
Towards a Formal Standard for
Interoperability

in M&S/System of Systems Integration

Bernard Zeigler, Saurabh Mittal
Arizona Center for Integrative

Modeling and Simulation,
University of Arizona,

Tucson, AZ
{zeigler | saurabh}
@ece.arizona.edu

CRITICAL ISSUES IN C4I
20-21 May 2008
George Mason University, Fairfax, VA

Xiaolin Hu
Dept of Computer Science,
Georgia State University,

Atlanta, GA
xhu@cs.gsu.edu

Outline
• Systems interoperability (vs integration)
• Roles of Modeling and Simulation in System of Systems
• Why middleware (HLA) is not enough
• Levels of Interoperability – from conceptual to linguistic
• Testing interoperability at multiple levels
• DEVS standard for simulation interoperation
• Application to testing the GIG/SOA
• Summary

Interoperation vs Integration*

Interoperation of components
• participants remain autonomous and

independent
• loosely coupled
• interaction rules are soft coded
• local data vocabularies persist
• share information via mediation

Integration of components
• participants are assimilated into

whole, losing autonomy and
independence

• tightly coupled
• interaction rules are hard coded
• global data vocabulary adopted
• share information conforming to strict

standards

* adapted from: J.T. Pollock, R. Hodgson, “Adaptive Information”, Wiley-Interscience, 2004

NOT Polar Opposites!

reusability
composability

efficiency

Problem formulation: Systems of
Systems

C4I
Systems

System of
Systems (SoS)

M&S
as Smart
Component

interoperate
disparate
systems
to synthesize

a new
functionality

M&S
as
Solution
Methodology

defining obstacle is
lack of interoperability
among components

Tolk’s Levels of Conceptual Interoperability Model

Level of Conceptual
Interoperability

Characteristic Key Condition

Conceptual The assumptions and constraints
underlying the meaningful
abstraction of reality are aligned

Requires that conceptual models be
documented based on engineering
methods enabling their interpretation
and evaluation by other engineers.

Dynamic Participants are able to
comprehend changes in system
state and assumptions and
constraints that each is making
over time, and are able to take
advantage of those changes.

Requires common understanding of
system dynamics

Pragmatic Participants are aware of the
methods and procedures that
each is employing

Requires that the use of the data – or the
context of their application – is
understood by the participating systems.

Semantic The meaning of the data is
shared

Requires a common information
exchange reference model

Syntactic Introduces a common structure to
exchange information,

Requires that a common data format is
used

Technical Data can be exchanged between
participants

Requires that a communication protocol
exists

Stand alone No interoperability

syntactic

semantic

pragmatic

Linguistic Levels of Interoperability

Linguistic
Level

Interoperability
Demonstrated if: Example

Pragmatic –
How information in
message is used

The receiver reacts to
the message in a
manner that the
sender intends

A commander’s order is obeyed by the
troops in the field as the commander
intended. (This assumes semantic
interoperability.)

Semantic –
Shared understanding of
meaning of messages

The receiver assigns
the same meaning as
the sender did to the
message.

An order from a commander to multi-
national participants in a coalition
operation is understood in the same
manner despite translation into different
languages.

Syntactic –
Common rules governing
composition and
transmitting of messages

The consumer is able
to receive and parse
the sender’s message

A common network protocol (e.g., IPv4)
ensures that all nodes on the network
can send and receive data bit arrays
while adhering to a prescribed format.

Mapping M&S Layers to Linguistic Levels

Syntactic Level

Semantic Level

Pragmatic Level

Execution Layer
Abstract Simulators, Real time Execution, Animation Visualization

Network Layer
Distributed Grids, Service Oriented Architectures

Semantic Web, Composition, Orchestration

Ontologies, Formalisms, Model Dynamic Structure, Life Cycle
Continuity, Model Abstraction

Modeling Layer

SES, DoDAF, Integrated System Development and Testing
Design and Test Development Layer

.
Observers and Agents for Net-Centric Key Performance Parameters

Experimental Frame Layer

Collaboration Layer

Background: DEVS M&S Framework

Discrete Event Systems Specification
(DEVS)

• Based on mathematical formalism
using system theoretic principles

• Separation of Model, Simulator and
Experimental Frame

• Atomic and Coupled types
• Hierarchical modular composition

Level Name System Specification at this level
4 Coupled

Systems
System built from component systems with coupling recipe.

3 I/O System
Structure

System with state and state transitions to generate the
behavior.

2 I/O
Function

Collection of input/output pairs constituting the allowed
behavior partitioned according to initial state of the system.
The collection of I/O functions is infinite in principle
because typically, there are numerous states to start from and
the inputs can be extended indefinitely.

1 I/O
Behavior

Collection of input/output pairs constituting the allowed
behavior of the system from an external Black Box view.

0 I/O Frame Input and output variables and ports together with allowed
values.

Source
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

message

DEVS Modeling and Simulation Infrastructure supports
simultaneous testing at multiple levels

Syntactic Level
Tests

Semantic Level
Tests

Pragmatic Level
Tests

network probes return
statistics and alarms to
DEVS transducers/
acceptors

Mission Thread Test Agents
Control and Observe
collaborations

Semantic Level agents
activate probes at
Syntactic Level

DEVS acceptors alert
higher layer agents of
network conditions that
invalidate test results

Pragmatic Level agents
inform Semantic Level
agents of the objectives for
health monitoring

Semantic Level agents
observe message exchanges
between collaboration
participants

Middleware (SOAP, RMI etc)
-

Net-centric infrastructure

DEVS Simulator Services

DEVS Modeling Language (DEVML)

DEVS Simulation Concept
• Specifies the abstract simulation engine that correctly simulates DEVS atomic and
coupled models

• Gives rise to a general protocol that has specific mechanisms for:

• declaring who takes part in the simulation:
o format for referencing federates (participants)

• declaring how federates exchange information:
o format for their message exchange patterns

• executing an iterative cycle that
• controls how time advances:

o updating the clock based on next event times
• determines when federates exchange messages:

o the point in the cycle when all interchange takes place
• determines when federates do internal state updating

o the point in the cycle when next event times are collected

Note:
If the federates are DEVS compliant then the simulation is provably

correct in the sense that the DEVS closure under coupling theorem
guarantees a well-defined resulting structure and behavior.

DEVS
Simulator

DEVS
Model

DEVS
Protocol

DEVS Simulation Protocol

Coordinator

Atoimc1

Non-DEVS
Simulator

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("

Coordinator

DEVS
Model

1

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("ApplyDeltFunc”)
Core Simulator Interface

DEVS
Simulator

DEVS
Simulator

DEVS
Model

2

?

Core Simulator Interface

Concept of DEVS Standard

DEVS
Core
Simulator

Interface

Single
processor

Distributed
Simulator

Real-Time
Simulator

C++

Non
DEVS

DEVS
Model
Interface

Java

Other
Representation

DEVS
Simulation
Protocol

Virtual-Time
Simulator

DEVSML

Core Simulator Interface

interface coreSimulatorInterface{

void setSimulators(Collection<CoreSimulatorInterface>);

void initialize();

Double nextTN();

void computeInputOutput(Double t);

void applyDeltFunc(Double t);

void putContentOnSimulator(
CoreSimulatorInterface sim, ContentInterface c);

void sendMessages();
}

simulators.tellAll("initialize“)
simulators.AskAll(“nextTN”)
simulators.tellAll("
simulators.tellAll("sendMessages")
simulators.tellAll("

simulators.tellAll("initialize“)
simulators.AskAll(“nextTN”)
simulators.tellAll("computeInputOutput”)
simulators.tellAll("sendMessages")
simulators.tellAll("ApplyDeltFunc”)

Core Simulator Interface is derived from the DEVS simulation cycle
It specifies the methods and arguments to be coordinated under the DEVS protocol

DEVS/SOA Infrastructure: Supports Deployment and
Execution of DEVS Models on the Web

WEB
SERVICE
CLIENT

Middleware (SOAP, RMI etc)
Net-centric infrastructure

DEVS Simulator Services

DEVS Modeling Language (DEVML)

DEVSJAVA

DEVS
Agent

(Virtual User)

DEVS
Agent

(Observer)

WEB
SERVICE
CLIENT

Run Example

• Service Oriented Architecture (SOA) consists of various
W3C standards

• Client server framework

• XML Message encapsulated in SOAP wrapper

• Machine-to-machine interoperability over the network
based on WSDL interface descriptions

DEVS/SOA Infrastructure for GIG Mission Thread Testing

1. MAJ Smith tasks Intell to
reconnoiter objective area and
provide threat estimate

2. Posts taskings using
Discovery and Storage

5. Intell Cell issues alert via messaging
6. MAJ Smith pulls
estimate from Storage

3. Intell Cell initiates high priority collection
against objective, and collectors post raw output

4. Intell posts products via Discovery and Storage

Observing Agent
for Major Smith

Observing Agent
for Intell Cell

notes time of posting

Computes Time for Task,
Measure Performance

sends time to other Agent

Observing Agent
alerts other Agent

NCES GIG/SOA

• Test agents are DEVS models and
Experimental Frames

• They are deployed to observe
selected participant via their service
invokations

Summary
The proposed DEVS standard and its DEVS/SOA implementation support

several modes :
DEVS-to-DEVS Interoperability
• DEVS standard facilitates interoperability at the syntactic, semantic

and pragmatic levels
DEVS-to-Non-DEVS Interoperability
• Direct

– Refactoring legacy simulations to implement the Core Simulator interface
– allows interoperation with DEVS and other non-DEVS peers.
– guarantees well-defined time management and simulation correctness
– sound basis for interoperability at the higher levels

• Via Client Gateways
– SOA standard enables interoperation of services (DEVS and non-DEVS)
– DEVS/SOA can deploy DEVS models to act as agents that are automatically attached

to clients
– Test agents can

• observe the web service interactions between client and server
• serve as virtual users to interact with other users
• direct the course of test scenarios
• communicate with each other to coordinate and share information

Backup

Layered structure

DEVS Modeling
Interfaces

DEVS Supporting Interface

Entity, and Collection,
Message nterfaces

Atomic and Coupled
Model Interfaces

Atomic and Coupled
Simulators Interfaces

DEVS Simulator
Interfaces

DEVS Supporting Interfaces

interface EntityInterface{
String getName();
boolean equalName(String name);
}

interface Collection extends EntityInterface{
int size();
void add(EntityInterface entity);
void remove(EntityInterface entity);
boolean contains(EntityInterface entity);
}

EntityInterface Collection

0:n

Message-related interfaces

ContentInterface

MessageInterface

Collection

0:n

interface MessageInterface extends Collection{
boolean onPort(

PortInterface port,
ContentInterface content);

EntityInterface getValOnPort(
PortInterface port
,ContentInterface content);

}

PortInterface EntityInterface

interface ContentInterface {
PortInterface getPort();
EntityInterface getValue();
boolean onPort(PortInterface port);
}

interface PortInterface
extends

EntityInterface{
}

Ensemble Interfaces

ensembleBasic
Collection

interface ensembleBasic {
void tellAll(Method m, EntityInterface[] args);
ensembleCollection askAll(Method m);
ensembleCollection which(Method m);
EntityInterface whichOne(Method m);
}

interface ensembleCollection extends ensembleBasic, Collection{
public ensembleCollection copy(ensembleCollection ce);
}

ensembleCollection

DEVS Model Interfaces

IODevs

atomicDevs
(optional)

interface basicDevs {
void deltext(double e,MessageInterface x);
void deltcon(double e,MessageInterface x);
void deltint();
MessageInterface Out();
double ta();
void initialize();
}

IOBasicDevs

basicDevs

coupledDevs

AtomicInterfaceCoupledinterface coupledDevs {
void add(IODevs d);
void addCoupling(IODevs src, Port p1, IODevs dest,
Port p2);
IODevs getComponentWithName(String nm);
ensembleCollection getComponents();
ensembleCollection getCouplings(IODevs src, Port
p1);
}

DevsInterface

interface IODevs {
void addInport(String portName);
void addOutport(String portName);
ensembleCollection getInports();
ensembleCollection getOutports();
ContentInterface makeContent(PortInterface
port,EntityInterface value);
boolean messageOnPort(MessageInterface x,
PortInterface port, ContentInterface c);
}

DEVS Simulator Interfaces

coreSimulatorInterface

atomicSimulatorInterface

CoupledSimulatorInterface

CoordinatorInterface

CoupledCoordinatorInterface

See also

A Proposed DEVS Standard:
Model and Simulator Interfaces, Simulator Protocol
Xiaolin Hu
Bernard P. Zeigler

On

http://osa.inria.fr/wiki/NCMS/NCMS

devsworld.org acims.arizona.edu Rtsync.com

Books and Web Links

