.2: Parameterized Communication Channels

2.3.4 Relationship to KPN and SDF

With the features we discussed above, it is quite straightforward to convert the major MoCs,

KPN and SDF into ConcurrenC.

The conversion rules from KPN (SDF) to ConcurrenC are:

• ∀ processes ∈ KPN (SDF): convert into ConcurrenC blocks.

• ∀ channels ∈ KPN (SDF): convert into ConcurrenC channels of type Q∞ (Qn).

• Keep the same connectivity in ConcurrenC as in KPN (SDF).

• If desired, group blocks in hierarchy and size the KPN channels for real-world implemen-

tation.

The conversion rules from SDF to ConcurrenC are:

• ∀ actors ∈ SDF: convert into ConcurrenC blocks.
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• ∀ arcs ∈ SDF: convert into ConcurrenC channels of type Qn where n is the size of the

buffer.

• keep the same connectivity in ConcurrenC as in SDF.

• If desired, group blocks in hierarchy.

As such, ConcurrenC is essentially a superset MoC of KPN and SDF. Also it becomes possible

to implement KPN and SDF into SpecC and SystemC by using ConcurrenC as the intermediate

MoC. Moreover, note that ConcurrenC inherits the strong formal properties of KPN and SDF,

such as static schedulability and deadlock-free guarantees.

2.4 Case Study

In order to demonstrate the feasibility and benefits of the ConcurrenC approach, we use the

Advanced Video Coding (AVC) standard H.264 decoding algorithm [91] as a driver application

to evaluate the modeling features. Our H.264 decoder model is of industrial size, consisting of

about 40 thousand lines of code. The input of the decoder is an H.264 stream file, while the

output is a YUV file.

ConcurrenC features can be easily used to model the H.264 decoder, see Fig. 2.3.

• Hierarchy: At the top level of the ConcurrenC model, there are three behavioral blocks:

stimulus, decoder, and monitor. The stimulus reads the input YUV file, while the

monitor receives and displays the decoded stream including signal-to-noise ratio (SNR),

system time, and writes the reconstructed frames into the output file. Decoder contains

multiple blocks for concurrent slice decoding. A stream processing block prepares the

settings, n decode units decode slices in parallel, and the decoding synchronizer combines

the decoded slices for output by the monitor. The number of the slice decoders is scalable

depending on the number of slices contained in one frame of the input stream file. Inside
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Figure 2.3: Proposed H.264 Decoder Block Diagram

the slice decode blocks, functional sub-blocks are modeled for the detailed decoding tasks.

Hierarchical modeling allows convenient and clear system description.

• Concurrency : [92] confirms that multiple slices in one frame are possible to be de-

coded concurrently. Consequently, our H.264 decoder model consists of multiple blocks

for concurrent slice decoding in one picture frame1.

• Communication: FIFO channels and shared variables are used for communication in our

H.264 decoder model. FIFO queues are used for data exchange between different blocks.

For example, the decoder synchronizer sends the decoded frame via a FIFO channel to

the monitor for output. Shared variables, i.e. reference frames, are used to simplify the

coordination for decoding multiple slices in parallel.

• Timing: The decoding time can be observed by using wait-for-time statements in the

modeled blocks. We have obtained the estimated execution time for different hardware

1We should emphasize that this potential parallelism was not apparent in the original C code. It required serious
modeling effort to parallelize the slice decoders for our model.
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architectures by using simulation and profiling tools of the SLDLs.

• Execution: We have successfully converted and executed our model in SpecC using the

SoC Environment [46].

filename boat.264 coastguard.264

# macroblocks/frame 396 396

# frames 73 (2.43 secs) 299 (9.97 secs)

# slices/frame 4 8 4 8

max # macroblocks/slice 150 60 150 60

model type seq par seq par seq par seq par

host sim time (s) 4.223 4.258 4.557 4.550 12.191 12.197 12.860 12.846

estimated exec time (s) 11.13 4.43 11.49 1.80 18.78 7.20 20.31 3.33

speedup 1 2.51 1 6.38 1 2.61 1 6.10

Table 2.3: Simulation Results, H.264 Decoder modeled in ConcurrenC

Table 2.3 shows the simulation results of our H.264 decoder modeling in ConcurrenC. The model

is simulated on a PC machine with Intel(R) Pentium(R) 4 CPU at 3.00GHz. Two stream files,

one with 73 frames, and the other with 299 frames are tested. For each test file, we created

two types of streams, 4 slices and 8 slices per frame. We run the model by decoding the

input streams in two ways: slice by slice (seq model), and slices in one frame concurrently (par

model). The estimated execution time is measured by annotated timing information according

to the estimation results generated by SCE with a ARM7TDMI 400 MHz processor mapping.

Our simulation results show that the parallelism of the application modeled in ConcurrenC is

scalable. We can expect that it is possible to decode three of the test streams in real-time (bold

times).
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3 Synchronous Parallel Discrete Event

Simulation

Effective Electronic System-Level (ESL) design frameworks transform and refine high-level de-

signs into various transaction level models described in C-based System-level Description Lan-

guages (SLDLs) and rely on simulation for validation. The traditional cooperative Discrete

Event (DE) simulation of SLDLs is not effective and cannot utilize any existing parallelism in

todays’ multi-core CPU hosts.

In this chapter, we will present the parallel extension for the DE simulator to support efficient

simulation on multi-core hosts [94, 93, 95, 96].

3.1 Traditional Discrete Event Simulation

In both SystemC and SpecC, a traditional DE simulator is used. Threads are created for the

explicit parallelism described in the models (e.g. par{} and pipe{} statements in SpecC, and

SC THREADS and SC CTHREADS in SystemC). These threads communicate via events using

wait-for-event construct, and advance simulation time using wait-for-time construct.

To describe the simulation algorithm1, we define the following data structures and opera-

tions:

1The formal definition of execution semantics can be found in [97].
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1. Definition of queues of threads th in the simulator:

• QUEUES = {READY, RUN, WAIT, WAITFOR, COMPLETE}

• READY = {th | th is ready to run}

• RUN = {th | th is currently running}

• WAIT = {th | th is waiting for some events}

• WAITFOR = {th | th is waiting for time advance}

• COMPLETE = {th | th has completed its execution}

2. Simulation invariants:

Let THREADS = set of all threads which currently exist. Then, at any time, the following

conditions hold:

• THREADS = READY ∪ RUN ∪ WAIT ∪ WAITFOR ∪ COMPLETE.

• ∀ A, B ∈ QUEUES, A 6= B : A ∩ B = ∅.

3. Operations on threads th:

• Go(th): let thread th acquire a CPU and begin execution.

• Stop(th): stop execution of thread th and release the CPU.

• Switch(th1, th2): switch the CPU from the execution of thread th1 to thread th2.

4. Operations on threads with set manipulations:

Suppose th is a thread in one of the queues, A and B are queues ∈ QUEUES.

• th = Create(): create a new thread th and put it in set READY.

• Delete(th): kill thread th and remove it from set COMPLETE.

• th = Pick(A, B): pick one thread th from set A (formal selection/matching rules can

be found in [97] section 4.2.3) and put it into set B.
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• Move(th, A, B): move thread th from set A to B.

5. Initial state at beginning of simulation:

• THREADS = {throot}.

• RUN = {throot}.

• READY = WAIT = WAITFOR = COMPLETE = ∅.

• time = 0.

DE simulation is driven by events and simulation time advances. Whenever events are delivered

or time increases, the scheduler is called to move the simulation forward.

Fig. 3.1 shows the control flow of the traditional scheduler. At any time, the scheduler runs

a single thread which is picked from the READY queue. Within a delta-cycle, the choice of

the next thread to run is non-deterministic (by definition). If the READY queue is empty, the

scheduler will fill the queue again by waking threads who have received events they were waiting

for. These are taken out of the WAIT queue and a new delta-cycle begins.

start 
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"!"#!"#$!"#$"!"$%"&'&()"#%"(*+,&-."

%&'(/!"!"!"#$!")*"+,0."12&34"(*+$&-"&'&()%.""
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Figure 3.1: Traditional sequential Discrete Event simulation scheduler
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If the READY queue is still empty after event delivery, the scheduler advances the simulation

time, moves all threads with the earliest timestamp from theWAITFOR queue into theREADY

queue, and resumes execution. Traditional DE simulation uses cooperative multi-threading.

Therefore, at any time, there is only one thread actively executing in the simulation.

3.2 SLDL Multi-threading Semantics

In order to allow multiple threads run in parallel, the SLDL simulation kernel needs to be

extended. We need to check the SLDL execution semantics first to make sure the extension

respects the definition.

Both SystemC and SpecC SLDLs define their execution semantics by use of DE-based scheduling

of multiple concurrent threads, which are managed and coordinated by a central simulation

kernel. More specifically, both the SystemC and SpecC reference simulators that are freely

available from the corresponding consortia use cooperative multi-threading in their schedulers.

That is, both reference schedulers select only a single thread to run at all times. However, the

reference simulator implementations do not define the actual language semantics. In fact, the

execution semantics of concurrent threads defined by the SystemC Language Reference Manual

(LRM) differ significantly from the semantics defined in the SpecC LRM.

3.2.1 Cooperative multi-threading in SystemC

The SystemC LRM [40] clearly states (in Section 4.2.1.2) that “process instances execute without

interruption”, which is known as cooperative (or co-routine) multitasking. In other words,

preemptive scheduling is explicitly forbidden.

As a consequence, when writing a SystemC model, the system designer “can assume that a

method process will execute in its entirety without interruption” [40]. This is convenient when
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sharing variables among different threads (because mutual exclusive access to such variables in a

critical region is implicitly guaranteed by the non-preemptive scheduling semantics). While this

can aid significantly in avoiding bugs and race conditions if one is only concerned with modeling

and simulation, such semantics are hard to verify and synthesize if the goal is to eventually

reach an efficient implementation. Furthermore, sharing of plain variables also violates the

overall system-level principle of separation of concerns where computation and communication

are supposed to be clearly separated in modules and channels, respectively. The uninterrupted

execution guaranteed by the SystemC LRM makes it hard to synthesize concurrent threads into

a truly parallel implementation. This same problem also prevents an efficient implementation of

a fully standards-compliant parallel multi-core simulator, which we are aiming for in this work.

This particular problem of parallel simulation is actually addressed specifically in the SystemC

LRM [40] , as follows:

“An implementation running on a machine that provides hardware support for

concurrent processes may permit two or more processes to run concurrently, provided

that the behavior appears identical to the co-routine semantics defined [...]. In other

words, the implementation would be obliged to analyze any dependencies between

processes and constrain their execution to match the co-routine semantics.”

In short, complex inter-dependency analysis over all variables in the system model is a prereq-

uisite to parallel multi-core simulation in SystemC.

3.2.2 Pre-emptive multi-threading in SpecC

In contrast to the cooperative scheduling mandated for SystemC models, multi-threading in the

SpecC LRM [37] is (in Section 3.3) explicitly stated as “preemptive execution”. Thus, “No atom-

icity is guaranteed for the execution of any portion of concurrent code”. Consequently, shared

variables need to be carefully protected for mutually exclusive access in critical regions.
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Allowing preemptive execution of concurrent threads requires the system designer to plan and

design the system model carefully with respect to all communication (in particular through

shared variables!) and synchronization. However, that is exactly the main premise of clear

separation of computation and communication in system-level models (which enables the reuse

of existing components, such as IP). In other words, if communication and computation are

already separated in a well-written system model, this also provides the framework for solving

the critical section problem in the a preemptive multi-threading environment.

The SpecC Language Working Group realized this opportunity when defining the version 2.0

of the language in 2001 [98]. In fact, a new “time interval formalism” was developed that

precisely defines the parallel execution semantics of concurrent threads in SpecC. Specifically,

truly parallel execution (with preemption) is generally assumed in SpecC.

To then allow safe communication and synchronization, a single exception was defined for

channels. The SpecC LRM [37] states (in Section 2.3.2(j)) that

“For each instance of a channel, the channel methods are mutually exclusive in

their execution. Implicitly, each channel instance has a mutex associated with it that

the calling thread acquires before and releases after the execution of any method of

the channel instance.”

In other words, each SpecC channel instance implicitly acts as a monitor that automatically

protects the shared variables for mutually exclusive access in the critical region of communica-

tion. Note that the SpecC semantics based on separation of computation and communication

elegantly solve the problem of allowing truly parallel execution of computational parts in the

design, as well as provide built-in protection of critical regions in channels for safe commu-

nication. This builds the basis for both synthesis of efficient concurrent hardware/software

realizations as well as implementation of efficient parallel simulators. While the freely available

SpecC reference simulator does not utilize this possibility, we exploit these semantics in our

parallel multi-core simulator.
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3.3 Synchronous Parallel Discrete Event Simulation

Synchronous parallel discrete event simulation (SPDES) allows multiple threads in the same

cycle (delta- and time-cycle) to run concurrently during simulation.

The scheduler for multi-core parallel simulation works the same way as the traditional scheduler,

with one exception: in each cycle, it picks multiple OS kernel threads from the READY queue

and runs them in parallel on the available cores. In particular, it fills the RUN set with multiple

threads up to the number of CPU cores available. In other words, it keeps as many cores as

busy as possible.

More specifically, when the READY queue is empty at the beginning of a scheduling step,

the notified event list cannot be processed immediately since there could still be some other

threads running which will trigger events sometime later. Thus, we introduce the RUN queue

and check it first to see if any other threads are still busy doing their jobs. If so, the scheduler

just sleep itself and wait for the running ones to wake it up in the future for further processing;

if not, the scheduler handle those events and timing advancements in the same way as what

the single-thread scheduler does. After the delat-cycle or timed-cycle advances, it goes to the

multiple threads issuing branch if the READY queue is not empty at that time.

Fig. 3.2 shows the extended control flow of the multi-core scheduler. Note the extra loop at

the left which issues threads as long as CPU cores are available and the READY queue is not

empty. Moreover, instead of using user-level threads, OS kernel threads need to be used so that

they can be scheduled and executed on different CPU cores.
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Figure 3.2: Synchronous parallel Discrete Event simulation scheduler

3.4 Synchronization for Multi-Core Parallel Simulation

The benefit of running more than a single thread at the same time comes at a price. Explicit

synchronization becomes necessary. In particular, shared data structures in the simulation

engine, including the thread queues and event lists in the scheduler, and shared variables in

communication channels of the application need to be properly protected by locks for mutual

exclusive accesses by the concurrent threads.

3.4.1 Protecting Scheduling Resources

To protect all central scheduling resources, we run the scheduler in its own thread and introduce

locks and condition variables for proper synchronization. More specifically, we use

• one central lock L to protect the scheduling resources,

• a condition variable Cond s for the scheduler, and
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• a condition variable Cond th for each working thread.

When a working thread executes a wait or waitfor instruction, we switch execution to the

scheduling thread by waking the scheduler (signal(Cond s)) and putting the working thread

to sleep (wait(Cond th, L)). The scheduler then uses the same mechanism to resume the next

working thread.

3.4.2 Protecting Communication

Communication between threads also needs to be explicitly protected as SLDL channels are

defined to act as monitors 2. That is, only one thread at a time may execute code wrapped in

a specific channel instance.

2The SpecC Language Reference Manual V2.0 explicitly states in Section 2.3.2.j that channel methods are
protected for mutual exclusive execution.
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1 send (d) r e c e i v e (d)
2 { {
3 Lock ( th i s−>chLock ) ; Lock ( th i s−>chLock ) ;
4 whi le (n >= s i z e ){ whi le ( ! n){
5 ws ++; wr ++;
6 wait ( eSend ) ; wait ( eRecv ) ;
7 ws −−; wr −−;
8 } }
9 bu f f e r . s t o r e (d ) ; bu f f e r . load (d ) ;

10 i f (wr){ i f (ws){
11 no t i f y ( eRecv ) ; n o t i f y ( eSend ) ;
12 } }
13 unLock ( th i s−>chLock ) ; unLock ( th i s−>chLock ) ;
14 } }

(a) Queue channel implementation for multi-core simulation.

!"#$%&

!"#$'&

!"#$
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(b) Example of user-defined hierarchical channels.

1 channel chnlS ;
2 channel chnlP ;
3
4 i n t e r f a c e i t f s
5 {
6 void f ( chnlP∗ chp ) ;
7 void g ( ) ;
8 } ;
9

10 channel chnlP ( ) implements i t f s
11 {
12 chnlS chs ;
13 void f ( chnlP∗ chp ){
14 chs . f ( t h i s ) ; //( a ) inner channel func t i on c a l l
15 g ( ) ; //(b) c a l l another member func t i on
16 }
17 void g (){}
18 } ;
19
20 channel chnlS ( ) implements i t f s
21 {
22 void f ( chnlP∗ chp ){ chp−>g ( ) ; }
23 //( c ) outer channel func t i on c a l l back
24 } ;

(c) SpecC description of the channels in (b).

Figure 3.3: Protecting synchronization in channels for multi-core parallel simulation

Since the sender and the receiver of a channel can be two separate threads, both can be running

at the same time. Both of them can access the channel for data storing or loading. If the sender

(receiver) should wait due to the fullness (emptiness) of the channel buffer, the thread can call

the scheduler to pick up another one which is ready to go to avoid idling of the CPU. Thus,

synchronization also needs to be considered for channels in the multi-core simulator.
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To ensure this, we introduce a lock ch→chLock for each channel instance which is acquired at

entry and released upon leaving any method of the channel. Fig. 3.3a shows this for the example

of a simple circular buffer with fixed size.

3.4.3 Channel Locking Scheme

In general, however, channels can be more complex with multiple nested channels and meth-

ods calling each other. For such user-defined channels, we automatically generate the proper

locking mechanism as follows. Fig. 3.3b shows an example of a channel ChnlS wrapped in

another channel ChnlP. ChnlP has a method ChnlP::f() that calls another channel method

ChnlP::g(). The inner channel ChnlS has a method ChnlS::f() that calls back the outer method

ChnlP::g().

In order to avoid duplicate lock acquiring and early releasing in channel methods, we introduce

a counter th→ch→lockCount for each channel instance in each thread th, and a list th→list

of acquired channel locks for each working thread. Instead of manipulating ch→chLock in

every channel method, th→ch→lockCount is incremented at the entry and decremented before

leaving the method, and ch→chLock is only acquired or released when th→ch→lockCount is

zero. ch→chLock is added into curTh→list of the current thread when it is first acquired, and

removed from the list when the last method of ch in the call stack exits. Note that, in order

to avoid the possibility of dead locking, channel locks are stored in the order of acquiring. The

working thread always releases them in the reverse order and keeps the original order when

re-acquiring them. Fig. 3.4 illustrates the refined control flow in a channel method with proper

locking scheme.
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ch−>l o ckLoca l ( )
2 {

i f ( curTh−>ch−>lockCount == 0){
4 Lock ( ch−>chLock ) ;

curTh−> l i s t . Append( ch−>chLock ) ;
6 }

curTh−>ch−>lockCount ++;
8 }

10 ch−>unlockLocal ( )
{

12 curTh−>ch−>lockCount −−;
i f ( curTh−>ch−>lockCount == 0){

14 curTh−> l i s t . Remove( ch−>chLock ) ;
unLock ( ch−>chLock ) ;

16 }
}

Figure 3.4: Synchronization protection for the member functions of communication channels.

3.4.4 Automatic Code Instrumentation for Communication Protection

SpecC channels serve as monitors for their member variables. Although the SpecC LRM defines

this semantics for channels, channel locks are not added either in the original SpecC design nor

in the SpecC compiler generated code (.cc and .h files in Fig. 1.8). The reason is that the

reference simulator only allows one thread to be active at one time. Channel locks are not

necessary in the reference sequential simulator.

The parallel simulator is highly desirable to be transparent for the designer to use. This means
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the designer should be able to use the parallel simulator for fast simulation without modifying

their models. Therefore, we extend the SpecC compiler to automatically instrument the SpecC

code with channel locks. The instrumentation can be done by adding lock variable and wrapper

functions in the SIR of the SpecC channels. The SpecC code generator (translator) (Fig. 1.8)

will then generate the proper C++ code which can be compiled into an executable image.

  

  channel MyChannel  

  {

      int MyData;

       

      int f()

      {

          MyData = 0;

          …

          return MyData;

      }

  };

(a) Definition of a SpecC
channel

  channel MyChannel  

  {

      int MyData;

      lock chLock;            // channel lock  

      int f()                         // function wrapper for  

      {                                 // communication protection 

          int res;                   // return value

          Lock(chLock);      // lock the channel instance

          res = _f();              // call the original function

          unLock(chLock);  // unlock the channel instance  

          return res;             // return the value;

      }

      int _f()                       // the original function

      {                                 // renamed to be called

          MyData = 0;           // in the wrapper function

          …

          return MyData;

      }

  };

(b) Definition of a instrumented SpecC channel

Figure 3.5: Channel definition instrumentation for communication protection

Fig. 3.5b shows an example for the channel instrumentation. First, a lock variable is added to

the channel definition. Second, each function was renamed and be wrapped in an assist function

between locking and unlocking the channel locks. The assist function has the original function

name as well as the same parameter list and return type so that the design code can remain

the same to call the protected channel functions.

The combination of a central scheduling lock and individual locks for channel instances ensures

safe synchronization among many parallel working threads. Fig. 3.6 summarizes the detailed use

of these locks and the thread switching mechanism for the life-cycle of a working thread.
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Figure 3.6: Life-cycle of a thread in the multi-core simulator

In Fig. 3.6, a working thread starts to execute its instructions and switch to the scheduler when

there are instructions for simulation API calls, such as notify, par, wait, and waitfor. The thread

will first acquire the central lock L for scheduling resources. If the lock acquiring is successful,

then switch to the scheduler to perform scheduling tasks accordingly; otherwise, the thread will

wait until the scheduling resource is available. The scheduling includes:

• creating child threads (par),

• setting notified event list (notify),

• suspending current working thread (wait or waitfor),

• updating cycles (after each scheduling loops as show in Fig. 3.2),
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• clearing notified event list (at each scheduling cycles), etc.

If the current thread is suspended, it will release all the acquired channel locks before suspension

so that the other threads can enter into the channel instances while the current thread is

waiting for its trigger. When the thread is issued to run (be triggered by events or time

advances), it will re-acquire all the channel locks to continue its execution (most likely in a

channel instance).

3.5 Implementation Optimization for Multi-Core Simulation

As shown in Fig. 3.2 and Fig. 3.6, the threads in the simulator switch due to event handling

and time advancement. Context switches occur when the owner thread of a CPU core is

changed.

A dedicated scheduling thread (as discussed in Section 3.3 and used in Section 3.4) introduces

context switch overhead when a working thread needs scheduling. This overhead can be elimi-

nated by letting the current working thread perform the scheduling task itself. In other words,

instead of using a dedicated scheduler thread, we define a function schedule() and call it in

each working thread when scheduling is needed.

Then, the condition variable Cond s is no longer needed. The “scheduler thread” (which is now

the current working thread curTh itself) sleeps by waiting on Cond curTh, i.e. the condition

variable for the current working thread. In the left loop of Fig. 3.2, if the thread picked from the

READY queue is the same as curTh, the sleep step is skipped and curTh continues. After

the sleep step, the current working thread will continue its own work rather than entering

into another scheduling iteration. In Fig. 3.6, Go(schedule) is replaced by the function call

schedule() and the sleep step is no longer needed. Fig. 3.7 shows the refined multi-core

scheduler with this optimization applied.
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Figure 3.7: Optimized synchronous parallel discrete event simulation scheduler

Our experiments in next section show that this optimization achieves about 7.7% reduction in

simulation time.

3.6 Experiments and Results

To demonstrate the improved simulation run time of our multi-core simulator, we use a H.264

video decoder and a JPEG encoder application.

3.6.1 Case Study on a H.264 Video Decoder

The H.264 AVC standard [99] is widely used in video applications, such as internet streaming,

disc storage, and television services. H.264 AVC provides high-quality video at less than half

the bit rate compared to its predecessors H.263 and H.262. At the same time, it requires more

computing resources for both video encoding and decoding. In order to implement the standard
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on resource-limited embedded systems, it is highly desirable to exploit available parallelism in

its algorithm.

The H.264 decoder takes as input a video stream consisting of a sequence of encoded video

frames. A frame can be further split into one or more slices during H.264 encoding, as illustrated

in the upper right part of Fig. 3.8. Notably, slices are independent of each other in the sense

that decoding one slice will not require any data from the other slices (though it may need data

from previously decoded reference frames). For this reason, parallelism exists at the slice-level

and parallel slice decoders can be used to decode multiple slices in a frame simultaneously.

H.264 Decoder Model with Parallel Slice Decoding

We have specified a H.264 decoder model based on the H.264/AVC JM reference software [100].

In the reference code, a global data structure (img) is used to store the input stream and all

intermediate data during decoding. In order to parallelize the slice decoding, we have duplicated

this data structure and other global variables so that each slice decoder has its own copy of

input stream data and can decode its own slice locally. As an exception, the output of each

slice decoder is still written to a global data structure (dec picture). This is valid because the

macro-blocks produced by different slice decoders do not overlap.

Figure 3.8: A parallelized H.264 decoder model.
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Fig. 3.8 shows the block diagram of our model. The decoding of a frame begins with reading

new slices from the input stream. These are then dispatched into four parallel slice decoders.

Finally, a synchronizer block completes the decoding by applying a deblocking filter to the

decoded frame. All the blocks communicate via FIFO channels. Internally, each slice decoder

consists of the regular H.264 decoder functions, such as entropy decoding, inverse quantization

and transformation, motion compensation, and intra-prediction.

Using SCE, we partition the above H.264 decoder model as follows: the four slice decoders are

mapped onto four custom hardware units; the synchronizer is mapped onto an ARM7TDMI

processor at 100MHz which also implements the overall control tasks and cooperation with the

surrounding testbench. We choose Round-Robin scheduling for tasks in the processor and allo-

cate an AMBA AHB for communication between the processor and the hardware units.

Experimental Results

For our experiment, we have prepared a test stream (“Harbour”) of 299 video frames, each with

4 slices of equal size. Profiling the JM reference code with this stream showed that 68.4% of the

total computation time is spent in the slice decoding, which we have parallelized in our decoder

model.

As a reference point, we calculate the maximum possible performance gain as follows:

MaxSpeedup =
1

ParallelPart
NumOfCores

+ SerialPart

For 4 parallel cores, the maximum speedup is

MaxSpeedup4 =
1

0.684
4 + (1− 0.684)

= 2.05

The maximum speedup for 2 cores is accordingly MaxSpeedup2 = 1.52 .

Note that this H.264 decoder model has well balanced computation workload among the parallel

slice decoders. Also the timing for the parallel sliced decoders are always the same, i.e. well
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balanced timing.

Table 3.1: Simulation results of a well balanced H.264 Decoder (“Harbour”, 299 frames 4 slices
each, 30 fps).

Simulator Reference Multi-Core
Par. isd n/a 1 2 4 #delta #th

sim. sim. speed sim. speed sim. speed cycles
models time time -up time -up time -up
spec 20.80s (99%) 21.12s (99%) 0.98 14.57s (146%) 1.43 11.96s (193%) 1.74 76280 15
arch 21.27s (97%) 21.50s (97%) 0.99 14.90s (142%) 1.43 12.05s (188%) 1.77 76280 15
sched 21.43s (97%) 21.72s (97%) 0.99 15.26s (141%) 1.40 12.98s (182%) 1.65 82431 16
net 21.37s (97%) 21.49s (99%) 0.99 15.58s (138%) 1.37 13.04s (181%) 1.64 82713 16
tlm 21.64s (98%) 22.12s (98%) 0.99 16.06s (137%) 1.35 13.99s (175%) 1.55 115564 63

comm 26.32s (96%) 26.25s (97%) 1.00 19.50s (133%) 1.35 25.57s (138%) 1.03 205010 75
max speedup 1.00 1.00 1.52 2.05 n/a n/a

Table 3.1 lists the simulation results for several TLMs generated with SCE when using our multi-

core simulator on a Fedora Core 12 host PC with a 4-core CPU (Intel(R) Core(TM)2 Quad) at

3.0 GHz, compiled with optimization (-O2) enabled. We compare the elapsed simulation run

time against the single-core reference simulator (the table also includes the CPU load reported

by the Linux OS). Although simulation performances decrease when issuing only one parallel

thread due to additional mutexes for safe synchronization in each channel and the scheduler,

our multi-core parallel simulation is very effective in reducing the simulation run time for all

the models when multiple cores in the simulation host are used.

Table 3.1 also lists the measured speedup and the maximum theoretical speedup for the models

that we have created following the SCE design flow. The more threads are issued in each schedul-

ing step, the more speedup we gain. The #delta cycles column shows the total number of delta

cycles executed when simulating each model. This number increases when the design is refined

and is the reason why we gain less speedup at lower abstraction levels. More communication

overhead is introduced and the increasing need for scheduling reduce the parallelism. However,

the measured speedups are somewhat lower than the maximum, which is reasonable given the

overhead introduced due to parallelizing and synchronizing the slice decoders. The compara-

tively lower performance gain for the comm model in simulation with 4 threads can be explained
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due to the inefficient cache utilization in our Intel(R) Core(TM)2 Quad machine3.

Table 3.2 compares the simulation run times of the non-optimized and the optimized imple-

mentation of the scheduler (Section 3.5). The number of the context switches in the optimized

simulation reduces to about half and results in an average performance gain of about 7.8%.

Table 3.2: Comparison with optimized implementation.

Simulator Regular Optimized
Parallel issued sim. #context sim. #context gain
threads: 4 time switches time switches

spec 13.18s 161956 11.96s 81999 10%
arch 13.62s 161943 12.05s 82000 13%

models sched 13.44s 175065 12.98s 85747 4%
net 13.52s 178742 13.04s 88263 4%
tlm 15.26s 292316 13.99s 140544 9%

comm 27.41s 1222183 25.57s 777114 7%

Table 3.3: Simulation speedup with different h264 streams (spec model).

Simulator Reference Multi-Core
Parallel issued threads: n/a 1 2 4

1 1.00 0.98 0.98 0.95
2 1.00 0.98 1.40 1.35
3 1.00 0.99 1.26 1.72

slices 4 1.00 0.98 1.43 1.74
frame 5 1.00 0.99 1.27 1.53

6 1.00 0.99 1.41 1.68
7 1.00 0.98 1.30 1.55
8 1.00 0.98 1.39 1.59

Using a video stream with 4 slices in each frame is ideal for our model with 4 hardware decoders.

However, we even achieve simulation speedup for less ideal cases. Table 3.3 shows the results

when the test stream contains different number of slices. We also create a test stream file with

4 slices per frame but the size of the slices are imbalanced (percentage of MBs in each slice is

31%, 31%, 31%, 7%). Here, the speedup of our multi-core simulator versus the reference one is

3The Intel(R) Core(TM)2 Quad implements a two-pairs-of-two-cores architecture and Intel Advanced Smart
Cache technology for each core pair (http://www.intel.com/products/processor/core2quad/prod brief.pdf)
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0.98 for issuing 1 thread, 1.28 for 2 threads, and 1.58 for 4 threads. As expected, the speedup

decreases when available parallel work load is imbalanced.

3.6.2 Case Study on a JPEG Encoder

As an example of another application, Table 3.4 shows the simulation speedup for a JPEG

Encoder example [101] which performs the DCT , Quantization and Zigzag modules for the 3

color components in parallel, followed by a sequential Huffman encoder at the end (Fig. 3.9).

Significant speedup is gained by our multi-core parallel simulator for the higher level models

(spec, arch, sched). Simulation performance decreases for the models at the lower abstraction

level (net) due to high number of bus transactions and arbitrations which are not parallelized

and introduce large overhead due to the necessary synchronization protection.
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Figure 3.9: Parallelized JPEG encoder model.
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Table 3.4: Simulation results of JPEG Encoder

Sim. Ref. Multi-Core
Par. isd n/a 1 thread 2 threads 4 threads
models sim time sim time speedup sim time speedup sim time speedup
spec 2.21s (99%) 2.15s (99%) 1.03 1.50s (143%) 1.47 1.40s (157%) 1.58
arch 2.22s (99%) 2.15s (99%) 1.03 1.50s (144%) 1.48 1.40s (158%) 1.59
sched 2.22s (99%) 2.17s (99%) 1.02 1.53s (143%) 1.45 1.41s (158%) 1.57
net 2.80s (99%) 2.86(99%) 0.98 2.38s (121%) 1.18 2.34s (123%) 1.20
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4 Out-of-order Parallel Discrete Event

Simulation

Both SystemC and SpecC SLDLs define DE-based execution semantics with “zero-delay” delta-

cycles. Concurrent threads implement the parallelism in the design model, communicate via

events and shared variables, and advance simulation time by use of wait-for-time primitives.

Parallel execution of these threads is desirable to improve the simulation performance on multi-

core hosts.

The PDES approach presented in Chapter 3 takes advantage of the fact that threads running

at the same time and delta-cycle can execute in parallel. However, such synchronous PDES

imposes a strict order on event delivery and time advance which makes delta- and time-cycles

absolute barriers for thread scheduling.

In this chapter, we will propose an advanced PDES approach which aims at breaking the global

simulation barrier to increase effectiveness of parallel simulation on multi-core computer hosts

[102].

4.1 Motivation

We note that synchronous PDES issues threads strictly in order, with increasing time stamps

after each cycle barrier. This can severely limit the desired parallel execution.

74



Specifically, when a thread finishes its execution cycle, it has to wait until all other active threads

complete their execution for the same cycle. Only then the simulator advances to the next delta

or time cycle. Additionally available CPU cores are idle until all threads have reached the cycle

barrier.

As a motivating example, Fig. 4.1 shows a high-level model of a DVD player which decodes

a stream of H.264 video and MP3 audio data using separate decoders. Since video and au-

dio frames are data independent, the decoders run in parallel. Both decoders output the

frames according to their rate, 30 FPS for video (delay 33.3ms) and 38.28 FPS for audio (delay

26.12ms).
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Figure 4.1: High-level DVD player model with video and audio streams.

Unfortunately, synchronous PDES cannot exploit the parallelism in this example. Fig. 4.2a

shows the thread scheduling along the time line. Except for the first scheduling step, only one

thread can run at a time. Note that it is not data dependency but the global timing that

prevents parallel execution.

This observation motivates the idea of breaking simulation cycle barrier and let independent

threads run out-of-order and concurrently so as to increase the simulation parallelism.
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(b) Out-of-order PDES schedule

Figure 4.2: Scheduling of the high-level DVD player model

Fig. 4.2b shows the idea of out-of-order schedule for the DVD player example. The MP3 and

H.264 decoders simulate in parallel on different cores and maintain their own time stamps.

Since MP3 and H.264 are data independent, as a result, we can simulate the model correctly

but significantly reduce the simulator run time.

4.2 Out-of-order Parallel Discrete Event Simulation

We now propose the new out-of-order simulation scheme where timing is only partially ordered

in contrast to synchronous PDES which imposes a total order on event processing and time

advances. We localize the global simulation time (time, delta) for each thread and allow threads

without potential data or event conflicts to run ahead of time while other working threads are

still running with earlier timestamps.

4.2.1 Notations

To formally describe the OoO PDES scheduling algorithm, we introduce the following notations:
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(b) Dynamic states in out-of-order PDES

Figure 4.3: States and transitions of simulation threads (simplified).

1. We define simulation time as tuple (t, δ) where t = time, δ = delta-cycle. We order time

stamps as follows:

• equal: (t1, δ1) = (t2, δ2), iff t1 = t2, δ1 = δ2

• before: (t1, δ1) < (t2, δ2), iff t1 < t2, or t1 = t2, δ1 < δ2

• after: (t1, δ1) > (t2, δ2), iff t1 > t2, or t1 = t2, δ1 > δ2

2. Each thread th has its own time (tth, δth).

3. Since events can be notified multiple times and at different simulation times, we note an

event e notified at (t, δ) as tuple (ide, te, δe) and define: EVENTS= ∪EVENTSt,δ where

EVENTSt,δ = {(ide, te, δe) | te = t, δe = δ)}

4. For DE simulation, typically several sets of queued threads are defined, such as QUEUES

= {READY, RUN, WAIT, WAITFOR}. These sets exist at all times and threads move

from one to the other during simulation, as shown in Fig. 4.3a. For OoO PDES, we
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define multiple sets with different time stamps, which we dynamically create and delete

as needed, as illustrated in Fig. 4.3b.

Specifically, we define:

• QUEUES = {READY, RUN, WAIT, WAITFOR, JOINING, COMPLETE}

• READY = ∪READYt,δ, READYt,δ={th | th is ready to run at (t, δ)}

• RUN = ∪RUNt,δ, RUNt,δ={th | th is running at (t, δ)}

• WAIT = ∪WAITt,δ, WAITt,δ={th | th is waiting since (t, δ) for events (ide, te, δe), where

(te, δe) ≥ (t, δ)}

• WAITFOR = ∪WAITFORt,δ, WAITFORt,δ={th | th is waiting for simulation time

advance to (t, 0)} Note that the delta cycle is always 0 for the WAITFORt,δ queues (δ = 0)

• JOINING = ∪JOININGt,δ, JOININGt,δ={th | th created child threads at (t, δ), and

waits for them to complete}

• COMPLETE = ∪COMPLETEt,δ, COMPLETEt,δ = {th | th completed its execution

at (t, δ)}

Note that for efficiency our implementation orders these sets by increasing time stamps.

5. Initial state at the beginning of simulation:

• t = 0, δ = 0

• RUN = RUN0,0 = {throot}

• READY = WAIT = WAITFOR = COMPLETE = JOINING = ∅

6. Simulation invariants:

Let THREADS be the set of all existing threads. Then, at any time, the following

conditions hold:

•THREADS = READY ∪ RUN ∪ WAIT ∪ WAITFOR ∪ JOINING ∪ COMPLETE
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• ∀ At1,δ1 , Bt2,δ2 ∈ QUEUES:

At1,δ1 6= Bt2,δ2 ⇔ At1,δ1 ∩Bt2,δ2 = ∅

At any time, each thread belongs to exactly one set, and this set determines its state. Coordi-

nated by the scheduler, threads change state by transitioning between the sets, as follows:

• READYt,δ → RUNt,δ: thread becomes runable (is issued)

• RUNt,δ → WAITt,δ: thread calls wait for an event

• RUNt,δ → WAITFORt′,0, where t < t′ = t+ delay: thread calls waitfor(delay)

• WAITt,δ → READYt′,δ′ , where (t, δ) < (t′, δ′): the event that the thread is waiting for is

notified; the thread becomes ready to run at (t′, δ′)

• JOININGt,δ → READYt′,δ′ , where (t, δ) ≤ (t′, δ′): child threads completed and their

parent becomes ready to run again

• WAITFORt,δ → READYt,δ, where δ = 0: simulation time advances to (t, 0), making one

or more threads ready to run

The thread and event sets evolve during simulation as illustrated in Fig. 4.3b. Whenever the

sets READYt,δ and RUNt,δ are empty and there are no WAIT or WAITFOR queues with

earlier timestamps, the scheduler deletes READYt,δ and RUNt,δ, as well as any expired events

with the same timestamp EVENTSt,δ (lines 8-14 in Algorithm 1).

4.2.2 Out-of-order PDES Scheduling Algorithm

Algorithm 1 defines the scheduling algorithm of our OoO PDES. At each scheduling step,

the scheduler first evaluates notified events and wakes up corresponding threads in WAIT. If a

thread becomes ready to run, its local time advances to (te, δe+1) where (te, δe) is the timestamp

of the notified event (line 5 in Algorithm 1). After event handling, the scheduler cleans up any

empty queues and expired events and issues qualified threads for the next delta-cycle (line 18).
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Algorithm 1 Out-of-order PDES Algorithm

1: /* trigger events */
2: for all th ∈ WAIT do
3: if ∃ event (ide, te, δe), th awaits e, and (te, δe) ≥ (tth, δth) then
4: move th from WAITtth,δth to READYte,δe+1

5: tth = te; δth = δe + 1
6: end if
7: end for
8: /* update simulation subsets */
9: for all READYt,δ and RUNt,δ do

10: if READYt,δ = ∅ and RUNt,δ = ∅ and WAITFORt,δ = ∅ then
11: delete READYt,δ, RUNt,δ, WAITFORt,δ, EVENTSt,δ

12: merge WAITt,δ into WAITnext(t,δ); delete WAITt,δ

13: end if
14: end for
15: /* issue qualified threads (delta cycle) */
16: for all th ∈ READY do
17: if RUN.size < numCPUs and HasNoConflicts(th) then
18: issue th

19: end if
20: end for
21: /* handle wait-for-time threads */
22: for all th ∈ WAITFOR do
23: move th from WAITFORtth,δth to READYtth,0

24: end for
25: /* issue qualified threads (time advance cycle) */
26: for all th ∈ READY do
27: if RUN.size < numCPUs and HasNoConflicts(th) then
28: issue th

29: end if
30: end for
31: /* if the scheduler hits this case, we have a deadlock */
32: if RUN = ∅ then
33: report deadlock and exit
34: end if

Next, any threads in WAITFOR are moved to the READY queue corresponding to their wait

time and issued for execution if qualified (line 28). Finally, if no threads can run (RUN = ∅),

the simulator reports a deadlock and quits1.

Note that the scheduling is aggressive. The scheduler issues threads for execution as long as

idle CPU cores and threads without conflicts (HasNoConflicts(th)) are available.

Note also that we can easily turn on/off the parallel out-of-order execution at any time by setting

1The condition for a deadlock is the same as for a regular DE simulator.
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the numCPUs variable. For example, when in-order execution is needed during debugging, we

set numCPUs = 1 and the algorithm will behave the same as the traditional DE simulator

where only one thread is running at all times.

4.3 Out-of-order PDES Conflict Analysis

In order to fully maintain the accuracy in simulation semantics and time, careful analysis on

potential data and event dependencies and coordinating local time stamps for each thread are

critical.

The OoO scheduler depends on conservative analysis of potential conflicts among the active

threads. We now describe the threads and their position in their execution, and then present

the conflict analysis and the which we separate into static compile-time and dynamic run-time

checking.

4.3.1 Thread Segments and Segment Graph

At run time, threads switch back and forth between the states of RUNNING and WAITING.

When RUNNING, they execute specific segments of their code. To formally describe our OoO

PDES conflict analysis, we introduce the following definitions:

• Segment segi: source code statements executed by a thread between two scheduling steps

• Segment Boundary vi: SLDL statements which call the scheduler, i.e. wait, waitfor,

par, etc.

Note that segments segi and segment boundaries vi form a directed graph where segi is the

segment following the boundary vi. Every node vi starts its segment segi and is followed by

other nodes starting their corresponding segments. We formally define:
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• Segment Graph (SG): SG=(V, E), where V = {v | v is a segment boundary}, E={eij

| eij is the set of statements between vi and vj , where vj could be reached from vi, and

segi = ∪eij}.

1 #inc lude <s t d i o . h>
2 i n t array [ 1 0 ] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;
3 behavior B( in i n t begin ,// port va r i ab l e
4 in i n t end , // port va r i ab l e
5 out i n t sum) // port va r i ab l e
6 {
7 i n t i ; event e ; // member v a r i a b l e s
8 void main (){
9 in t tmp ; // stack va r i ab l e

10 tmp = 0 ; // tmp(W)
11 i = begin ; // i (W) , begin (R)
12 wa i t f o r 2 ; // segment boundary ( wa i t f o r )
13 whi le ( i <= end ){ // i (R) , end (R)
14 no t i f y e ; // no t i f y event e
15 wait e ; // segment boundary ( wait )
16 tmp += array [ i ] ; // array (R) , tmp(RW)
17 i ++; // i (RW)
18 }
19 sum = tmp ; } // sum(W)
20 } ;
21
22 behavior Main ( )
23 {
24 i n t sum1 , sum2 ; // member v a r i a b l e s
25 B b1 (0 , 4 , sum1 ) ; // behavior i n s t a n t i a t i o n
26 B b2 (5 , 9 , sum2 ) ; // behavior i n s t a n t i a t i o n
27 i n t main (){
28 par{
29 b1 . main ( ) ; // segment boundary ( par )
30 b2 . main ( ) ;
31 } // segment boundary ( par end )
32 p r i n t f (”sum 1 i s :%d \n” , sum1 ) ; // sum1(R)
33 p r i n t f (”sum 2 i s :%d \n” , sum2 ) ; // sum2(R) }
34 } ;

Figure 4.4: Example source code in SpecC

Fig. 4.4 shows a simple example written in SpecC SLDL. The design contains two parallel

instances b1 and b2 of type B. Both b1 and b2 compute the sum of several elements stored in

a global array array. The element indces’ range is provided at the input ports begin and end,

and the result is passed back to the parent via the output port sum. Finally, the Main behavior

prints sum1 of b1 and sum2 of b2 to the screen.

From the corresponding control flow graph in Fig. 4.5a, we derive the segment graph in Fig. 4.5b.

The graph shows five segment nodes connected by edges indicating the possible flow between

82



the nodes. From the starting node v0, the control flow reaches the par statement (line 28)

which is represented by the nodes v1 (start) and v2 (end) when the scheduler will be called. At

v1, the simulator will create two threads for b1 and b2. Since both are of the same type B, both

will reach waitfor 2 (line 12) via the same edge v1→v3. From there, the control flow reaches

either wait (line 15) via v3→v4, or will skip the while loop (line 13) and complete the thread

execution at the end of the par statement via v3→v2. From within the while loop, control

either loops around v4→v4, or ends the loop and the thread via v4→v2. Finally, after v2 the

execution terminates.

Note that a code statement can be part of multiple segments. For example, line 19 belongs to

both seg3 and seg4.
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(f) Time advance table for the next segment (NTime)

Figure 4.5: The control flow graph, segment graph, conflict tables, and time advance tables for
the simple design example in Fig. 4.4

Note also that threads execute one segment in each scheduling step, and multiple threads may

execute the same segments. 2

2This is different from the segments in Section 5.1.2 where the “instance isolation” technique prevents multiple
instances from sharing the same segment.
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Algorithm 2 Build the Segment Graph

1: newSegList = BuildSegmentGraph(currSegList, stmnt)
2: {
3: switch (stmnt.type) do
4: case STMNT COMPOUND:
5: newL = currSegList
6: for all subStmnt ∈ Stmnt do
7: newL = BuildSegmentGraph(newL, subStmnt)
8: end for
9: case STMNT IF ELSE:
10: ExtendAccess(stmnt.conditionVar, currSegList) // collect segment variable access information
11: tmp1 = BuildSegmentGraph(currSegList, subIfStmnt)
12: tmp2 = BuildSegmentGraph(currSegList, subElseStmnt)
13: newL = tmp1

⋃
tmp2

14: case STMNT WHILE:
15: ExtendAccess(stmnt.conditionVar, currSegList) // collect segment variable access information
16: helperSeg = new Segment
17: tmpL = new SegmentList; tmpL.add(helperSeg)
18: tmp1 = BuildSegmentGraph(tmpL, subWhileStmnt)
19: if helperSeg ∈ tmp1
20: then remove helperSeg from tmp1 end if
21: for all Segment s ∈ tmp1

⋃
currSegList do

22: s.nextSegments
⋃
= helperSeg.nextSegments

23: end for
24: newL = currSegList

⋃
tmp1; delete helperSeg

25: case STMNT PAR:
26: newSeg = new Segment; totalSegments ++
27: newEndSeg = new Segment; totalSegments ++
28: for all Segment s ∈ currSegList do
29: s.nextSegments.add(newSeg) end for
30: tmpL = new SegmentList; tmpL.add(newSeg)
31: for all subStmnt ∈ stmnt do
32: BuildSegmentGraph(tmpL, subStmnt)
33: for all Segment s ∈ tmpL do
34: s.nextSegments.add(newEndSeg) end for
35: end for
36: newL= new SegmentList; newL.add(newEndSeg)
37: case STMNT WAIT:
38: case STMNT WAITFOR:
39: newSeg = new Segment; totalSegments++
40: for all Segment s ∈ currSegList do
41: s.nextSegments.add(newSeg); end for
42: newL = new SegmentList; newL.add(newSeg)
43: case STMNT EXPRESSION:
44: if stmnt is a function call f() then
45: newL = BuildFunctionSegmentGraph(currSegList, fct)
46: else
47: ExtendAccess(stmnt.expression, currSegList) //collect segment variable access information
48: newL = currSegList
49: end if
50: case ...: /* other statements omitted for brevity */
51: end switch
52: return newL;
53: }
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The Segment Graph can be derived from the Control Flow Graph (CFG) of the SLDL model.

Algorithm 2 shows the algorithm for Segment Graph building. Overall, the compiler traverses

the application’s control flow graph following all branches, function calls, and thread creation

points, and recursively builds the corresponding segment graph.

Algorithm 2 shows the segment building function, BuildSegmentGraph, which we perform re-

cursively on each of the statements in the design. The input of the function is the statement

and a list of input segments (currSegList). For instance, when analyzing first statement of the

design, we have the initial segment (seg0) in currSegList. The output of the function is also a

list of segments which we will use as the input to build the next statement.

In the BuildSegmentGraph function, we handle the statements of different types accordingly. For

segment boundary statements, such as STMNT PAR, STMNT WAIT, STMNT WAITFOR,

ect., we create a new segment node and add it as the next segment to all the input segments.

This helps to connect the segments in the segment graph.

For control flow statements, such as STMNT IF ELSE, STMNT WHILE, etc., we conserva-

tively follow all the branches so as to have a complete coverage. For example, we analyze both

the if and else branches of a STMNT IF ELSE statement, and merge both of the branches’

output segment lists into one as the output of the STMNT IF ELSE statement. Note that a

helper segment is used for STMNT WHILE statements to connect the segments properly due

to the loops (i.e. v4 → v4, Fig. 4.5b).

The ExtendAccess function in Algorithm 2 is used to collect the variable access information

from the statement.

4.3.2 Static Conflict Analysis

To comply with SLDL execution semantics, threads must not execute in parallel or out-of-

order if the segments they are in pose any hazard towards validity of data, event delivery, or
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timing.

Data Hazards

Data hazards are caused by parallel or out-of-order accesses to shared variables. Three cases ex-

ist, namely read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW).

waitfor 5; 

i = 0; 
waitfor 10; 

f(); 
… 

waitfor 10; 

i = 1; 
waitfor 10; 

g(); 
… 

int i; 

thread th1 thread th2 shared  

variable 

Figure 4.6: Write-after-write (WAW) conflict between two parallel threads.

Fig. 4.6 shows a simple example of a WAW conflict where two parallel threads th1 and th2 write

to the same variable i at different times. Simulation semantics require that th1 executes first

and sets i to 0 at time (5, 0), followed by th2 setting i to its final value 1 at time (10, 0). If the

simulator would issue the threads th1 and th2 in parallel, this would create a race condition,

making the final value of i non-deterministic. Thus, we must not schedule th1 and th2 out-

of-order. Note, however, that th1 and th2 can run in parallel after their second wait-for-time

statement if the functions f() and g() are independent.

Since data hazards stem from the code in specific segments, we analyze data conflicts statically

at compile-time and create a table where the scheduler can then at run-time quickly lookup any

potential conflicts between active segments.

We define a data conflict table CTab[N,N ] where N is the total number of segments in the

application code: CTab[i, j] = true, iff there is a potential data conflict between the segments

si and sj ; otherwise, CTab[i, j] = false.
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To build the conflict table, we compile for each segment a variable access list which contains

all variables accessed in the segment. Each entry is a tuple (Symbol, AccessType) where Symbol

is the variable and AccessType specifies read-only (R), write-only (W), read-write (RW), or

pointer access (Ptr).

Finally, we create the conflict table CTab[N,N ] by comparing the access lists for each segment

pair. If two segments si and sj share any variable with access type (W) or (RW), or there is

any shared pointer access by si or sj , then we mark this as a potential conflict.

Fig. 4.5c shows the data conflict table for the example in Fig. 4.4. Here, for instance, seg4 has

a data conflict (RAW) with seg1 since seg4 has i(RW) (line 17) and seg1 has i(W) (line 11) in

the variable access list.

Not all variables are straightforward to analyze, however. The SLDL actually supports variables

at different scopes as well as ports which are connected by port maps in the structural hierarchy

of the design model.

We distinguish and handle the following cases:

• Global variables, e.g. array in line 2: This case is discussed above and can be handled

directly as tuple (Symbol, AccessType).

• Local variables, e.g. tmp in line 9: Local variables are stored on the function call stack

and cannot be shared between different threads. Thus, they can be ignored in the access

lists.

• Instance member variables, e.g. i in line 7: Since instances may be instantiated

multiple times and then their variables are different, we need to distinguish them by their

complete instance path prepended to the variable name. For example, the actual Symbol

used for the two instances of variable i is Main.b1.i or Main.b2.i, respectively.

• Port variables, e.g. sum in line 5: For ports, we need to find the actual variable mapped
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to the port and use that as Symbol together with its actual instance path. For example,

Main.sum1 is the actual variable mapped to port Main.b1.sum. Note that tracing ports

to their connected variables requires the compiler to follow port mappings through the

structural hierarchy of the design model which is possible when all used components are

part of the current translation unit.

• Pointers: We currently do not perform pointer analysis (future work). For now, we

conservatively mark all segments with pointer accesses as potential conflicts.

Event Hazards

Thread synchronization through event notification also poses hazards to out-of-order execu-

tion. Specifically, thread segments are dependent when one is waiting for an event notified by

another.

We define an event notification table NTab[N,N ] where N is the total number of segments:

NTab[i, j] = true, iff segment si notifies an event that sj is waiting for; otherwise, NTab[i, j] =

false. Note that in contrast to the data conflict table above, the event notification table is not

symmetric.

Fig. 4.5d shows the event notification table for the simple example. For instance, NTab[3, 4] =

true since seg3 notifies the event e (line 14) which seg4 waits for (line 15).

Note that, in order to identify event instances, we use the same scope and port map handling

for events as described above for data variables.

Timing Hazards

The local time for an individual thread in OoO PDES can pose a timing hazard when the thread

runs too far ahead of others. To prevent this, we analyze the time advances of threads at segment
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boundaries. There are three cases with different increments, as listed in Table 4.1.

Table 4.1: Time advances at segment boundaries.

Segment boundary Time Increment

wait event increment by one delta cycle (0:1)

waitfor t increment by time t (t:0)

par/par end no time increment (0:0)

We define two time advance tables, one for the segment a thread is currently in, and one for

the next segment(s) that a thread can reach in the following scheduling step.

The current time advance table CTime[N ] lists the time increment that a thread will

experience when it enters the given segment. For the example in Fig. 4.5e for instance, the

waitfor 2 (line 12) at the beginning of seg3 sets CTime[3] = (2 : 0).

The next time advance table NTime[N ] lists the time increment that a thread will incur

when it leaves the given and enters the next segment. Since there may be more than one next

segment, we list in the table the minimum of the time advances which is the earliest time the

thread can become active again. Formally:

NTime[i] = min{CTime[j], ∀segj which follow segi}.

For example, Fig. 4.5f lists NTime[3] = (0:0) since seg3 is followed by seg4 (increment (0:1))

and seg2 (increment (0:0).

Table 4.2: Examples for direct and indirect timing hazards

Situation th1 th2 Hazard?

Direct (10:2) (10:0), next segment at (10:1) yes
Timing Hazard (10:2) (10:0), next segment at (12:0) no

Indirect (10:2) (10:0), wakes th3 at (10:1) yes
Timing Hazard (10:2) (10:1), wakes th3 at (10:2) no

There is two types of timing hazards, namely direct and indirect ones. For a candidate thread

th1 to be issued, a direct timing hazard exists when another thread th2, that is safe to run,

resumes its execution at a time earlier than the local time of th1. In this case, the future of th2
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is unknown and could potentially affect th1. Thus, it is not safe to issue th1.

Table 4.2 shows an example where th1 is considered for execution at time (10:2). If there is a

thread th2 with local time (10:0) whose next segment runs at time (10:1), i.e. before th1, then

the execution of th1 is not safe. However, if we know from the time advance tables that th2 will

resume its execution later at (12:0), no timing hazard exists with respect to th2.

An indirect timing hazard exists if a third thread th3 can wake up earlier than th1 due to an

event notified by th2. Again, Table 4.2 shows an example. If th2 at time (10:0) potentially

wakes a thread th3 so that th3 runs in the next delta cycle (10:1), i.e. earlier than th1, then it

is not safe to issue th1.

4.3.3 Dynamic Conflict Detection

With the above analysis performed at compile time, the generated tables are passed to the

simulator so that it can make quick and safe scheduling decisions at run time by using table

lookups. Our compiler also instruments the design model such that the current segment ID

is passed to the scheduler as an additional argument whenever a thread executes scheduling

statements, such as wait and wait-for-time.

At run-time, the scheduler calls a function HasNoConflicts(th) to determine whether or not it

can issue a thread th early. As shown in Algorithm 3, HasNoConflicts(th) checks for potential

conflicts with all concurrent threads in the RUN and READY queues with an earlier time than

th. For each concurrent thread, function Conflict(th, th2) checks for any data, timing, and event

hazards. Note that these checks can be performed in constant time (O(1)) due to the table

lookups.
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Algorithm 3 Conflict Detection in Scheduler

1: bool HasNoConflicts(Thread th)
2: {
3: for all th2 ∈ RUN ∪ READY,
4: where (th2.t, th2.δ) < (th.t, th.δ) do
5: if (Conflict(th, th2))
6: then return false end if
7: end for
8: return true
9: }

10:

11: bool Conflict(Thread th, Thread th2)
12: {
13: if (th has data conflict with th2) then /* data hazard */
14: return true end if
15: if (th2 may enter another segment before th) then /* time hazard */
16: return true end if
17: if (th2 may wake up another thread to run before th) then /* event hazard */
18: return true end if
19: return false
20: }

4.4 Experimental Results

We have implemented the proposed out-of-order parallel simulator in the SCE system design

environment and conducted experiments on three multi-media applications shown.

To demonstrate the benefits of our out-of-order PDES, we compare the compiler and simulator

run times with the traditional single-threaded reference and the synchronous parallel implemen-

tation Section 3.

All experiments have been performed on the same host PC with a 4-core CPU (Intel(R)

Core(TM)2 Quad) at 3.0 GHz.
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4.4.1 An Abstract Model of a DVD Player

Our first experiment uses the DVD player model shown in Fig. 4.7. Similar to the model dis-

cussed in Section 4.1, a H.264 video and a MP3 audio stream are decoded in parallel. However,

this model features four parallel slice decoders which decode separate slices in a H.264 frame

simultaneously. Specifically, the H.264 stimulus reads new frames from the input stream and

dispatches its slices to the four slice decoders. A synchronizer block completes the decoding of

each frame and triggers the stimulus to send the next one. The blocks in the model communicate

via double-handshake channels.
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Figure 4.7: The abstract DVD player example

According to profiling results, the computational workload ratio between decoding one H.264

frame with 704x566 pixels and one 44.1kHz MP3 frame is about 30:1. Further, about 70% of

the decoding time is spent in the slice decoders. The resulting workload of the major blocks is

shown in the diagram.

Table 4.3 shows the statistics and measurements for this model. Note that the conflict table is

very sparse, allowing 78.47% of the threads to be issued out-of-order. While the synchronous

PDES loses performance due to in-order time barriers and synchronization overheads, our out-
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of-order simulator shows twice the simulation speed.

Table 4.3: Experimental results for the abstract DVD player example

Single-thread Multi-core
Simulator: reference Synchronous PDES Out-of-order PDES

compile time 0.71s 0.88s / 0.81 0.96s / 0.74

simulator time 7.82s 7.98s / 0.98 3.89s / 2.01

#segments N 50

total conflicts in CTab[N,N ] 160/2500 (6.4%)

#threads issued 1008

#threads issued out-of-order 791 (78.47%)

4.4.2 A JPEG Encoder Model

Our second experiment uses the JPEG image encoder model described in Section 3.6.2 with

timing annotations. Basically, the stimulus reads a BMP color image with 3216x2136 pixels

and performs color-space conversion from RGB to YCbCr. The encoder performs the DCT,

quantization and zigzag modules for the three independent color components (Y, Cb, Cr) in

parallel, followed by a sequential Huffman encoder at the end. The JPEG monitor collects the

encoded data and stores it in the output file.

To show the increased simulation speed also for models at different abstraction levels, we have

created four models (spec, arch, sched, net) with increasing amount of implementation detail,

down to a network model with detailed bus transactions. Table 4.4 lists the PDES statistics and

shows that, for the JPEG encoder, about half or more of all threads can be issued out-of-order.

Table 4.5 shows the corresponding compiler and simulator run times.

While the compile time increases similar to the synchronous parallel compiler, the simulation

speed improves by about 138%, more than 5 times the gain of the synchronous parallel simula-

tor.
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Table 4.4: Out-of-order PDES statistics for JPEG and H.264 examples

JPEG Image Encoder
TLM abstraction: spec arch sched net
#segments N 42 40 42 43
total conflicts 199/1764 184/1600 199/1764 212/1849
in CTab[N,N ] (11.3%) (11.5%) (11.3%) (11.5%)
#threads issued 271 268 268 4861
#threads issued 176 173 176 2310
out-of-order (64.9%) (64.5%) (65.7%) (47.5%)

H.264 Video Decoder
TLM abstraction: spec arch sched net
#segments N 67 67 69 70
total conflicts 512/4489 518/4489 518/4761 518/4900
in CTab[N,N ] (11.4%) (11.5%) (10.88%) (10.57%)
#threads issued 923017 921732 937329 1151318
#threads issued 179581 176500 177276 317591
out-of-order (19.46%) (19.15%) (18.91%) (27.58%)

4.4.3 A Detailed H.264 Decoder Model

Our third experiment simulates the detailed H.264 decoder model described in Section 3.6.1.

While this model is similar at the highest level to the video part of the abstract DVD player

in Fig. 4.1 , it contains many more blocks at lower levels which implement the complete H.264

reference application. Internally, each slice decoder consists of complex H.264 decoder functions

entropy decoding, inverse quantization and transformation, motion compensation, and intra-

prediction. For our simulation, we use a video stream of 1079 frames and 1280x720 pixels per

frame, each with 4 slices of equal size.

Note that although this H.264 decoder has the same structure as the one in Section 3.6.1, the

double handshake channels are used in this model to reflect the options in the real design. Thus,

the logic timing for each parallel slice decoder is actually imbalanced in the model.

Our simulation results for this industrial-size design are listed in the lower half of Table 4.4 and

Table 4.5, again for four models at different abstraction levels, including a network model with

detailed bus transactions. Due to the large complexity of the models, the compile time increases
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by up to 35.2% This, however, is insignificant when compared to the much longer simulator run

times.

While the synchronous parallel simulator shows almost no improvement in simulation speed,

our proposed simulator shows more than 60% gain since many of the threads can be issued

out-of-order (see Table 4.4).

Table 4.5: Experimental results for the JPEG Image Encoder and the H.264 Video Decoder
examples

Single-thread Multi-core
Simulator: reference Synchronous parallel Out-of-Order parallel

compile simulator compile time simulator time compile time simulator time
time [sec] time [sec] [sec] / speedup [sec] / speedup [sec] / speedup [sec] / speedup

spec 0.80 2.23 1.10 / 0.73 1.84 / 1.21 1.13 / 0.71 0.93 / 2.40
JPEG arch 1.09 2.23 1.35 / 0.81 1.80 / 1.24 1.37 / 0.80 0.93 / 2.40
Encoder sched 1.14 2.24 1.41 / 0.81 1.83 / 1.22 1.43 / 0.80 0.92 / 2.43

net 1.34 2.90 1.59 / 0.84 2.33 / 1.24 1.63 / 0.82 1.26 / 2.30

spec 12.35 97.16 13.91 / 0.89 97.33 / 1.00 18.13 / 0.68 60.33 / 1.61
H.264 arch 11.97 97.81 12.72 / 0.94 99.93 / 0.98 18.46 / 0.65 60.77 / 1.61

Decoder sched 18.18 100.20 18.84 / 0.96 100.18 / 1.00 24.80 / 0.73 60.96 / 1.64
net 18.57 111.07 19.52 / 0.95 106.14 / 1.05 26.06 / 0.71 66.25 / 1.68
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5 Optimized Out-of-order Parallel Discrete

Event Simulation

The out-of-order parallel discrete event simulation in Chapter 4 relies on static code analysis and

dynamic out-of-order scheduling to break the global cycle barrier in simulation so as to achieve

high multi-core CPU utilization. It is a conservative approach which only issues threads out of

the order when it is safe based on the conflict analysis information, and thus avoids the expensive

overhead for simulation roll-back. However, static code analysis can generate false conflicts

which will in turn prevent the dynamic scheduler from making aggressive thread scheduling

decisions.

In this chapter, we will present two optimizations on the out-of-order parallel discrete event

simulation framework to reduce false conflicts. The first one is an optimized compiler which

uses the idea of instance isolation to reduce false conflicts generated by the static code analysis

[95]. It is also more efficient than the straight forward analysis approach in Section 4.3. The

second one is an optimized scheduling approach which reduces false conflict detection at run

time with the help of prediction information [103].
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5.1 Optimized Compiler Using Instance Isolation

Out-of-order parallel simulation relies heavily on the conflict results generated by the static

code analyzer. The quality of the static analysis has a significant impact on the correctness and

efficiency of the out-of-order parallel simulation.

5.1.1 Motivation

To be safe, the static analysis sometimes is overly conservative and generates false conflicts

which prevent the out-of-order scheduler from issuing threads in parallel that do not pose any

real hazard. For example, in Fig. 5.1 both seg3 and seg4 contain write (W) accesses to variables

Main.sum1 and Main.sum2. Consequently, the analysis reports a conflict between seg3 and seg4.

In turn, the thread thb2 cannot execute seg4 in parallel with thread thb1 in seg3 (or vice versa).

In reality, however, the execution is safe when thb1 and thb2 are in seg3 and seg4 at the same

time since instance b1 will only access Main.sum1 and b2 only modifies Main.sum2. Thus, the

conflict does not really exist.

Looking closer at this false conflict, we observe that the compiler cannot tell that the access of

Main.sum1 in seg3 and seg4 will only happen in thread thb1 but not in thb2, because both b1 and

b2 share the same definition (and same segments/code). Following this, we can resolve the false

conflict if b1 and b2 have separate definitions, such as B iso0 and B iso1 in Fig. 5.2a. Here,

two different segments, seg3 and seg5, start from waitfor 1 in instances B iso0 and B iso1,

respectively. Now seg3 only writes Main.sum1 and seg5 only writes Main.sum2. Consequently,

the scheduler detects that it is safe for thb1 to execute seg3 in parallel to thb2 in seg5. The same

argument holds for seg4 and seg6, as indicated in the extended CTable in Fig. 5.2c.

In general, the fewer conflicts are detected by the analysis, the more threads can be issued in

parallel by the out-of-order scheduler, and the higher the simulation speed will be. On the other
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1 #inc lude <s t d i o . h>
2 i n t array [ 1 0 ] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;
3 behavior B( in i n t begin ,// port va r i ab l e
4 in i n t end , // port va r i ab l e
5 out i n t sum) // port va r i ab l e
6 {
7 i n t i ; event e ; // member v a r i a b l e s
8 void main (){
9 in t tmp ; // stack va r i ab l e

10 tmp = 0 ; // tmp(W)
11 i = begin ; // i (W) , begin (R)
12 wa i t f o r 2 ; // segment boundary ( wa i t f o r )
13 whi le ( i <= end ){ // i (R) , end (R)
14 no t i f y e ; // no t i f y event e
15 wait e ; // segment boundary ( wait )
16 tmp += array [ i ] ; // array (R) , tmp(RW)
17 i ++; // i (RW)
18 }
19 sum = tmp ; } // sum(W)
20 } ;
21
22 behavior Main ( )
23 {
24 i n t sum1 , sum2 ; // member v a r i a b l e s
25 B b1 (0 , 4 , sum1 ) ; // behavior i n s t a n t i a t i o n
26 B b2 (5 , 9 , sum2 ) ; // behavior i n s t a n t i a t i o n
27 i n t main (){
28 par{
29 b1 . main ( ) ; // segment boundary ( par )
30 b2 . main ( ) ;
31 } // segment boundary ( par end )
32 p r i n t f (”sum 1 i s :%d \n” , sum1 ) ; // sum1(R)
33 p r i n t f (”sum 2 i s :%d \n” , sum2 ) ; // sum2(R) }
34 } ;

Figure 5.1: Example source code in SpecC

hand, if the code analyzer reports conflict between all the segments, the out-of-order simulator

will downgrade to a regular in-order simulator.

99



3 behavior B iso0 ( . . . ) behavior B iso1 ( . . . )
4 { {

// same body as B // same body as B
20 } ; } ;
21
22 behavior Main ( )
23 {
24 in t sum1 , sum2 ;
25 B iso0 b1 (0 , 4 , sum1 ) ;
26 B iso1 b2 (5 , 9 , sum2 ) ;
27 i n t main (){

. . .
34 } ;

(a) Source code with isolated instances
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(c) Segment graph after isolation

Figure 5.2: Simple design example with isolated instances.

Definition: We introduce the term Instance Isolation to describe the source code modifica-

tion demonstrated above. Isolating an instance means to create a unique copy of the instance

definition (behavior or channel) so that the instance has its own segments.

Table 5.1: Experimental Results for H.264 Decoder Models with Different Degree of Isolation.

formatted Synchronous PDES Out-of-Order PDES
Model #bhvr #chnl lines of cmpl sim cmpl [sec] sim [sec] #seg #conflicts #total #OoO

code [sec] [sec] (speedup) (speedup) issues issues
iso0 54 11 55258 11.86 99.42 18.76 (0.63) 96.97 (1.03) 38 322 (22.3%) 927583 152816 (16.5%)
iso1 54 13 55330 11.93 101.01 17.57 (0.68) 96.49 (1.05) 41 336 (20.0%) 933222 146711 (15.7%)
iso2 58 16 55558 12.07 99.25 17.74 (0.68) 83.20 (1.19) 48 388 (16.8%) 913225 147541 (16.2%)
iso3 62 19 55786 12.23 99.68 17.87 (0.68) 72.72 (1.37) 55 440 (14.6%) 920001 166065 (18.1%)
iso4 66 24 56160 12.46 100.95 18.13 (0.69) 60.33 (1.67) 67 512 (11.4%) 923017 179581 (19.5%)

We will now show that instance isolation has a major impact on out-of-order PDES. Using
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the example of a H.264 video decoder (Fig. 3.6.11) with a test stream of 1079 video frames

(1280x720 pixels per frame), Table 5.1 shows the impact of instance isolation with respect of

model and code size, as well as compilation and simulation run time.

We have manually created 5 design models with an increasing number of isolated instances.

iso0 is the initial model without instance isolation, iso1, iso2 and iso3 are partially isolated,

and iso4 is a fully isolated model where each instance has its own definition. As expected and

shown in Table 5.1, the more instances we isolate, the more behaviors (#bhvr) and channels

(#chnl) exist in the model. The number of lines of code increases as well, as does the compile

time for out-of-order PDES due to the larger segment graph.

On the other hand, the out-of-order simulation gains significant speedup (up to 67.5%) due to

the decreasing ratio of detected conflicts (#conflicts) among the increasing number of segments

(#seg). This tendency is also clearly visible in the number of threads issued in parallel by

the out-of-order PDES (#OoO issues). We conclude that instance isolation can significantly

improve the run-time efficiency of out-of-order PDES. Next, we will automate this technique

and address the overhead of larger designs and longer compilation time at the same time.

5.1.2 Instance Isolation without Code Duplication

Instance isolation essentially creates additional scheduling statements (i.e. par, wait, and wait-

for-time) for specific instances. Different segments are then generated for these statements and

the variable access information is separated. 2

As described above, isolation textually creates an additional class with a different name (e.g.

B iso1 in Fig. 5.2a), but all statements remain the same as in the original definition (e.g. B in

1The simulation results in Section 3.6 are based on a set of isolated models to demonstrate the effectiveness of
synchronous parallel discrete event simulation.

2Instance isolation helps to distinguish different instances of the same type, i.e. behavior or channel. Here,
multiple instances will not share the same segment which is different from the segments in Section 4.3.1
without applying instance isolation.
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Fig. 5.1). This code duplication eases the understanding of isolation, but is not desirable for an

implementation due to its waste of resources.

In the following section, we propose a compiler optimization that uses the original statements

without duplication, but still creates separate segments for different instances and attaches the

variable access information accordingly. Thus, the size of the design model and the program

segment in the binary executable will not increase.

To achieve this, we distinguish instances by unique identifiers (i.e. instID) which the compiler

maintains and passes to the simulator. At run time, the simulator can then use the current

instance identifier to distinguish the segments even though they execute the same program code.

In Fig. 5.2a for example, seg3 of b1 and seg5 of b2 originate from the same statement waitfor

2 in line 12 (see also Fig. 5.1).

Also, when processing a function call in a segment, we need to analyze the function body to

obtain its variable access information since these variables affect the same segment. Moreover,

we need to analyze function definitions also to connect the segment graph correctly if additional

segments are started due to segment boundary statements inside the function body. This

analysis could grow exponentially with the size of the design if there are frequent deep function

calls. We avoid this by caching the information obtained during the function analysis, so that

we can reuse this data the next time the same function is called. The time complexity of our

compile-time analysis is therefore practically linear to the size of the code.

We present the detailed algorithm for the static code analysis, which automatically isolates

the instances in the design “on-the-fly” without duplicated source code and with only minimal

compile time increase, in the next section.

102



5.1.3 Definitions for the Optimized Static Conflict Analysis

At compile time, we use static analysis of the application source code to determine whether or

not any conflicts exist between the segments. As shown in Algorithm 2, the compiler traverses

the application’s control flow graph following all branches, function calls, and thread creation

points, and recursively builds the corresponding segment graph. The segment graph is then

used to build the access lists and desired conflict tables.

To present the optimized algorithm in detail, we need to introduce a few definitions:

• cacheMultiInfo: a Boolean flag at each function for caching multiple sets of information

for different instances; true if new segments are created or interface methods3 are called

in this function; false otherwise (default).

Note that, if cacheMultiInfo is false, the cached information is the same for all instances

that call the function.

• cachedInfo: cached information, as follows:

– instID: instance identifier, e.g. Main.b1.

– dummyInSeg: a dummy segment as the initial segment of the current set of cached

information.

– carryThrough: a Boolean flag; true when the input segment carries through the

function and is part of the output segments; false otherwise. For example for

Main.b1, B.main.carrythrough = false since seg1 is connected to seg3 and will

not carry through B.main.

– outputSegments: segments (without the input segment) that will be the output af-

ter analyzing this function. For example for Main.b1, B.main.outputSegments={seg3,

seg4}.

3Interface method definitions differ for different types of instances with different implementations.
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– segAccessLists: list of segment access lists. The segments here are a subset of the

global segments in the design. This list only contains the segments that are accessed

by instID.fct.

During the analysis, when a statement is processed, there is always an input segment list and

an output segment list. For example, for the while loop (Fig. 5.1, line 13), the input segment

list is {seg3} and the output segment list is {seg3, seg4}. To start, we create an initial segment

(i.e. seg0) for the design as the input segment of the first statement in the program entrance

function, i.e. Main.main().

5.1.4 Algorithm for Static Conflict Analysis

Our optimized algorithm for the static code analysis consists of four phases, as follows:

• Input: Design model (e.g. from file design.sc).

Output: Segment graph and segment conflict tables.

•• Phase 1: Use Algorithm 2 to create the global segment graph, where Algorithm 4 lists

the details of function BuildFunctionSegmentGraph() at line 45.

If no function needs to be cached for multiple instances, the complexity of this phase is

O(n) where n is the number of statements in the design.

• Phase 2: Use Algorithm 5 to build a local segment graph with segment access lists for

each function. Here, we only add variables accessed in this function to the segment access

lists. We do not follow function calls in this phase.

The complexity of this phase is O(ns) where ns is the number of statements in the function

definition.

Fig. 5.3a illustrates this for the example in Fig. 5.2. We do not follow function calls to
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B.main from Main.main but connect a dummyInSeg node instead. We also create two

sets of main function cached information, shown in Fig. 5.3b and Fig. 5.3c, for the two

instances of B since segment boundary nodes are created when calling B.main.

Note that we do not know yet the instance path of the member variables in this phase.

Therefore, we use port variable sum instead of its real mapping Main.sum1 and Main.sum2

here.

Algorithm 4 Code analysis for out-of-order PDES, Phase 1:
BuildFunctionSegmentGraph(currSegList, fct)

1: if fct is first called then
2: BuildSegmentGraph(currSegList, fct.topstmnt);
3: if new segment nodes are created in fct then
4: set fct.cacheMultiInfo = true;
5: cache function information with current instID ;
6: else
7: cache function information without instID ; endif
8: else /*fct has already been analyzed*/
9: if fct.cacheMultiInfo = false then

10: /*no segments are created by calling this function*/
11: use the cached information of fct ;
12: else /*new segments are created by calling this function*/
13: if current instID is cached then
14: use the cached information of fct.cacheinfo[instID] ;
15: else
16: BuildSegmentGraph(currSegList, fct.topstmnt);
17: cache function information with current instID ; endif
18: endif

19: endif
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Algorithm 5 Code analysis for out-of-order PDES, Phase 2

1: for all function fct do
2: Traverse the control flow of fct.
3: Create and maintain a local segment list localSegments.
4: Use fct.dummyInSeg as the initial input segment.
5: For each statement, add variables with their access type into proper segments.
6: for all function calls inst.fct or fct do
7: Do not follow the function calls. Just register inst.fct.dummyInSeg or fct.dummyInSeg as the

input segments of the current statement and indicate that inst.fct or fct is called in the input
segments.

8: Add the output segments of the function call to localSegments and use the output segments as
the input of the next statement in the current function.

9: end for

10: end for

v1(seg1 starts) 

v0 (seg0 starts) 

instID: b1 

B.main. 

dummyInSeg 

instID:b2 

B.main. 

dummyInSeg 

v2 (seg2  

starts) 
Main.sum1(R),  

Main.sum2(R) 

… 

… 

(a) Main.main

b1.main. 

dummyInSeg 

v3(seg3 starts) 

v4(seg4  

starts) 

B.i(W),  

B.i(R) 

B.i(WR),  

array(R) 

 B.sum(W) 

 B.sum(W) 

Output 

(b) B.main (Main.b1)
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dummyInSeg 
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(c) B.main (Main.b2)

Figure 5.3: Function-local segment graphs and variable access lists for the example in Fig. 5.2.

• Phase 3: Build the complete segment access lists for each function. Here, we propagate

function calls and add all accessed variables to the cached segment access lists cascaded

with proper instance paths.

For our example, b1 is cascaded to the instance paths of the member variables accessed in

106



segment B.main.dummyInSeg for instance b1 when analyzing Main.main (if necessary)4.

We also use the function caching technique here to reduce the complexity of the analysis.

The complexity of this phase is O(ng) where ng is the size of the segment graph for each

function.

• Phase 4: Collect the access lists for each segment in Main.main and add them to the

global segment access lists. Since Main.main is the program entry (or root function), all

the segments are in its local segments and the member variables have complete cascaded

instance paths in the segment access lists. The actual mapping of port variables can now

be found according to their instance path.

The complexity of this phase is O(nl) where nl is the size of the local segment access list

of Main.main.

In summary, the algorithm generates precise segment conflict information using implicit instance

isolation. The overall complexity is, for practical purposes, linear to the size of the analyzed

design.

As a limitation, we do not support the analysis of recursive function calls (future work).

5.1.5 Experimental Results

To demonstrate the effects of our optimization, we have implemented the synchronous and out-

of-order PDES algorithms for the SpecC SLDL5. We have run two sets of experiments and have

measured the results on the same host PC with a 4-core CPU (Intel(R) Core(TM)2 Quad) at

3.0 GHz.

The first experiment uses the same JPEG image encoder design in Section 4.4.2. It performs the

DCT,Quantization and Zigzag modules for the three color components (Y, Cb, Cr) concurrently,

4Regular member variables accessed in different instances will not cause data hazards. Only port variables and
interface member variables need the instance path for tracing the real mapping later.

5Our results should be equally applicable to SystemC SLDL.
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and uses a sequential Huffman encoder at the end. The size of the input BMP image is 3216x2136

pixels.

The second experiment uses the same parallelized video decoder model in Section 4.4.3 with

four parallel slice decoders to decode the separate slices in one frame simultaneously. We use

the same test stream of 1079 video frames with 1280x720 pixels per frame.

Table 5.2 and Table 5.3 lists our experimental results for both design models at four different

abstraction levels (spec, arch, sched, net). We measure and compare the out-of-order PDES

algorithms in compile and simulation run time against the synchronous PDES implementation

as reference.

The results shown in Table 5.2 and Table 5.3 clearly support the two main contributions of this

optimization. First, instance isolation is very effective in improving the simulation speed, as

shown in the columns for the unoptimized out-of-order PDES. Second and more importantly,

our new analysis algorithm for optimized out-of-order PDES not only shows high speedup in

simulation due to the automatic isolation ”on-the-fly”, it also shows only an insignificant increase

in compile time of less than 6%.

Table 5.2: Compilation time for a Set of JPEG Image Encoder and H.264 Video Decoder Models.
Synchronous PDES Unoptimized Out-of-Order PDES Optimized

Model Original Design Isolated Design Out-of-Order PDES
compile compile [sec] compile [sec] compile [sec]
[sec] (speedup) (speedup) (speedup)

spec 0.95 0.96 (0.99) 1.13(0.84) 1.01 (0.94)
JPEG arch 1.24 1.25 (0.99) 1.37 (0.91) 1.28 (0.97)
Encoder sched 1.30 1.31 (0.99) 1.43 (0.91) 1.34 (0.97)

net 1.50 1.52 (0.99) 1.63 (0.92) 1.55 (0.97)

spec 13.12 18.76(0.70) 18.13 (0.72) 12.25 (1.07)
H.264 arch 12.20 17.89 (0.68) 18.46 (0.66) 12.77 (0.96)

Decoder sched 18.34 24.23 (0.76) 24.80 (0.74) 18.85 (0.97)
net 19.07 25.71 (0.74) 26.06 (0.73) 19.54 (0.98)
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Table 5.3: Simulation run time for a Set of JPEG Image Encoder and H.264 Video Decoder
Models.

Synchronous PDES Unoptimized Out-of-Order PDES Optimized
Model Original Design Isolated Design Out-of-Order PDES

simulation simulation [sec] simulation [sec] simulation [sec]
[sec] (speedup) (speedup) (speedup)

spec 1.84 1.84 (1.00) 0.92 (2.00) 0.96 (1.92)
JPEG arch 1.82 1.70 (1.07) 0.95 (1.92) 0.92 (1.98)
Encoder sched 1.80 1.72 (1.05) 0.94 (1.91) 0.96 (1.88)

net 2.33 2.01 (1.16) 1.25 (1.86) 1.24 (1.88)

spec 96.91 96.97 (1.00) 60.33 (1.61) 60.25 (1.61)
H.264 arch 99.86 100.30 (1.00) 60.77 (1.64) 59.78 (1.67)

Decoder sched 99.80 99.44 (1.00) 60.96 (1.64) 60.29 (1.66)
net 104.77 104.56(1.00) 66.25 (1.58) 66.00 (1.59)

5.2 Optimized Scheduling Using Predictions

Out-of-order PDES maintains simulation semantics and timing accuracy with the help of the

compiler which performs complex static conflict analysis on the design source code. The sched-

uler utilizes the analysis results so as to make quick and safe decisions at run time and issue

threads as early as possible. However, out-of-order scheduling is often prevented because of the

unknown future behavior of the threads.

In this section, we extend the static code analysis in order to predict the future of candidate

threads. Looking ahead of the current simulation state allows the scheduler to issue more

threads in parallel, resulting in significantly reduced simulator run time.

5.2.1 State Prediction to Avoid False Conflicts

Out-of-order PDES issues threads in different simulation cycles to run in parallel if there are

no potential hazards.

Fig. 5.5a shows the scheduling of thread execution for the example in Fig. 5.4. The threads

th1 and th2 are running in different segments with their own time. When one thread finishes

its segment, shown as bold black bars as scheduling point, the scheduler is called for thread

109



synchronization and issuing.

The OoO PDES scheduling algorithm is very conservative. Sometimes it makes false conflict

detections at run time. For instance, in Fig. 5.5a, when th2 finishes its execution in seg5 and

hits the scheduling point th2. 1 , th1 is running in seg2. The current time is (1:0) for th1 and

(0:0) for th2. As listed in Fig. 5.4c, the next time advance is (0:1) for seg2 and (2:0) for seg5.

Therefore, the earliest time for th1 to enter the next segment, i.e. seg3, is (1:1), and for th2 is

(2:0). Since th1 may run into its next segment (seg3) with an earlier timestamp (1:1) than th2

(2:0), the Conflict() in Algorithm 3 will return true at line 16. The scheduler therefore cannot

issue th2 out-of-order at scheduling point th2. 1 .

However, this is a false conflict for out-of-order thread issuing. Although th1 may run into next

segment (seg3) earlier than th2, there are no data conflicts between th1’s next segment seg3

and th2’s current segment seg6. Moreover, the next time advance of seg3 is (1:0). So th1 will

start a new segment no earlier than (2:0) after finishing seg3. It is actually safe to issue th2

out-of-order at scheduling point th2. 1 since th2’s time is not after (2:0).

If the scheduler knows what will happen with th1 in more than one scheduling step ahead of

scheduling point th2. 1 , it can issue th2 to run in parallel with th1 instead of holding it back

for the next scheduling step.

This motivates our idea of optimizing out-of-order PDES scheduling. With prediction informa-

tion, as shown in Fig. 5.5b, th2 can be issued at both scheduling point th2. 1 and th2. 6 . The

simulator run time can thus be shortened.
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Figure 5.4: Simple design example.
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Figure 5.5: Out-of-order PDES scheduling.

5.2.2 Static Prediction Analysis

Out-of-order PDES relies on static code analysis for safe scheduling decisions. The knowledge

of future thread status helps the scheduler to issue more threads out of the order for faster

simulation.

At run time, threads switch back and forth between the states of RUNNING and WAIT-

ING. While RUNNING, the threads execute specific segments of their code. The out-of-order

PDES scheduler checks the status of the threads by looking up the data structures for the

segments.

The Segment Graph illustrates the execution order of the segments and their boundaries when

the scheduler is called. The future segment information from any current segment can be derived

from the Segment Graph at compile time.

We define the following data structures for static prediction analysis:
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Data hazards prediction

• Segment Adjacency Matrix (A[N,N]):

A[i, j] =











1 if segi is followed by segj ;

0 otherwise.

• Data Conflict Table with n prediction steps (CTn[N,N]) as follows:

CTn[i, j] =























true if segi has a potential data conflict

with segj within n scheduling steps;

false otherwise.

Here, CT0[N,N] is the same as segment data conflict table CT[N,N]. However, CTn (n>0)

is asymmetric.

Fig. 5.6(a) and (b) shows a partial segment graph and its Adjacency Matrix. The Data Conflict

Table is shown in Fig. 5.6c where a data conflict exist between seg3 and seg4.

The Data Conflict Tables with 0, 1 and 2 prediction steps are shown in Fig. 5.7(a), (b) and (c),

respectively. Since seg2 is followed by seg3 and seg3 has a conflict with seg4, a thread in seg2

has a conflict with a thread who is in seg4 after one scheduling step. Thus, CT1[2, 4] is true in

Fig. 5.7b. Similarly, seg1 is followed by seg2 and seg2 is followed by seg3, so CT2[1, 4] is true

in Fig. 5.7c.

The Data Conflict Table with n prediction steps can be built recursively by using Boolean

matrix multiplication. Basically, if segi is followed by segj , and segj has a data conflict with

segk within the next n− 1 prediction steps, then segi has a data conflict with segk within the
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next n prediction steps. Formally,

CT0[N,N ] = CT [N,N ] (5.1)

CTn[N,N ] = A′[N,N ] ∗ CTn−1[N,N ], where n > 0. (5.2)

Here, A’[N,N] is the modified Adjacency Matrix (e.g. Fig. 5.7d) with 1s on the diagonal so as to

preserve the conflicts from the previous data conflict prediction tables. Note that more conflicts

will be added to the conflict prediction tables when the number of prediction steps increases.
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(c) Data Conflict Table

Figure 5.6: A partial Segment Graph with Adjacency Matrix and Data Conflict Table.

Theorem 5.2.1. ∃MFP , MFP > 0, so that ∀n ≥ MFP , no more conflicts will be added to CTn.

Proof. Eq. (5.1) and (5.2) ⇒ CTn = A′n ∗ CT .

In A′, A′[i, j] = 1 ⇐⇒ segj directly follows segi.

In A′2, A′2[i, j] = 1 ⇐⇒ ∃k that A′[i, k] = A′[k, j] = 1 or A′[i, j] = 1. In other words,

A′2[i, j] = 1 means that segj can be reached from segi via at most 1 other segment (1 segment
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Figure 5.7: Data structures for optimized out-of-order PDES scheduling.

apart). Hence, A′n[i, j] = 1 means segj can be reached from segi via at most n other segments

(n segments apart).

Since there are a limited number of segments in the Segment Graph, ∃L that ∀i, j, segi and segj

are either at most L segments apart or they can never be reached from each other.

⇒ There exists a fixpoint MFP = L, that ∀n > MFP , A
′n = A′MFP , and CTn = A′n ∗ CT =

A′MFP ∗ CT = CTMFP
.

Theorem 5.2.1 states that the number of prediction conflict tables for each design is limited.

The maximum number of predictions is at most the length of the longest path in the Segment

Graph.
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Time Hazards Prediction

• Time Advance Table with n prediction steps (NTn[N]):

NTn[i] = min{thread time advance after n + 1 scheduling steps from segi}.

Here, NT0 = NT .

Fig. 5.7e shows the segment Time Advance Table with Predictions (NTn) for the example in

Fig. 5.6. If a thread is now running in seg1, it will be in seg2 after one scheduling step and

in seg3 after two scheduling steps. The thread time will advance by at least (3:0) after two

scheduling steps since seg2 starts from waitfor 1 and seg3 starts from waitfor 2. Therefore,

NT1[1] = (3 : 0).

Event Hazards Prediction

We need prediction information for event notifications to handle event hazards.

• Event Notification Table with predictions (ETP[N, N]):

ETP [i, j] =















































(t△, δ△) if a thread in segi may wake up

a thread in segj with least

time advance of (t△, δ△);

∞ if a thread in segi will never

wake up another thread in segj .

Here, we have table entries of time advances.

Note that a thread can wake up another thread directly or indirectly via other threads. For

instance, th1 wakes up th2, and th2 then wakes up th3 through event delivery. In this case,

th1 wakes up th2 directly, and th3 indirectly via th2. We predict the minimum time advances

between each thread segment pair in respect of both direct or indirect event notifications. The
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scheduler needs the predicted event notification information to know when a new thread may

be ready to run for conflict checking at run time.

5.2.3 Out-of-order PDES scheduling with Predictions

The out-of-order PDES scheduler issues threads out of the order at each scheduling step only

when there are no potential hazards. With the help of static prediction analysis, we can optimize

the scheduling conflict detection algorithm to allow more threads to run out-of-order.

Algorithm 6 shows the conflict checking function with M (0≤M≤MFP ) prediction steps. Note

that when M=0, it is the original out-of-order PDES conflict detection.

Algorithm 6 Conflict Detection with M Prediction Steps

1: bool Conflict(Thread th, Thread th2)
2: {
3: /*iterate the prediction tables for data and time hazards*/
4: for (m = 0; m<M; m++) do
5: if (CTm[th2.seg, th.seg] == true) then
6: return true; end if /*data hazards*/
7: if (th2.timestamp + NTm[th2.seg]≥th.timestamp) then
8: break; /*no data or time hazards between th2 and th*/ end if
9: end for

10: if (m > M && M < MFP ) then
11: return true; end if /*time hazards*/
12: /*check event hazards*/
13: for all thw ∈ WAIT do
14: if(ETP[th2.seg, thw.seg] + th2.timestamp<th.timestamp) then
15: /*thw may wake up before th*/
16: check data and time hazards between thw and th; endif
17: end for
18: return false;
19: }

Now, assume that th1 and th2 are two threads in the simulation of a model whose Segment

Graph is Fig. 5.6a. th1is ready to run in seg4 with timestamp (3:0), and th2 is still running in

seg1 with timestamp (1:0).

Conflict(th1) in Algorithm 3 will return true because th2 is possible to enter seg2 with timestamp

of (2:0) that is before th1. Since the scheduler does not have information about the future status
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of th2, it cannot issue th1 to run out-of-order at the current scheduling step.

Conflict(th1) in Algorithm 6 will return false when M=1 or 2. With prediction information,

the scheduler will figure out that th1 (in seg4) will not have data conflicts with th2 after its next

scheduling step (then in seg2). Moreover, after th2 finishes seg2, the time for the next segment

is at least (4:0), which is after th1’s current one, i.e. (3:0). It is safe to issue th1 out-of-order at

the current scheduling step. As shown, the prediction information helps the run-time conflict

checking to eliminate a false conflict.

5.2.4 Optimized out-of-order PDES Scheduling Conflict Checking with a

Combined Prediction Table

We observe that CTm contains all the conflicts from CT0 to CTm−1 (m>0). In Algorithm 6,

the checking loop in line 4-9 stops when the first conflict is found from the CTns.

We propose an optimized conflict checking algorithm (Algorithm 7) by using the following data

structure:

• Combined Conflict Prediction Table (CCT[N,N]):

CCT [i, j] =











k+1 min{k | CTk[i, j] = true};

0 otherwise.

As shown in Fig. 5.7f, the number of prediction steps is stored in CCT instead of Boolean

values.

There is no loop iteration for checking the conflict prediction table in Algorithm 7 since only

one NxN combined table is used instead of M NxN data conflict prediction tables.

Note that, Theorem 5.2.1 proves that only a fixed number of data conflict tables with predictions

are needed for a specific design. The compiler can generate the complete series of conflict
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Algorithm 7 Optimized Conflict Detection with Combined Prediction Tables for M steps

1: bool Conflict(Thread th, Thread th2)
2: {
3: /*check the combined prediction table for data and time hazards*/
4: m = CT [th2.seg, th.seg] - 1;
5: if(m ≥ 0) then /*There are data conflicts within M scheduling steps*/
6: /*th2 may enter into a segment before th and cause data hazards*/
7: if(th2.timestamp + NTm[th2.seg]<th.timestamp) then
8: return true; end if
9: else if (M < MFP )

10: /*hazards may happen after M scheduling steps*/
11: if(th2.timestamp + NTM [th2.seg]<th.timestamp) then
12: return true; end if
13: endif
14: /*check event hazards*/
15: for all thw ∈ WAIT do
16: if(ETP[th2.seg, thw.seg] + th2.timestamp< th.timestamp) then
17: /*thw may wake up before th*/
18: check data and time hazards between thw and th; endif
19: end for
20: return false;
21: }

prediction tables and combine them into one table, i.e. CCT[N,N]. With this complete combined

prediction table CCT , line 9-12 can be removed from Algorithm 7.

5.2.5 Experimental Results

We have implemented the proposed static prediction analysis and the optimized out-of-order

PDES scheduler in the SCE system design environment, and conducted experiments on three

multi-media applications.

To demonstrate the benefits of out-of-order PDES scheduling using predictions, we show the

compiler and simulator run times with different number of predictions in this section. Since

one of our applications, i.e. the H.264 encoder, has 30 parallel units for motion estimation, we

perform our experiment on a symmetric multi-processing (SMP) capable server consists of 2

Intel(R) Xeon(R) X5650 processors running at 2.67 GHz Each CPU contains 6 parallel cores,

each of which supports 2 hyper-threads per core. The server specifically runs the 64-bit Fedora
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Core 12 Linux operating system.

Edge Detection with Parallel Gaussian Smoothing

Our first application example is a Video Edge Detector which calculates edges in the images

of a video stream. This model is an extension to the parallel Canny image edge detector [104]

which takes multiple frames in the video stream one by one as the input.
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(a) The Canny image edge detector flowchart (source [104])
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(c) The video edge detector example

Figure 5.8: An video edge detector example

The application parallelizes the most computationally complex function Gaussian Smooth in
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the design (approximately 45% of the total computation) on 4 cores. Fig. 5.9a shows the result

with a test video stream of 100 frames with 1280x720 pixels. The simulation speed increases

with more prediction steps. With the maximum prediction information, Table 5.4 shows a

speedup of 1.15 with very small increase of compilation time.

H.264/AVC Video Decoder with Parallel Slice Decoding

Our second application is the parallelized H.264/AVC Video Decoder described in Sec-

tion 3.6.1. It uses four parallel slice decoders to decode the independent slices in a video frame

simultaneously. We use a test stream of 1079 video frames with 1280x720 pixels per frame and

simulate the model at four different abstraction levels, i.e. specification, architecture mapped,

scheduling refined, and network linkage allocated.

Table 5.4 shows an average speedup of 1.89 for simulation with maximum prediction information

compared to the baseline out-of-order PDES simulation without predictions. Note that even for

such a large design, the increased compile time due to the static prediction analysis is negligible.

Fig. 5.9b shows that more simulation speedup can be gained with more prediction steps.

H.264/AVC Video Encoder with Parallel Motion Search

The third application is a parallelized H.264/AVC Video Encoder with parallel motion

search [105]. Intra- and inter-frame prediction are applied to encode an image according to

the type of the current frame. During inter-frame prediction, the current image is compared

to the reference frames in the decoded picture buffer and the corresponding error for each

reference image is obtained. In our model, multiple motion search units are processing in

parallel so that the comparison between the current image and multiple reference frames can

be performed simultaneously. The test stream is a video of 95 frames with 176x144 pixels per

frame. Table 5.4 shows a speedup of 1.88 for simulation with complete prediction information.
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As a large industrial design, the prediction conflict tables get to the fixpoint after 62 prediction

steps. Fig. 5.9c shows the same trend of simulation speedup vs. prediction steps.
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(c) the H.264 encoder model

Figure 5.9: Simulation run time and compilation time for OoO PDES with predictions

Table 5.4: Experimental results for embedded applications
Out-of-order PDES Out-of-order PDES

Simulator: without Predictions with Predictions
compile sim compile sim time max
time time time [sec] [sec] pred
[sec] [sec] / speedup / speedup steps

Edge Detection 1.97 42.19 2.80 / 0.70 37.05 / 1.14 8
spec 5.86 244.98 6.95 / 0.85 131.99 / 1.86 8

H.264 arch 6.53 242.95 6.95 / 0.94 132.78 / 1.83 7
Decoder sched 6.95 244.32 7.24 / 0.96 133.23 / 1.83 8

net 6.55 244.61 7.20 / 0.91 132.85 / 1.92 9
H.264 Encoder 37.95 2719.44 43.82 / 0.87 1448.81 / 1.88 62
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6 Comparison and Outlook

In this chapter, we will compare the three discrete event simulation approaches, i.e. the tradi-

tional sequential DES, the synchronous PDES, and the out-of-order PDES, with a comprehen-

sive set of experiments, and discuss their advantages and limitations [106] 1.

6.1 Experimental Setup

To demonstrate the potential of parallel simulation, we have designed three highly parallel

benchmark models:

1. a parallel floating-point multiplication example,

2. a parallel recursive Fibonacci calculator,

3. and a parallel recursive Fibonacci calculator with timing information.

All these benchmarks are system-level models specified in SpecC SLDL.

6.1.1 Experimental Environment Setup

For our experiments, we use a symmetric multi-processing server running 64-bit Fedora Core 12

Linux. The multi-core hardware specifically consists of 2 Intel(R) Xeon(R) X5650 processors

1for the our-of-order PDES, both of the optimizations discussed in Chapter 5 have been applied.
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running at 2.67 GHz. Each CPU contains 6 parallel cores, each of which supports 2 hyper-

threads per core. Thus, in total the server hardware supports up to 24 threads running in

parallel.

We use the Linux /usr/bin/time command to measure the simulation and compilation time

for the experiment applications. According to [107], the time command provides the statistical

report for the time, memory, and input/output usages for the measured program. For the

experiments in this dissertation, we focus on the following numbers:

• %S, total number of CPU-seconds that the process spent in kernel mode

• %U, total number of CPU-seconds that the process spent in user mode

• %E, elapsed real time (in [hours:]minutes:seconds)

• %P, Percentage of the CPU that this job got, computed as (%U + %S) / %E

We observe that there are several factors can affect the run time measurement results. In other

words, we can get different measurement numbers for different runs of compiling and simulating

the same application. Some factors are listed below:

1. The workload overhead from the underlying Linux system

2. Delays due to operating system and micro-architecture features, such as cache misses,

page faults, and memory contentions

3. Dynamic features due to the Linux strategies for mapping and scheduling multiple threads

on multiple CPU cores at run time

4. Other users, who remotely connect to the simulation host, can run some programs at the

same time and use some of the available CPU cores

5. Network delays, such as reading and writing delays, if the simulation host is using the

Network File System (NFS) [108]
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6. CPU frequency scaling support by the underlying operating system on the simulation

computer platform

The first three items (1, 2, and 3) cannot be controlled for regular usage of multi-core platforms

with operating system support. Our work aims at providing a fast simulation approach that

can be applied on general multi-core computer platforms. Thus, we intentionally do not control

these factors in our experiment.

The last three item (4, 5, and 6) are controlled by setting up our specific experiment environ-

ment. We notify all the remote users who can access the simulation host about the period of

time to run our experiments so that they did not work on the computer at the same time. We

use local directories instead of NFS mapped directories. We also disable the CPU frequency

scaling and turbo mode of the simulation processors.

6.1.2 The Parallel Benchmark Models

We use three parallel benchmark models in this section to show the potential for the parallel

discrete event simulations.

Parallel floating-point multiplications

Our first parallel benchmark fmul is a simple stress-test example for parallel floating-point

calculations. Specifically, fmul creates 256 parallel instances which perform 10 million double-

precision floating-point multiplications each. As an extreme example, the parallel threads are

completely independent, i. e. do not communicate or share any variables.

The chart in Fig. 6.1a shows the experimental results for our synchronous PDES simulator when

executing this benchmark. To demonstrate the scalability of parallel execution on our server,

we vary the number of parallel threads admitted by the parallel scheduler (the value #CPUs in

Fig. 3.2) between 1 and 32.
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We use the elapsed simulator run time for one core as the base (33.5 seconds). When plotting

the relative speedup, one can see that, as expected, the simulation speed increases in nearly

linear manner the more parallel cores are used and tops out when no more CPU cores are

available. The maximal speedup is about 16x for this example on our 24-core server.

Parallel Fibonacci calculation

Our second parallel benchmark fibo calculates the Fibonacci series in parallel and recursive

fashion. Recall that a Fibonacci number is defined as the sum of the previous two Fibonacci

numbers, fib(n) = fib(n − 1) + fib(n − 2), and the first two numbers are fib(0) = 0 and

fib(1) = 1. Our fibo design parallelizes the Fibonacci calculation by letting two parallel units

compute the two previous numbers in the series. This parallel decomposition continues up to a

user-specified depth limit (in our case 5), from where on the classic recursive calculation method

is used.

In contrast to the fmul example above, the fibo benchmark uses shared variables to communi-

cate the input and calculated output values between the units, as well as a few counters to keep

track of the actual number of parallel threads (for statistical purposes). Thus, the threads are

not fully independent from each other. Also, the computational load is not evenly distributed

among the instances due to the fact that the number of calculations increases by a factor of

approximately 1.618 (the golden ratio) for every next number.

The fibo simulation results are plotted in Fig. 6.1b. Again we use the elapsed simulator run

time for one core as base (29.7 seconds). The curve for the relative simulation speedup shows the

same increasing shape as in Fig. 6.1a. Speed increases in nearly linear fashion until it reaches

saturation at about a factor of 12x.

When comparing the fmul and fibo benchmark results, we notice a more regular behavior of

the fmul example due to its even load and zero inter-thread communication.
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Parallel Fibonacci calculation with timing information

Our third parallel benchmark fibo timed is an extension of fibo with timing information.

System models usually have timing information either back-annotated by estimation tools or

added by the designers to evaluate the real-time behavior of the design. Compared to the

untimed fibo, this timed benchmark is a more realistic embedded application example.

fibo timed has the same structure as fibo with the same parallel decomposition depth (in

our case 5). Timing information is annotated using wait-for-time statements at each leaf block

where the classic recursive calculation method is used. The time delay is determined by the

computational load of the unit, i.e. Tfib(n) = 1.618 ∗ Tfib(n−1).

Fig. 6.1c plots the simulation results for both synchronous and out-of-order PDES. Using the

1-core elapsed simulator time as base (32.7 seconds for both simulators), the relative speedup

shows that out-of-order PDES can exploit more parallelism during the simulation and is more

efficient than synchronous PDES. This benchmark confirms the increased CPU utilization on a

multi-core host by out-of-order PDES.

6.1.3 The Embedded Applications

In this section, we use six embedded applications to demonstrate the effectiveness of the PDES

approaches for realistic design examples. We modeled these embedded applications in-house

based on reference source code for standard algorithms.

JPEG Image Encoder with Parallel Color Space Encoding

As described in Section 3.6.2, Section 4.4.2 and Section 5.2.5, the JPEG encoder performs its

DCT, Quantization and Zigzag modules for the 3 color components in parallel, followed by a

sequential Huffman encoder at the end. Table 6.1 shows the simulation speedup. The size of
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(a) fmul (synchronous PDES) (b) fibo (synchronous PDES)

(c) fibo timed (synchronous PDES vs. out-of-order PDES)

Figure 6.1: Simulation results for highly parallel benchmark models.

our input BMP image is 3216x2136 pixels. Note that, the model has maximal 3 parallel threads,

followed by a significant sequential part.

We simulate this application model at four abstraction levels (specification, architecture mapped,

OS scheduled, network linked). As shown in Table 6.1, simulation speed increases for both par-

allel simulators but the out-of-order PDES gains more speedup than synchronous PDES.

H.264 Video Decoder with Parallel Slice Decoding

Our second application is the parallelized video decoder model based on the H.264/AVC stan-

dard as described in Section 3.6.1, sec:OoOPDES-experiment-h264 and Section 5.2.5. An H.264

video frame can be split into multiple independent slices during encoding. Our model uses
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four parallel slice decoders to decode the separate slices in a frame simultaneously. The H.264

stimulus module reads the slices from the input stream and dispatches them to the four fol-

lowing slice decoders for parallel processing. A synchronizer block at the end completes the

decoding of each frame and triggers the stimulus to send the next one. This design model is of

industrial-size and consists of about 40k lines of code.

We use a test stream of 1079 video frames with 1280x720 pixels per frame (approximately 58.6%

of the total computation is spent on the slide decoding which has been parallelized). Table 6.1

shows that synchronous PDES can hardly gain any speedup due to the simulation cycle barriers.

Furthermore, protecting the shared resources and added synchronizations introduce simulation

overhead for PDES. However, out-of-order PDES still gains significant speed up to a factor of

1.77x. Note that even for a large realistic design, such as this H.264 decoder model, the increased

compilation time due to the static model analysis for out-of-order PDES is negligible.

Edge Detection with Parallel Gaussian Smoothing

Our third application example, a Canny edge detector application, calculates edges in images

of a video stream (Section 5.2.5). In our model, we have parallelized the most computationally

complex function Gaussian Smooth (approximately 45% of the total computation) on 4 cores.

With a test stream of 100 frames of 1280x720 pixels, the simulation results in Table 6.1 show

1.38 speedup for synchronous PDES and 1.52 speedup for out-of-order PDES.

The fourth example uses the same edge detection algorithm but only detects the edges in a single

image. Again we split the Gaussian Smooth function equally on 4 parallel modules, but use a

larger image. For the test image with 3245x2500 pixels, PDES accelerates the simulation with an

average speedup of 1.27. The workload is evenly distributed so it fully fills the simulation cycles

of the mapped parallel threads. Thus, out-of-order PDES loses its advantage and performs

slightly slower than synchronous PDES due to the out-of-order scheduling overhead.
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H.264 Video Encoder with Parallel Motion Search

The fifth application is a parallelized video encoder based on the H.264/AVC standard (Sec-

tion 5.2.5). Intra- and inter-frame prediction are applied to encode an image according to the

type of the current frame. During inter-frame prediction, the current image is compared to the

reference frames in the decoded picture buffer and the corresponding error for each reference

image is obtained.

In our model, multiple motion search units are processing in parallel so that the comparison

between the current image and multiple reference frames can be performed simultaneously. Out

test stream is a video of 95 frames with 176x144 pixels per frame, and the number of B-slices

between every I-slice or P-slice is 4. That is, among every 5 consecutive frames 4 frames need

inter-frame prediction. Table 6.1 shows a similar simulation acceleration with a speedup of 1.87

for synchronous PDES, and 1.98 for out-of-order PDES.

MP3 Stereo Audio Decoder

The last application, a MP3 player, is another example for which the performance of PDES

is marginal due to the limited parallelism in the model. Our MP3 audio decoder is modeled

with parallel decoding for stereo channels. Our test stream is a 99.6 Kbps, 44.1 Hz joint stereo

MP3 file with 2372 frames. It takes less than 5 seconds to simulate, but there are 7114 context

switches in scheduling the two parallel threads. Here, both PDES approaches take longer time

than the traditional DE simulation due to the low computation workload and the then significant

overhead for synchronization.

Overall, we can see that the 24 available parallel cores on the server are under-utilized for all

six applications, and by both parallel simulators. The reason is clearly the limited available

parallelism in the models.
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Table 6.1: Experimental results for embedded application examples using standard algorithms.

Single-thread Multi-core
Simulator: reference Synchronous parallel Out-of-Order parallel

Par. Issued Threads: n/a 24 24
compile simulator compile time simulator time compile time simulator time
time [sec] time [sec] [sec] / speedup [sec] / speedup [sec] / speedup [sec] / speedup

spec 1.95 1.70 2.14 / 0.91 1.38 / 1.23 2.24 / 0.87 0.63 / 2.70

JPEG arch 2.48 1.72 2.72 / 0.91 1.42 / 1.21 3.04 / 0.81 0.66 / 2.60

Encoder sched 2.58 1.73 2.63 / 0.98 1.39 / 1.24 2.73 / 0.95 0.64 / 2.70

net 2.77 2.79 3.20 / 0.86 2.12 / 1.32 3.18 / 0.87 1.06 / 2.63

spec 4.94 230.53 5.28 / 0.94 231.49 / 1.00 6.09 / 0.81 126.19 / 1.83

H.264 arch 5.17 229.70 5.53 / 0.93 232.17 / 0.99 6.58 / 0.79 123.04 / 1.87

Decoder sched 5.2 2 231.55 5.44 / 0.96 232.08 / 1.00 6.58 / 0.79 122.68 / 1.89

net 5.48 233.07 5.87 / 0.93 234.20 / 1.00 6.45 / 0.85 124.20 / 1.88

Video Edge Detection 1.30 60.93 1.73 / 0.75 44.07 / 1.38 1.82/ 0.71 40.10 / 1.52

Image Edge Detection 2.57 2.99 2.71 / 0.95 2.34 / 1.28 2.65 / 0.97 2.37 / 1.26

H.264 Encoder 18.66 2875.83 20.88 / 0.89 1534.93 / 1.87 22.94/ 0.81 1452.72 / 1.98

MP3 Decoder 2.13 4.06 2.12 / 1.00 4.42 / 0.92 2.31 / 0.92 4.67/ 0.87

6.2 Parallel Discrete Event Simulation Overlook

Table 6.2 provides the technical details for the three discrete event simulation approaches.

Parallel discrete event simulation holds the promise to leverage the CPU utilization of multi-

core computer host for fast simulation. However, the PDES performance also highly relies on

the available parallelism in the simulated model. We list the advantages and limitations for the

three discrete event simulation approaches below as a guidance for choosing different approaches

to simulate different ESL models.

• Traditional Sequential Discrete Event Simulation (sequential DES)

– Advantages:

∗ Can use light-weight user-level multithreading library which has minimal context

switch and thread management overhead

∗ No need to protect thread synchronization and communication by the compiler,

i.e. fast compilation

∗ Simple thread synchronization and communication, i.e. fast scheduling
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Table 6.2: Comparison of traditional sequential, synchronous parallel, and out-of-order parallel
discrete event simulation

Traditional Synchronous Out-of-Order
DE simulation PDES PDES

Local time for each thread th as tuple (tth, δth). A total
Simulation One global time tuple (t, δ) order of time is defined with the following relations:

Time shared by every thread and event equal: (t1, δ1) = (t2, δ2), iff t1 = t2, δ1 = δ2.
before: (t1, δ1) < (t2, δ2), iff t1 < t2, or t1 = t2, δ1 < δ2.
after: (t1, δ1) > (t2, δ2), iff t1 > t2, or t1 = t2, δ1 > δ2.

Event Events are identified by their ids, A timestamp is added to identify every event,
Description i.e, event (id). i.e. event (id, t, δ).

Threads are organized as subsets
with the same timestamp (tth, δth).

Simulation READY, RUN, Thread sets are the union of these subsets,
Thread WAIT, WAITFOR, i.e, READY = ∪READYt,δ, RUN = ∪RUNt,δ,
Sets JOINING, COMPLETE WAIT = ∪WAITt,δ,

WAITFOR = ∪WAITFORt,δ (δ = 0), where
the subsets are ordered in increasing order of time (t, δ).

Threading User-level or OS kernel-level
Model OS kernel-level

Event delivery in-order in delta-cycle loop. Event delivery out-of-order if no conflicts exist.
Time advance in-order in outer loop. Time advance out-of-order if no conflicts exist.

Run Time Only one thread is Threads at same Threads at same cycle or
Scheduling active at one time. cycle run in parallel . with no conflicts run in parallel .

No parallelism . Limited parallelism . More parallelism.
No SMP Inefficient SMP Efficient SMP utilization.
utilization . utilization .
No synchronization Need synchronization protection for shared resources,
protection needed. e.g. any user-defined and hierarchical channels.

Compile Time Static conflict analysis derives Segment Graph (SG)
Analysis No conflict analysis needed. from CFG, analyzes variable and event accesses,

passes conflict table to scheduler.
Compile time increases.

– Limitations:

∗ Only allows one thread to be active at one time which makes it impossible to

utilize the multiple resources on multi-core simulation hosts

– Suitable models: models with no / limited parallelisms, i.e. the MP3 decoder.

• Synchronous Parallel Discrete Event Simulation (SPDES)

– Advantages:

∗ Allows multiple threads in the same simulation cycle to run in parallel which

can exploit the multiple resources on multi-core simulation hosts to increase

simulation speed
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∗ Is scalable on multi-core simulation hosts, i.e. the number of threads running in

parallel can be easily set

– Limitations:

∗ Uses OS kernel-level multithreading library which has heavy context switch and

thread management overhead

∗ Needs thread synchronization and communication protection for parallel execu-

tion by the compiler which introduces a small amount of compilation overhead

∗ Only allows threads in the same simulation cycle to run in parallel. The multi-

core CPUs can be idle when there are not enough parallel threads available.

– Suitable models: models with fully balanced (workload and timing) parallelisms, i.e.

the image edge detector, the well balanced H.264 video decoder (Chapter 3).

• Out-of-order Parallel Discrete Event Simulation (OoO PDES)

– Advantages:

∗ Allows threads in different simulation cycle to run in parallel which can leverage

the CPU utilization of the multi-core simulation host by reducing the CPU idle

time

∗ Is scalable on multi-core simulation hosts

∗ Can mitigate the gap between logic parallelism that is understandable in the

model and the real parallelism during simulation which is more limited due to

the discrete event execution semantics

– Limitations:

∗ Uses OS kernel-level multithreading library which has heavy context switch and

thread management overhead
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∗ Needs compiler support to generate conflict information

∗ Needs scheduler support for dynamic conflict detection to preserve the execution

semantics

∗ Needs more scheduling than DES and SPDES. DES and SPDES only schedule

when all the threads meet at the simulation cycle barrier. OoO PDES has to

schedule at every thread scheduling point since the global simulation cycle barrier

is removed by localizing into each thread

∗ Needs thread synchronization and communication protection for parallel execu-

tion by the compiler

– Suitable models: models with imbalanced (workload and timing) and independent

(fewer conflicts) parallelism, i.e. the JPEG encoder, the H.264 decoder, the video

edge detector, and the H.264 encoder.

The three discrete event simulation approaches have their own advantages and disadvantages.

In general, the sequential DES has the lightest implementation and is most suitable for models

with no or very limited parallelism, such as communication intensive models.

Both synchronous PDES and out-of-order PDES are capable to exploit the multiple resources

on multi-core simulation hosts when simulating parallel models. Synchronous PDES works best

for well balanced models with respect to both workload and timing among the parallel threads.

Out-of-order PDES has the most potential to exploit the parallelism during simulation. It works

better than synchronous PDES for general models which have nontrivial timing annotations and

event synchronizations. However, out-of-order PDES has heavier implementation overhead in

terms of static conflict analysis and dynamic scheduling conflict detection.

It should also be emphasized that all efforts for parallel simulation are limited by the amount

of exposed parallelism in the application. The Grand Challenge still remaining is the problem
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of how to efficiently parallelize applications.
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7 Utilizing the Parallel Simulation

Infrastructure

In order to utilize parallel processing for low power and high performance in embedded sys-

tems, ESL models must contain explicit and efficient parallelism. Notably, parallelization is a

particularly important but also very difficult task in system modeling.

Most reference code for embedded applications is sequentially specified. To parallelize the

application, the designer must first identify suitable functions that can be efficiently parallelized,

and then recode the model accordingly to expose the parallelism. Since identifying effective

thread-level parallelism requires the designer’s knowledge and understanding of the algorithm

and therefore is a manual task, the model recoding is typically a tedious and error-prone process.

Automating the coding, validation, and debugging is highly desirable.

In this chapter, we focus on the debugging support for writing parallel models. In particular,

we use the parallel simulation infrastructure to increase the observability of developing parallel

system-level models. A dynamic race condition detection approach will be proposed to help the

designer narrow down the debugging targets in ESL models with parallelism [109].
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7.1 Introduction

At the starting point of the electronic system-level (ESL) design flow, a well-defined specifica-

tion model of the intended embedded system is critical for rapid design space exploration and

efficient synthesis and refinement towards a detailed implementation at lower abstraction lev-

els. Typically, the initial specification model is written using system-level description languages

(SLDLs), such as SystemC and SpecC. In contrast to the original application sources, which

usually are specified as unstructured sequential C source code, a well-defined system model

contains a clear structural hierarchy, separate computation and communication, and explicit

parallelism.

In this chapter, we address the problem of ensuring that the functionality of the model remains

correct during parallel execution. In particular, the system model must be free of race conditions

for all accesses to any shared variables, so that a safe parallel execution and implementation is

possible.

Ensuring that there are no race conditions proves very difficult for the system designer, especially

because the typically used discrete event simulation often does not reveal such mistakes in the

model. It should be emphasized that the absence of errors during simulation does not imply

the absence of any dangerous race conditions in the model. Even though parallel simulation

on multi-core hosts has higher likelihood to have simulation error caused by race conditions, it

cannot guarantee that all situations are exposed. Furthermore, it is very hard to debug as the

cause for an invalid output value may be hidden deep in the complex model.

To solve this race condition problem, we use our parallel simulation infrastructure to provide

specific debug information to the designer. Specifically, we propose a combination of (a) an

advanced static conflict analysis in the compiler, (b) a table-based checking and tracing engine

in the parallel simulator, and (c) a novel race-condition diagnosis tool. Together, these tools not

only discover all race conditions that can potentially affect the concurrent execution, but also

137



provide the designer with detailed source line information of where and when these problems

occur.

7.2 Overview and Approach

In the context of validating a parallel system model, our proposed approach utilizes the com-

piler and simulator tools from a parallel simulation infrastructure to automatically detect and

diagnose potential data hazards in the model. As a result, the system designer can quickly

resolve the hazards due to race conditions and produce a safe parallel model.

7.2.1 Creating Parallel System Models

Exposing thread-level parallelism in sequential applications models requires three main steps:

1. Identify the blocks to parallelize: The first step is to understand the application and its al-

gorithms. With the help of statistics from a profiler, the designer can then identify suitable

blocks in the application with high computational complexity for which parallelization is

desirable and likely beneficial.

2. Restructure and recode the model : Through partitioning of functional blocks and encapsu-

lating them into SLDL modules, the application is transformed into a system-level model

with proper structure and hierarchy [110]. In particular, parallel execution is exposed

explicitly.

With parallelism inserted into the model structure, affected variables may need to be

recoded appropriately to ensure correct functionality of the model. For example, the vari-

ables involved in the restructuring may need to be duplicated, relocated into appropriate

scope (localized), or wrapped in channels with explicit communication. Here, proper data

138



dependency analysis is a critical component in resolving access conflicts due to paralleliza-

tion. Performed manually, this is a tedious and error-prone task especially if the model

is of modest or large size. The designer must locate affected variables, identify their all

their read and write accesses, and make sure that no invalid accesses exist due to race

conditions.

3. Validate the model : The correct functionality of the model is typically validated through

simulation. However, regular simulators hide many potential access conflicts due to their

sequential execution. Parallel simulators (Chapter 3), on the other hand, executes on

multi-core CPUs in parallel and can thus expose some access conflicts and race conditions.

If these lead to invalid simulation results, it tells the designer that the model has a problem,

but not where the problem is. Most often it is then very difficult to locate the cause and

correct the problem.

Nevertheless, no existing simulation technique can prove the absence of race conditions.

We will address this short-coming in this chapter by an extension of a parallel simulation

infrastructure.

7.2.2 Shared Variables and Race Conditions

Variables shared among parallel modules in the system model can cause data hazards, i.e.

read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW) conflicts. Thus,

invalid parallel accesses to shared variables in the system model must be prevented.

As discussed earlier, designers traditionally design the specification model and handle shared

variables manually. As shown in Fig. 7.1a, model validation is then performed by compiling

and simulating the model using a traditional DE simulator. If the simulation fails, the designer

needs to identify the problem, locate it in the code, and revise the model for another iteration.

This debugging is typically a lengthy and error-prone process.
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Figure 7.1: Validation and debugging flow for parallel system models.

Moreover, even if the model is incorrect due to race conditions regarding shared variables, the

simulation may actually succeed when using traditional sequential DE simulation. This might

lead the designer to believe the model is correct, whereas in fact it is not. In other words,

traditional simulation can lead to false validation of parallel models.
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Figure 7.2: Reusing essential tools from a parallel simulation infrastructure to diagnose race
conditions in parallel models.

As shown in Fig. 7.2, traditional DE simulation uses a regular SLDL compiler to generate

the executable model and then uses sequential simulation for its validation. In comparison,

synchronous PDES also uses the regular SLDL compiler, but instruments the design with any
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needed synchronization protection for true multi-threaded execution. An extended simulator is

then used for multi-core parallel simulation.

The advanced out-of-order PDES approach, in contrast, uses the PDES compiler extended by

an additional static code analyzer to generate potential conflict information. The corresponding

scheduler in the simulator is also extended to utilize the compiled conflict information for issuing

threads early and out of the order for faster simulation.

The infrastructure for advanced PDES motivates our idea for dynamic race condition diagnosis.

The compiler for out-of-order PDES can analyze the design model statically to generate the

needed information about potential data conflicts. Also, the synchronous PDES simulator allows

threads in the same simulation cycle to run in parallel. Combining the two, we can therefore pass

the conflict information generated by the compiler to the scheduler for dynamic race condition

diagnosis among the parallel executing threads. As illustrated in Fig. 7.1b, the system designer

can thus detect and obtain a diagnosis about parallel accesses to shared variables automatically

and fix the problem quickly.

7.3 Automatic Race Condition Diagnosis

Fig. 7.3 shows the detailed tool flow for our proposed race condition diagnosis in parallel design

models. Here, we are using a SpecC-based compiler and simulator framework.

The flow starts with an initial design model, i.e. Design.sc, as the input to the SLDL compiler.

The compiler parses and checks the syntax of the model, builds an internal representation

(extended abstract syntax tree) of the model, and then generates the C++ representation

(Design.cc and Design.h) that can be compiled by the standard C++ compiler, e.g. g++, to

produce the executable file for simulation.

In our proposed tool flow, we add the Static Code Analyzer to analyze the internal design rep-
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Figure 7.3: Tool flow for automatic race condition diagnosis among shared variables in parallel
system models.

resentation for potentially conflicting accesses to shared variables during the parallel execution.

The Segment Graph representing the parallel execution flow in the model and the Variable

Access List are computed in this step. Using the segment graph and the variable access lists

for the segments, the static analyzer constructs then the Data Conflict Table that lists any

potential access conflicts in the design. This data conflict table is then passed to the simulator

via instrumentation into the model.

The model is then validated by a Parallel Simulator, a synchronous PDES simulator extended

with dynamic conflict checking. Whenever there are two threads running at the same simula-

tion and delta time, the simulator checks the data conflict table for any conflicts between the

segments the threads are running in. If there is a conflict, the simulator has detected a race

condition and reports this in a Dynamic Conflict Trace file (Design.w). Note that this conflict

checking is based on fast table look-ups which introduces very little simulation overhead.

After the simulation completes, the Race Condition Diagnosis tool processes the generated
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Variable Access List and Dynamic Conflict Trace files and displays the detected race conditions

to the designer. As shown in Fig. 7.3, critical parallel accesses to shared variables are listed

with detailed information, including time stamp, access type, variable name and type, and line

number and source file location where the variable is defined and where the access occurred.

Since there may be many reports for the same race condition due to iterations in the execution,

our tool combines these cases and lists the first time stamp and the number of repetitions.

Given this detailed information, the designer can easily find the cause of problems due to race

conditions and resolve them.

7.4 Race Condition Elimination Infrastructure

As outlined above, we use (a) an advanced static code analysis to generate potential conflict

information for a model, and then (b) a parallel simulation for dynamic conflict detection.

7.4.1 Static Code Analysis

Careful source code analysis at compile time is the key to identify potential access conflicts to

shared variables.

During simulation, threads switch back and forth between the states of RUNNING and WAIT-

ING. Each time, threads execute different segments of their code. Access hazards exist when

two segments contain accesses to the same variables. Except when two segments contain only

read accesses (RAR), any write access creates a potential conflict (RAW, WAR, or WAW).

These potential conflicts are called race conditions when they occur at the same simulation

time, i.e. in the same simulation cycle.

Due to the (intended) non-deterministic execution in the simulator, race conditions may or may

not lead to invalid values for the affected variables. Since this is often dangerous, race conditions
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must be eliminated (or otherwise handled) for parallel design models to be safe.
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Figure 7.4: A parallel design example with a simple race condition.

For our proposed race condition analysis, we reuse the formal definitions of following terms

(previously defined in Chapter 4):

• Segment segi: statements executed by a thread between two scheduling steps.

• Segment Boundary bi: SLDL primitives which call the scheduler, e.g. wait, wait-for-

time, par.

Here, segment boundaries bi start segments segi. Thus, a directed graph is formed by the

segments, as follows:
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• Segment Graph (SG): SG=(V, E), whereV = {v | vi is segment segi started by segment

boundary bi}, E={eij | eij exists if segj is reached after segi}.

From the control flow graph of a design model, we can derive the corresponding segment graph

(Section 4.3.1).

For example, Fig. 7.4(a) and (b) show a simple system model written in SpecC SLDL and its

corresponding segment graph. Starting from the initial segment seg0, two separate segments

seg1 and seg2 represent the two parallel threads after the par statement in line 22. New segments

are created after each segment boundary, such as waitfor 1 (lines 10 and 20). The segments are

connected following the control flow of the model. For instance, seg3 is followed by itself due

to the while loop in lines 8-10.

Given the segment graph, we next need to analyze the segments for statements with potentially

conflicting variable assignments. We first build a variable access list for each segment, and

then compile a conflict table that lists the potential conflicts between the N segments in the

model:

• Variable Access List: segALi is the list of the variables that are accessed in segi. Each

entry for a variable in this list is a tuple of (Var, AccessType).

• Data Conflict Table (CT[N,N]):

CT [i, j] =











true if segi has data conflict with segj

false otherwise

Note that CT [N,N ] is symmetric and can be built simply by comparing pairs of the variable

access lists.
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Figure 7.5: Parallel simulation algorithm with dynamic race condition checks.

7.4.2 Dynamic Race Condition Checking

We detect race conditions dynamically at runtime when the simulator schedules the execution

of the threads. Fig. 7.5 shows the scheduling algorithm for synchronous PDES extended with

the needed checking. The simulator performs the regular discrete event scheduling on the right

side of Fig. 7.5 in order to deliver events and advance simulation time, following the usual delta

and time cycles. On the left, the algorithm issues suitable threads to run in parallel as long as

CPU cores are available.

Whenever it issues a thread for execution, the scheduler consults the data conflict table provided

by the compiler in order to report detected race conditions. As shown on the left side of Fig. 7.5,

the scheduler checks every thread for conflicts with the other threads that are READY to run.

Again, we emphasize that these checks are simple table look-ups so that the overhead of race

condition detection is minimal.
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While we are using our parallel simulator for speed reasons here, we should note that the same

detection approach can also be integrated in a traditional sequential DE simulator.

7.5 Experiments and Results

In this section, we report the results of using our approach on several embedded application

examples. We describe how the tool set helped us to detect and diagnose a number of race

conditions. Several reports on invalid parallel accesses to shared variables turned out to be the

actual cause of simulation errors which we then could fix. Other reports could be ruled out for

various reasons described below. All experiments have been performed on the same host PC

with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz.

Table 7.1: Experimental results on tool execution time for diagnosing race conditions in embed-
ded multi-media applications

Compiler Simulator Race Condition
Applications diagnosis [sec] diagnosis [sec] Diagnosis

off on off on
H.264 video decoder 12.51 4.05 18.51 19.56 1.04
H.264 video encoder 29.52 29.72 110.58 111.72 13.97
MP3 decoder (fixed) 1.14 1.19 4.34 4.44 0.08

MP3 decoder (floating) 3.63 3.89 13.82 13.87 0.34
GSM vocoder 3.90 4.00 1.46 1.50 0.07
JPEG encoder 4.01 4.09 1.54 1.56 0.02

7.5.1 Case study: A Parallel H.264 Video Decoder

During the development of our parallel H.264 video decoder model ([111], Section 3.6.1), we

used the regular sequential SLDL simulator to validate the functionality. This showed 100%

correct outputs. However, when we later used parallel simulation, the model sometimes ran

through a few frames and then terminated with various assertion failures, or even terminated

immediately with a segmentation fault. This was frustrating because such non-deterministic

errors are very hard to debug.
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Table 7.2: Experimental results on diagnosed race conditions in embedded multi-media appli-
cations

Embedded Lines #Vars/ Resolved Unresolved
Applications of Code #Trace Entries Race Conditions Race Conditions

3 resolved, localized to class scope
H.264 video 40 15 store const values to each frame, safe to share
decoder 40k / 1 structure accessed without overlap, safe 0

1201 1 debugging value, temporarily used only
20 in channels, safely protected
14 resolved, localized to stack variables

H.264 video 68 15 constant with current parameters, OK
encoder 70k / 1 identical in all parallel blocks, OK 0

712911 1 array variable resolved by splitting the array
37 in channels, safely protected

MP3 decoder (fixed) 7k 7 / 82 7 in channels, safely protected 0
MP3 decoder 14k 13 / 75 12 in channels, safely protected 0
(floating) 1 array variable resolved by splitting the array
GSM 16k 2 / 253 1 resolved, duplicated for parallel modules 0

vocoder 1 resolved, localized to stack variable
JPEG encoder 2.5k 9 / 66 9 in channels, safely protected 0

We used the new race condition diagnosis tool to check the model, resulting in reports on 40

different shared variables. The model designer went through the variable list one by one to

eliminate problems caused by race conditions. As reported in Table 7.1 and Table 7.2, half of

the reported variables were defined in channels and therefore protected from access conflicts by

the SpecC execution semantics (implicit locks). No change was necessary for these.

Another 15 variables were determined as storing values that are constant to each frame and

thus can be shared safely when the decoder processes the frames in parallel. One report was

about a complex structure that is actually accessed by parallel tasks only to non-overlapping

members. Another variable was a global counter used purely for debugging. Again, no change

to the model was necessary for these cases.

However, the remaining three of the reported variables actually caused the simulation problems.

The model designer resolved the race conditions for them by relocating the variables from global

to class scope. This way, each parallel unit has its own copy of these variables. As a result, the

dangerous race conditions were eliminated and the model now simulates correctly also in the

parallel simulator.
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7.5.2 Case study: A Parallel H.264 Video Encoder

As a second large application example, we have converted the reference C source code of a

H.264 encoder into a SpecC model ([112], Section 4.4.2). To allow parallel video encoding,

we restructured the model for parallel motion estimation distortion calculation. When using

the regular sequential simulator, the simulation result of the parallelized model matched the

reference implementation. However, after we switched the simulator with a newly developed

parallel simulator, the encoding result became inconsistent. That is, the encoding process

finished properly, but the encoded video stream differed from time to time.

At the beginning of debugging, we had no idea about the cause of the encoding errors. Moreover,

we were not even sure whether the problem was caused by the model itself or by our new parallel

simulator. Literally thousands of lines of code, in both the model and the simulator, were in

question.

At this point, the advanced static code analysis used in our out-of-order PDES simulator (Sec-

tion 4.3.2) sparked the idea of using it to attack such debugging problems.

When we used this tool to analyze the H.264 video encoder model, we indeed found a total of

68 variables accessed in race conditions by the parallel motion estimation blocks. Specifically,

the encoding malfunction was caused by read/write accesses to 14 global variables which stored

the intermediate computation results in the parallelized behaviors. After localizing those global

variables to local variables on the stack of the executing thread, the encoding result was correct,

matching the output of the reference code.

For the remaining reported variables, as listed in Table 7.1 and Table 7.2, there was no immediate

need to recode them. For example, variables which remain constant during the encoding process

in our model and for our fixed parameters (for example height pad), we decided to leave these

unchanged.
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7.5.3 Additional Embedded Applications

We also use the proposed tool set also to double-check embedded application models that had

been developed earlier in-house based on standard reference code.

The first application is a fixed-point MP3 decoder model for two parallel stereo channels ([113]).

As shown in Table 7.1 and Table 7.2, our diagnosis tool reports 7 shared variables that are

subject to race conditions, out of a total of 82 conflict trace entries. We have looked at these

variables and found that they are all member variables of channel instances which are protected

by implicit locks for mutual exclusive accesses to channel resources. Thus, we successfully

confirmed that this model is free of race conditions.

The second application is another parallel MP3 decoder model based on floating-point opera-

tions ([113]). Our diagnosis tool lists 9 shared variables out of 75 trace file entries. Eight of

those variables are channel variables which are free from data hazards. The remaining variable,

namely hybrid blc, is an array of 2 elements. Each element is used separately by the two stereo

channels, so there is no real conflict. We can resolve the race condition report by splitting this

array into two instances for the two channels. Thus, this parallel model is also free of data

hazards.

The third embedded application is a GSM Vocoder model whose functional specification is

defined by the European Telecommunication Standards Institute (ETSI) ([114]). Only two

variables are reported by our diagnosis tool for race condition risks. The first one, Overflow, is

a Boolean flag used in primitive arithmetic operations. It can be resolved by replacing it with

local variables on the stack of the calling thread. The second one, old A, is an array which stores

the previous results for an unstable filter. This variable is incorrectly shared by two parallel

modules. We can resolve this situation by duplicating the variable so that each parallel instance

has its own copy. We should note that these two bugs have been undetected for more than a

decade in this in-house example.
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The last application is the JPEG encoder for color images (Section 3.6.2). There are three

variables reported as potential race conditions out of 253 entries in the trace log. Since all three

are members of channel instances which are implicitly protected by locks, it is safe to have them

in the parallel model.

In summary, Table 7.1 and Table 7.2 list all our experimental results, including the size of the

models and the performance of the tools. While our application examples are fairly large design

models consisting of several thousand lines of code, the overhead of race condition diagnosis is

negligible for both compilation and simulation. Also, the diagnosis tool itself runs efficiently in

less than a few seconds.

7.6 Conclusions

Writing well-defined and correct system-level design models with explicit parallelism is difficult.

Race conditions due to parallel accesses to shared variables pose an extra challenge as these are

often not exposed during simulation.

In this chapter, we propose an automatic diagnosis approach that enables the designer to ensure

that a developed model is free of race conditions. The infrastructure of our proposed tool

flow includes a compiler with advanced conflict analysis, a parallel simulator with fast dynamic

conflict checking, and a novel race-condition diagnosis tool. This flow provides the designer with

detailed race condition information that is helpful to fix the model efficiently when needed.

The proposed approach has allowed us to reveal a number of risky race conditions in existing em-

bedded multi-media application models and enabled us to efficiently and safely eliminate these

hazards. Our experimental results also show very little overhead for race condition diagnosis

during compilation and simulation.
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8 Conclusions

The large size and complexity of modern embedded systems poses a great challenge to design

and validation. In order to address this challenge, system-level design usually starts with an

abstract model of the intended system and follows different design methodologies to get the final

implementation with the help of design automation tools. A well-defined system-level model

contains the essential features such as structural and behavioral hierarchy, separate computation

and communication, and explicit parallelism. Typically, system-level models are written in C-

based System-level Description Languages (SLDLs), and rely on simulation to validate their

functional correctness and estimate design metrics, including timing, power, and performance.

Fast yet accurate simulation is highly desirable for efficient and effective system design.

The simulation kernel of the C-based SLDLs is usually based on Discrete Event (DE) simulation

driven by events notifications and simulation time advancements. The existing reference simu-

lators for SLDLs use the cooperative multithreading model to express the explicit parallelisms

in ESL models. It is impossible to utilize the multiple computational resources that are com-

monly available in todays multi-core simulation hosts. Moreover, the discrete event execution

semantics impose a total order on event delivery and time advances for model simulation. The

global simulation cycle barrier is a significant impediment to parallel simulation.

In this work, we proposed a parallel simulation infrastructure for system-level models written

in SLDLs. The infrastructure, including a scheduler for multithread parallel scheduling and a

compiler for static code analysis, can effectively exploit the multiple computational resources
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on multi-core simulation platforms for fast simulation, and increase model observability for

system-level development.

8.1 Contributions

We summarize our contributions in the following sections.

8.1.1 A model of computation for system-level design

In Chapter 2, we have discussed the relationship between C-based system description languages

and the abstract design models they describe. We’ve outlined the need for a model of compu-

tation behind the syntax of the description languages.

We proposed the ConcurrenC model of computation as a practical approach for abstract system

modeling which fills the gap between the theoretical model of computation, such as KPN and

SDF, and the practical SLDLs, such as SpecC and SystemC. ConcurrenC is a concurrent, hierar-

chical system model of computation with abstraction of both communication and computation.

It can be expressed by both the SpecC and SystemC SLDLs for execution and validation. We

emphasis the parallel execution semantics as a critical feature for system-level modeling and

design.

A real-world driver application, H.264 decoder is used to demonstrate how the ConcurrenC

approach matches the system modeling requirements.

8.1.2 A synchronous parallel discrete event simulator

While parallelism is usually explicitly expressed in system-level and multi-core computer plat-

forms are commonly available nowadays, most of the reference simulation kernels for system-
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level description languages do not support parallel simulation due to their implementation with

respect to discrete event execution semantics.

In Chapter 3, we propose a kernel extension to the SpecC SLDL simulator for synchronous par-

allel discrete event simulation on shared-memory multi-core platforms. The extended simulation

kernel has the following features:

• It can issue multiple threads in the same simulation cycle to run simultaneously during

simulations.

• It uses the preemptive OS kernel-level threads and relies on the operating system to

schedule the concurrent threads on the underlying CPUs in the multi-core simulation

host.

• It supports an automatic channel locking scheme for proper synchronization and commu-

nication protection.

• It protects the synchronization and communication automatically through source code

instrumentation by the SpecC compiler.

The extended simulator is scalable on multi-core computer platforms, and is transparent for the

designer to use without any model modification to protect parallel simulation.

We conduct case studies on two well balanced embedded applications, a H.264 video decoder

and a JPEG Encoder applications, respectively. Our experimental results demonstrate a signif-

icant reduction in simulation run time for transaction level models at various levels of abstrac-

tion.

8.1.3 An advanced parallel discrete event simulation approach

The discrete event execution semantics imposes a strict total order on event handling and timing

advances. Although parallelism are usually explicitly expressed in the model and mapped to
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working threads accordingly, very limited of them can truly run concurrently during simulation.

The global simulation time is the major barrier which prevents multiple working threads from

running in parallel.

In Chapter 4 and Chapter 5, we propose the out-of-order parallel discrete event simulation

approach to address the issue of limited simulation parallelism in the synchronous parallel

discrete event simulation. This novel approach contributes in the following ways:

• It breaks the global simulation cycle barrier by locating them into each thread so as to

allow threads in different simulation cycles to run in parallel.

• It allows as many working threads as possible to run concurrently so as to maximize the

multi-core CPU utilization.

• The simulation semantics and timing accuracy are fully preserved with the help of the

static code analysis on the design models and the dynamic conflict detection during sim-

ulation.

• The optimized static code analysis using the idea of instance isolation can reduce the

number of false conflicts. It also helps to reduce the analysis complexity.

• The optimized scheduling using prediction information can reduce the number of false

dynamic conflicts, and therefore help to increase simulation parallelism.

We demonstrate the benefits and cost of this out-of-order approach on a set of experiment ex-

amples, including three highly parallel benchmark applications and six embedded applications.

Experimental results show that, with only a small increase in compile time, our simulator is

significantly faster than the traditional single-threaded reference implementation, as well as

the synchronous parallel simulator for generic system-level models with imbalanced timing and

workload.
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8.1.4 An infrastructure for increasing modeling observability

Writing correct system-level model is difficult since it involves parallelism insertion into the

reference sequential code. It is a tedious and error-prone process to build parallel system-level

models, and is also very difficult to catch bugs caused by parallel race conditions by using

existing development tools.

In Chapter 7, we propose a tool flow to increase the observability in parallel models. In par-

ticular, the infrastructure of the proposed tool flow includes a compiler with advanced conflict

analysis, a parallel simulator with fast dynamic conflict checking, and a novel race-condition

diagnosis tool. It can provide the designer with detailed race condition information that is

helpful to fix the model efficiently when needed.

The proposed approach has allowed us to reveal a number of risky race conditions in our in-house

embedded multi-media application models, and enabled us to efficiently and safely eliminate

these hazards. Our experimental results also show very little overhead for race condition diag-

nosis in both compilation and simulation.

8.2 Future Work

Related future research work is worth pursuing in the following areas:

8.2.1 Model Parallelization

Serial applications cannot take advantage of parallel simulation. Therefore, the Grand Challenge

for fast parallel simulation remains in the problem of how to expose the parallelism in system-

level models.

Constructing explicit parallelism in system-level models will not only help to achieve the goal of
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fast simulation, but is also highly desirable from the design perspective with respect to SW/HW

partition, architecture mapping, etc. While great research efforts in the compiler community

have shown that explicit parallelization is almost infeasible to get in a fully automatic way, it

is promising to involve the developers, who have intelligence and knowledge, in the loop and

assist them with the automatic analysis and optimization tools to achieve better parallelization

results.

8.2.2 Multithreading Library Support

As the infrastructure for parallel simulation, the performance of the underlying multithreading

libraries is critical for efficient validation on multi-core simulation hosts. Preemptive multi-

threading libraries, such as Posix Threads, have heavy overheads in terms of context switching,

thread creation and deletion, etc. Research work is desirable to reduce the threading overhead

on the emerging computer architectures, such as many core systems and heterogeneous mobile

platforms.

8.2.3 Extension to the SystemC SLDL

The work in this dissertation is equally applicable to the SystemC language, which is the indus-

try standard for system-level design. A front-end tool which can build the C++ abstract syntax

tree and extract the SystemC semantics for system-level features is needed for the purpose of

model analysis and design automation. Research study is also needed to ensure the SystemC

parallel execution semantics (Section 3.2.1).

8.2.4 Parallel Full System Validation

The system validation phase usually expands through the whole design life cycle of a product

as it includes system-level, RTL, and post-silicon stages [116, 117]. Validation speed is very
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critical to products’ time to market.

For system-level validation, simulation performance of the models at lower abstraction levels is

the real bottleneck in todays system design flows. The simulation can take several days or weeks

to run for industrial applications. Efficient parallel full system simulation is highly desirable for

fast and low cost system validations.

8.3 Concluding Remarks

In conclusion, the work presented in this dissertation provides an advanced parallel simulation

infrastructure for efficient and effective system-level model validation and development. It helps

the embedded system designers to build better products in a shorter development cycle.
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