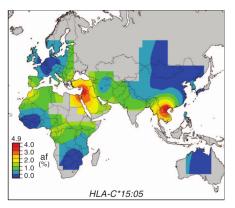


MHC (aka HLA) loci have lots of variation	Why MHC loci are so variable
 MHC loci are among the most variable in the human genome. HLA-A has 1000 known alleles; HLA-B has 1600; HLA-DRB1 has 870. Many human HLA alleles are more similar to chimpanzee alleles than to other human alleles—deep gene trees. Why? 	 MHC proteins bind to foreign proteins and target them for destruction. The more MHC alleles you express, the more pathogens you can recognize. Selection favors heterozygotes at MHC. This favors rare alleles, because rare alleles are usually heterozygous. (If an allele is rare, you are unlikely to have 2 copies.) Selection for rarity increases variation.
7/32	8/32
 Why archaic HLA alleles are likely to introgress Rare allele advantage favors introgressed alleles. Invading modern population may have lost genetic diversity because of reduced population size. This would exaggerate benefit of novel HLA alleles. Invaded archaic population may have evolved adaptations to local pathogens. 	 Outline Why the immune system is sensitive to archaic introgression. Archaic MHC alleles The OAS1 innate immunity locus STAT2
9/32	10/32
 HLA alleles from archaics Several modern HLA alleles are shared with archaics. This is weak evidence, because we also share with chimps and gorillas. But there is better evidence 	 HLA-B allele *73.01 Most similar to chimp and gorilla HLA-B alleles. Separated from other HLA-B alleles ~16 my ago. Other HLA-B lineages have lots of variation, yet *73.01 has little. Ancient divergence + modern homogeneity ⇒ archaic admixture. In addition, consider LD (Abi-Rached et al 2011)
11/32	12 / 32

	B*73					
Geographic region	N			ciated alleles %)		HLA-B*73.01 associated with HLA-C*15. LD
		C*	15	Not	C*15	across ~ 1.3 Mb.
		15:05	not 1 <i>5:05</i>	12:02	not 1 <i>2:02</i>	Long LD block \Rightarrow short time in human population
Europe	2,677	98.4	0.3	0.4	0.9	HLA-C*15 is in Denisovar
Europe*	2,907	98.5 0.3		0.3	0.9	genome.
Africa	39	100	0.0	0.0	0.0	
Africa**	90	97.8	2.2	0.0	0.0	Suggests archaic
W Asia	128	89.8	5.5	0.8	3.9	introgression. (Abi-Rached et al 2011
N/S/E Asia	53	92.5	5.7	1.9	0.0	
Other	498	99.0	0.0	0.4	0.6	
Total	3,676	98.2	0.5	0.4	0.9	

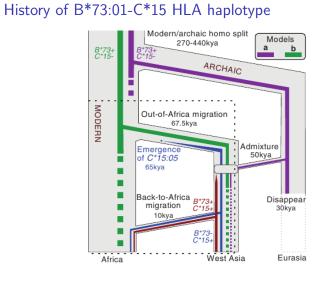
Distribution of HLA-B*73:01 allele

Common in Central Eurasia, rare in Africa.


Consistent with archaic introgression. (Abi-Rached et al 2011)

14 / 32

16 / 32


13 / 32

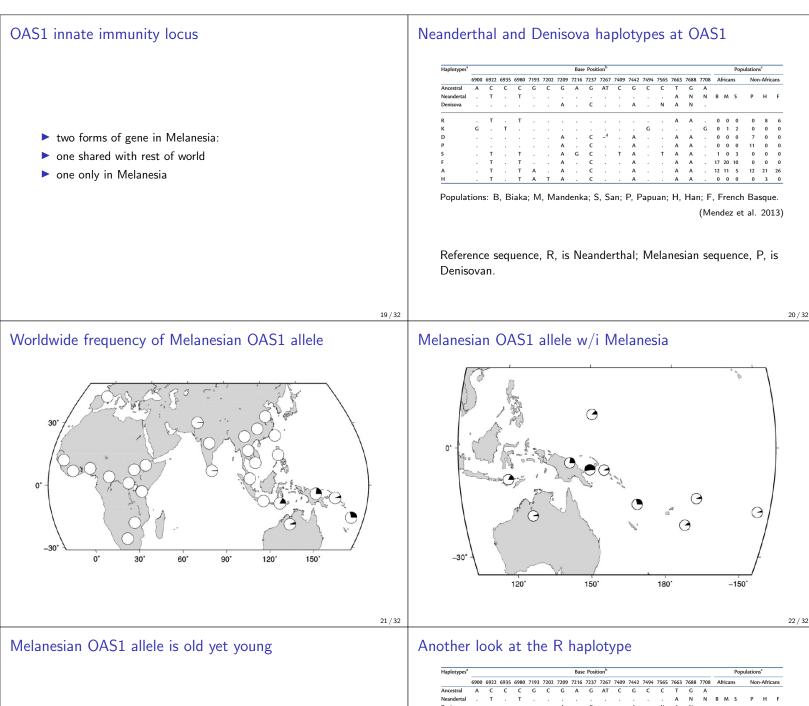
Distribution of HLA-C*15:05 allele

Common in Eurasia, rare in Africa.

Consistent with archaic introgression. (Abi-Rached et al 2011)

Other HLA alleles

There are other HLA alleles with similar stories.


Abi-Rached et al (2011) estimate that >50% of Eurasian HLA alleles came from archaics.

Archaics contributed a lot to the adaptive immune systems of modern humans.

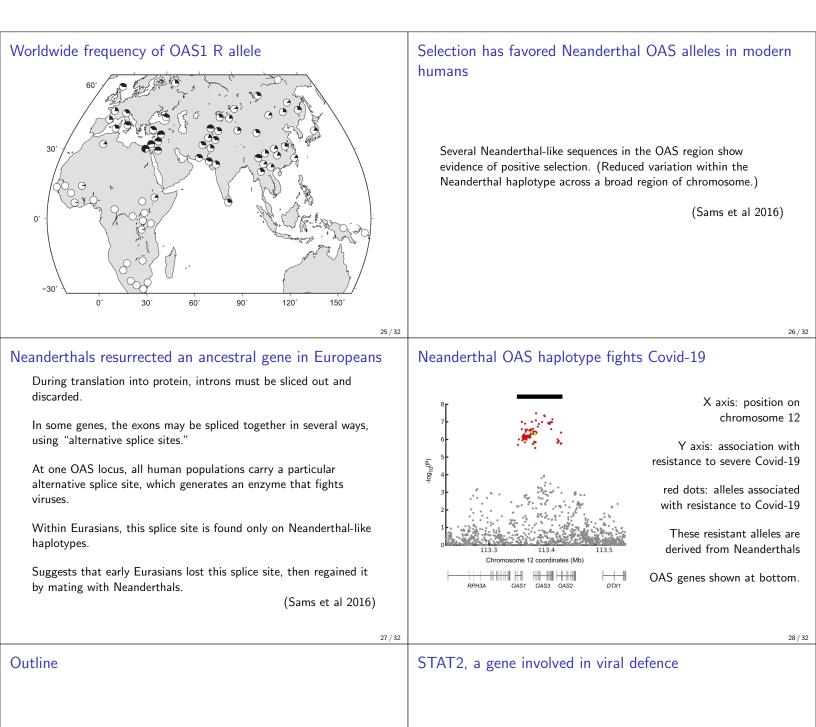
Outline

15 / 32

- $\circ\,$ Why the immune system is sensitive to archaic introgression.
- Archaic MHC alleles
- The OAS1 innate immunity locus
- STAT2

- ▶ The 2 alleles differ at many nucleotide sites \Rightarrow separation time \sim 3.4 my.
- \blacktriangleright Long (90 kb) LD block \Rightarrow they've been together only ${\sim}25$ ky
- Melanesian allele matches that in Denisovan hominin skeleton.
- \Rightarrow archaic admixture into Melanesia

		Base Position ^b															Populations						
	6900 A	6922 C	6935 C	6980 C	7193 G	7202	7209	7216	7237 G	7267 AT	7409 C	7442 G	7494 C	7565 C	7663 T	7688 G	7708 A	A	frica	ns	s Non-African		
						с	G	Α															_
Neandertal		т		т											А	Ν	Ν	В	м	s	Р	н	F
Denisova		·					А		с			Α		Ν	Α	Ν	·						
R		т		т											А	А		0	0	0	0	8	6
к	G		т										G				G	0	1	2	0	0	(
D							Α		С	_d		Α			А	А		0	0	0	7	0	(
Р							А		С			А			А	А		0	0	0	11	0	(
s		т		т			А	G	с		т	А		т	А	А		1	0	3	0	0	(
F		т		т			А		с			Α			А	А		17	20	10	0	0	0
A		т		т	Α		А		с			Α			А	Α		12	11	5	12	21	20
н		т		т	Α	т	Α		с			А			А	А		0	0	0	0	3	

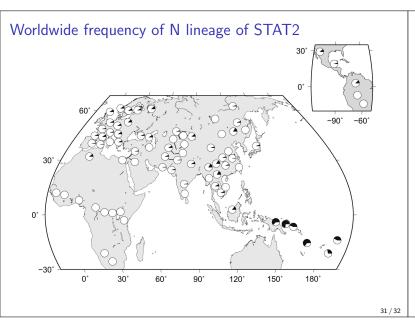

Populations: B, Biaka; M, Mandenka; S, San; P, Papuan; H, Han; F, French Basque. (Mendez et al. 2013)

Introgressed from Neanderthal.

Extends to 2nd locus, OAS2.

Associated with sensitivity to tick-borne encephalitis.

24 / 32


- $\circ\,$ Why the immune system is sensitive to archaic introgression.
- $\circ~$ Archaic MHC alleles
- $\circ~$ The OAS1 innate immunity locus
- STAT2

N allele, found at low frequencies throughout Eurasia—but not Africa.

N allele shared with Neanderthal.

N allele on a long LD block (260 kb)—implies introgression w/i past 92 ky.

 $10\times$ as common in Melanesia—suggests selection.

Summary

- Immunity genes are likely to introgress because
 - 1. Native population has adapted to local pathogens.
 - 2. Invading population may have lost diversity through bottlenecks.
 - 3. Selection favors rare HLA alleles.
- ► >50% of Eurasian HLA alleles came from Neanderthals and Denisovans.
- Neanderthals and Denisovans contributed alleles to Eurasian populations at the OAS1 innate immunity locus.
- ▶ The Melanesian allele at OAS1 diverged 3.5 my ago.
- At the STAT2 locus, Neanderthals contributed an allele that is common in Eurasia but not Africa.
- Archaic admixture had a big effect on the immune system.