Outgassing study of resist for extreme ultraviolet lithography at PAL

Sangsul Lee ¹, Chung Yong Kim ¹, Tae Geun Kim ¹, Chang Young Jeong ¹, Seungyu Rah ², Jun Lim ², and Jinho Ahn ¹

1 Division of Materials Science & Engineering, Hanyang University 2 Pohang Accelerate Laboratory (PAL)

Abstract

As extreme ultraviolet (EUV) wavelength has a high generic absorbance properties to almost all elements, EUVL requires a vacuum environment for resist exposure. At these low pressures, contamination through the system due to the free molecular flow of particles is possible. Contamination of optics and mask decreases the reflectivity of the EUVL imaging systems. Hence, we discuss the resist outgassing characteristics under EUV exposure.

The system for the evaluation of EUV resist was established at the 11B1 beamline of Pohang Accelerate Laboratory (PAL) in Korea. It is essentially used to derive optimized chemical components of photoacid-generator (PAG) as well as resin, suitable resist thickness and PEB conditions. The outgassing species collected from the resist during the EUV exposure were analyzed with quardruple mass spectrometer connected to the resist evaluation chamber. In this research, we investigated outgassing characteristics of EUV resist with various PAG combinations. Also we studied outgassing characteristics with the change of resist thickness and PEB conditions. Detailed chemical properties and outgassing characteristics will be discussed at the presentation.

Contents

Introduction

EUVL : Critical Issues EUVL : Resist outgassing

- Experimental Set-up at PAL
- Resist outgassing analysis

Change of resist thickness Change of PAG & soft bake Changing type of PAG

Summary

EUVL : Critical issues

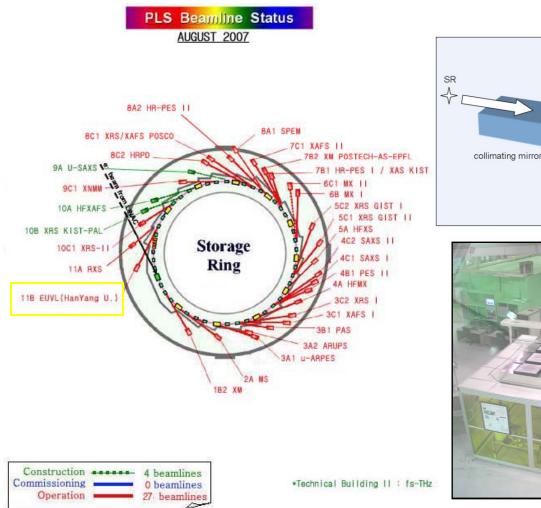
- Light Source : Power. Efficiency. Source materials.
- Optics : Reflectance accuracy. Efficiency
- Perfect Mask : Defect. Mask inspection. Cleaning
- Environment Control from contamination

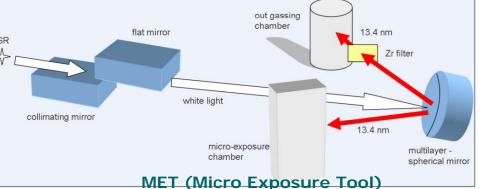
Optics contamination from resist outgassing

Specification	2006 ITRS
Resolution 1:1 (nm)	32
Resolution isolated lines (nm)	21
Low frequency LWR (nm, 3 σ)	1.7
Photospeed. EUV (mJ/cm ²)	5-15
Ougassing rate for 2 minutes under the lens (molecules/cm ² -sec)	< 5E+13

Selected 2006 ITRS goals for EUV resist. - Proc. Of SPIE Vol. 6519 65191p-1

EUVL : Resist outgassing


 ITRS goals for EUV resist resolution. low frequency LWR. Photo speed, <u>outgassing rate</u>


Optics contamination

- WHY resist outgassing test Extreme ultraviolet (EUV) lithography requires a vacuum environment for exposure
 - : Critical issue to understand the outgassing hydrocarbon ion species of the photoresist
- Disadvantage of resist outgassing
 - Reduce the reflectivity of the mask and the imaging mirror
 - (Optics Lifetime Issue : Reflectivity loss < 1.6%)

Experimental set-up at PAL

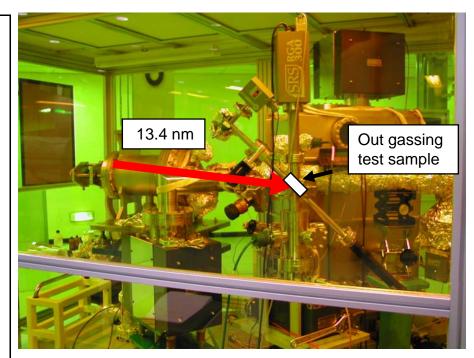
EUV resist outgassing

Pohang Accelerator Laboratory in Korea 11B EUVL beam line

Experimental set-up at PAL

Purpose of PR evaluation chamber

Photo-chemical reaction properties
Out-gassing characteristic of photo-resist


Light Source

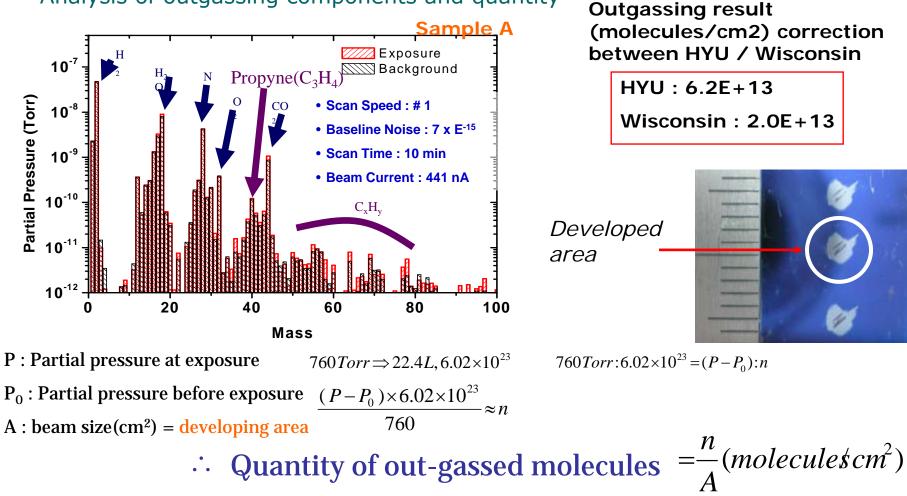
•Type : bending magnet

Photon at Sample

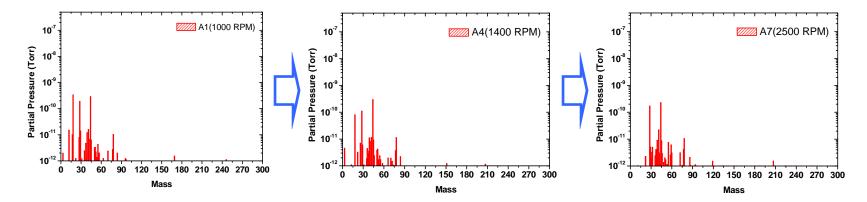
Photon energy : 13.4nm(92.5 eV @2.5GeV)
Beam Size : 2mm @ out-gassing sample position

Equipment (QMS)
Mass Spectroscopy : 1~300 AMU
Clean booth : < class 1000

Pin Hole (φ 5mm) 2mm beam size control

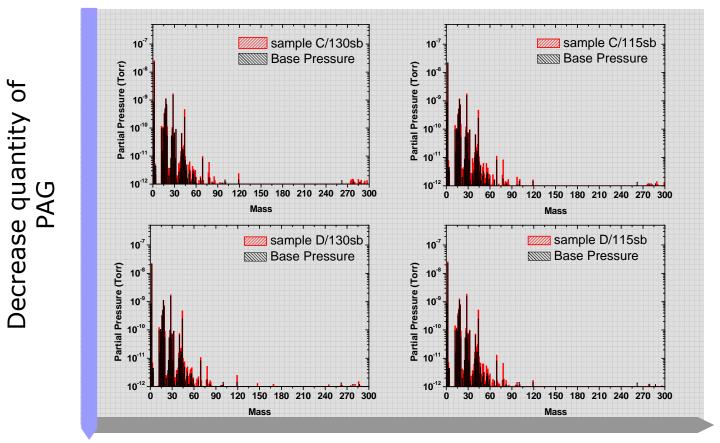

Zr filter

monochromatic wavelength 13.4nm


Resist out-gassing analysis

• Analysis of outgassing components and quantity

Change of resist thickness

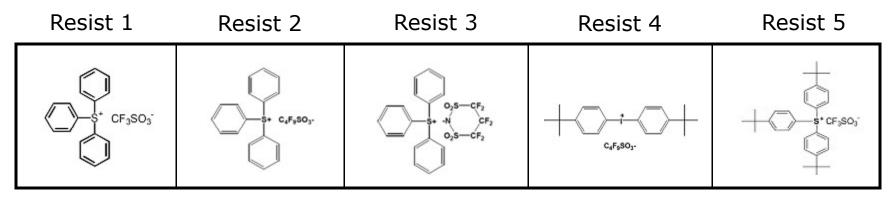

Outgassing result with resist thickness change

	A1	A4	A7	
	(coating speed	(coating speed	(coating speed	
	1000 RPM)	1400 RPM)	2500 RPM)	
Out-gassing (molecules/cm ²)	3.43E ¹³	2.15E ¹³	1.66E ¹³	

Resist coat RPM increase → Thickness decrease

Change of PAG & soft bake

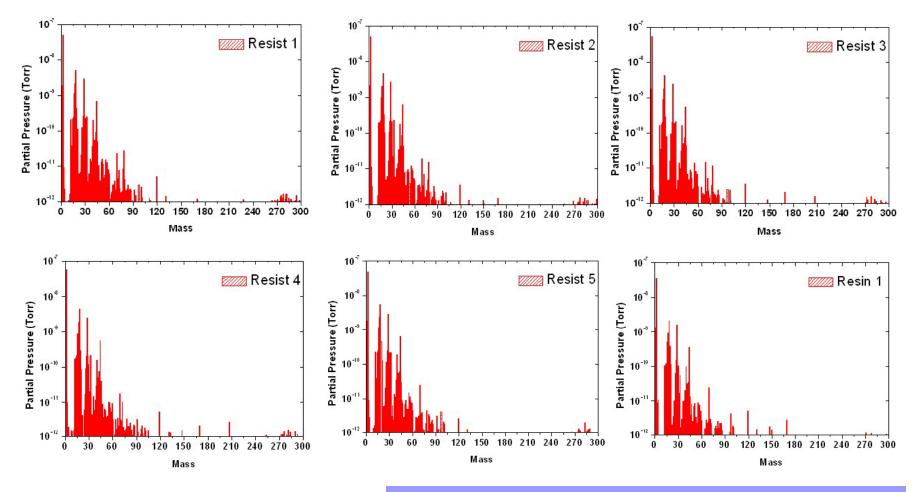
Increase SB temperature


Change of PAG & soft bake

• Outgassing result

sample No.	SB(℃)	Coating speed (RPM)	Base Pressure (Torr)	Exposure Area (Cm²)	Total Out-gassing (molecules)	Out-gassing (molecules/Cm ²)
Sample C	130	1400	7.8x10^-9	2.00E-02	4.37185E+11	2.19E+13
Sample C	115	1400	7.8x10^-9	2.00E-02	6.94359E+11	3.47E+13
Sample D (low PAG)	130	1400	7.8x10^-9	2.00E-02	4.88456E+11	2.44E+13
Sample D (low PAG)	115	1400	7.8x10^-9	2.00E-02	9.27224E+11	4.64E+13

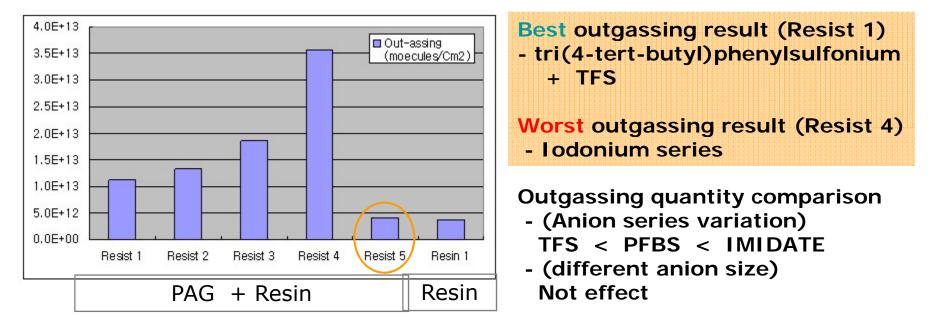
- Soft bask temperature decrease
 - : remaining solvent increase
 - → outgassing quantity increase


• Different type of PAG

- Resist 1 : triphenylsulfonium trifluoromethanesulfonate (TPS-TFS)
- Resist 2 : triphenylsulfonium perfluorobutanesulfonate (TPS-PFBS)
- Resist 3 : triphenylsulfonium cyclo(1,3-perfluoropropanedisulfone) imidate (TPS-IMIDATE)
- Resist 4 : bis-4-(tert-butyl)phenyliodonium perfluorobutanesulfonate (BPI-PFBS)

Resist 5 : tri(4-tert-butyl)phenylsulfonium trifluoromethanesulfonate (TPS-TFS)

• Total outgassing result : Different type of PAG


• Different type of PAG

sample No.	SB(℃)/Sec	Coating speed (RPM)	Base Pressure (Torr)	Exposure Area (Cm2)	Total Out-gassing (molecules)	Out-assing (moecules/Cm2)	
Resist 1	110/60	1400	2.0x10^-8	2.30E-02	2.58E+11	1.12E+13	Anion difference
Resist 2	110/60	1400	2.0x10^-8	2.10E-02	2.78E+11	1.33E+13	Cation
Resist 3	110/60	1400	2.1x10^-8	1.73E-02	3.22E+11	1.86E+13	difference
Resist 4	110/60	1400	2.2x10^-8	1.77E-02	6.30E+11	3.56E+13	Sulfonium
Resist 5	110/60	1400	2.0x10^-8	4.14E-02	1.71E+11	4.14E+12	P
Resin 1	110/60	1400	2.0x10^-8	2.00E-02	7.80E+10	3.90E+12	Imidate serie

difference	sample	factor
Anion difference	#1 vs #2	Anion size
Cation difference	#1 vs #5	Cation structure
Sulfonium vs Iodonium	#2 vs #4	Cation series
Imidate series	#3 vs #1. 2	Imidate vs sulfonate

• Different type of PAG

	#5	#1	#2	#3	#4
Cation	T(4-tert-butyl)PS	TPS	TPS	TPS	BPI
Anion	TFS	TFS	IMIDATE	PFBS	PFBS

Increase of outgassing quantity

- EUV outgassing : source of optics contamination
- EUV PR evaluation system was constructed at the Pohang Accelerater Laboratory (PAL)

: EUV source – synchrotron detection – QMS

- Resist outgassing analysis
 - outgassing factors
 - : resist thickness. soft bake temperature. type of PAG
 - changing type of PAG
 - : tri(4-tert-butyl)phenylsulfonium trifluoromethanesulfonate
 - (best outgassing result)
 - Iodonium series (worst)
 - Anion size (NOT effect)
 - -Outgassing segments from the resist were mainly caused
 - by PAG decomposition