TOMORROW starts here.

Overlay Transport Virtualisation

BRKDCT-2049

Justin Cooke

Technical Solutions Architect

OTV – Overlay Transport Virtualisation

Simplifying Data Centre Interconnect

Any Workload

Anytime

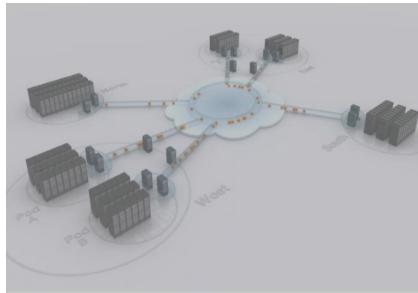
Anywhere

Session Objectives

- The main goals of this session are:
- This session features a detailed analysis of the architectural aspects and deployment benefits behind OTV
- The attendees will learn how OTV is aimed at providing Layer 2 connectivity beyond the Layer 3 boundary while maintaining the failure containment and operational simplicity that the Layer 3 boundary provides
- The attendees will get a deep knowledge of how the OTV control-plane and data-plane work to provide the VLAN extension

Session Non-objectives

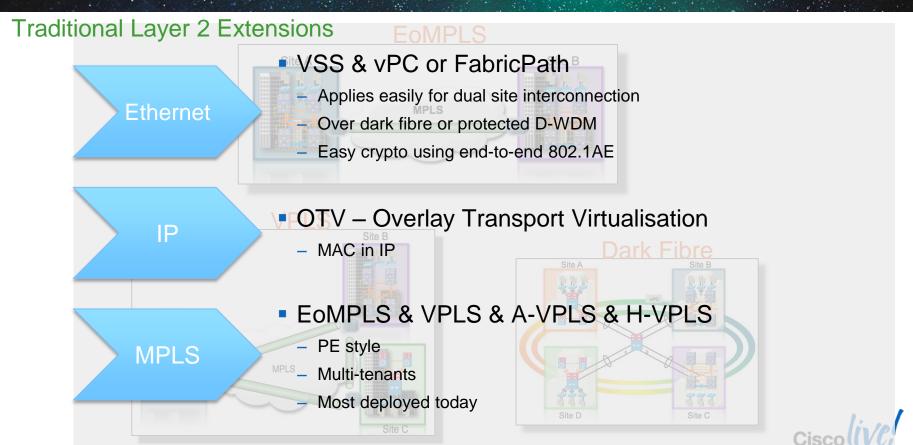
- This session does not include:
- In depth discussion of Path Optimisation technologies (DNS, LISP, etc.)
- Storage extension considerations associated to DCI deployments
- Workload mobility application specific deployment considerations


Related Cisco Live Events

Session-ID	Session Name
BRKDCT-2334	Real World Data Centre Deployments and Best Practices
BRKDCT-2165	How to Achieve True Active-Active Data Centre Infrastructures
BRKDCT-3060	Deployment Challenges with Interconnecting Data Centres
BRKARC-3470	Cisco Nexus 7000 Switch Architecture

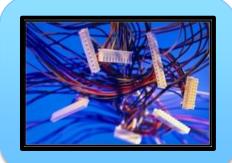
Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
- OTV Design Considerations & New Features


Distributed Data Centres Goals

- Ensure business continuity
- Distributed applications
- Seamless workload mobility
- Maximize compute resources

Data Centre Interconnect


Challenges in Traditional Layer 2 VPNs

Flooding Behaviour

- Unknown Unicast for MAC propagation
- Unicast Flooding reaches all sites

Pseudo-wire Maintenance

- Full mesh of Pseudo-wire is complex
- Head-End replication is a common problem

Multi-Homing

- Requires additional
 Protocols & extends STP
- Malfunctions impacts multiple sites



Technology Pillars

No Pseudo-Wire State Maintenance

Optimal Multicast Replication

Dynamic Encapsulation

Multipoint Connectivity

Point-to-Cloud Model

Cisco Public

Preserve Failure Boundary

Built-in Loop Prevention

Protocol Learning

Automated Multi-Homing

Site Independence

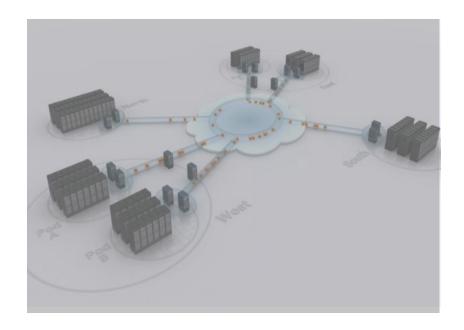
OTV – Overlay Transport Virtualisation

Simplifying Data Centre Interconnect

Any Workload

Anytime

Anywhere

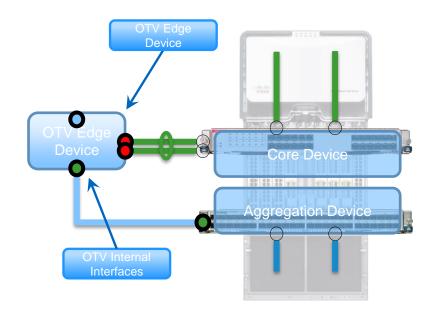


- Nexus 7000 First platform to support OTV (since 5.0 NXOS Release)
- ASR 1000 Now also supporting OTV (since 3.5 XE Release)

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

Terminology


OTV Devices and Interfaces

Edge Device

- Performs all OTV functionality
- Usually located at the Aggregation Layer or at the Core Layer
- Support for multiple OTV Edge Devices (multi-homing) in the same site

Internal Interface

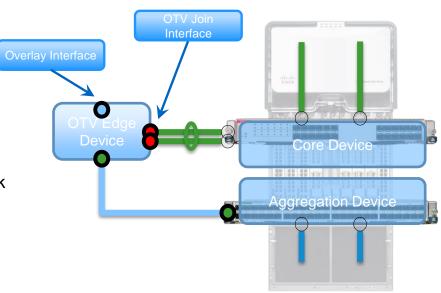
- Site facing Interfaces of the Edge Devices
- Carry VLANs extended through OTV
- Regular Layer 2 interfaces
- No OTV configuration required
- Supports IPv4 & IPv6

OTV Internal Interface

OTV Join Interface

OTV Overlay Interface

Terminology

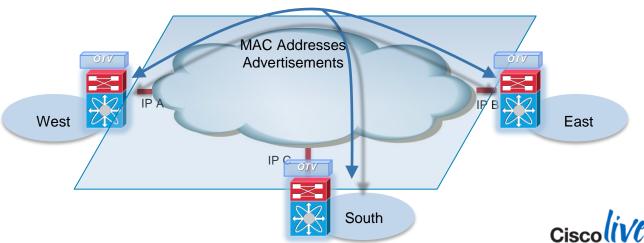

OTV Devices and Interfaces

Join Interface

- One of the uplink of the Edge Device
- Point-to-point routed interface (physical interface, sub-interface or port-channel supported)
- Used to physically "join" the Overlay network
- No OTV specific configuration required
- IPv4 only

Overlay Interface

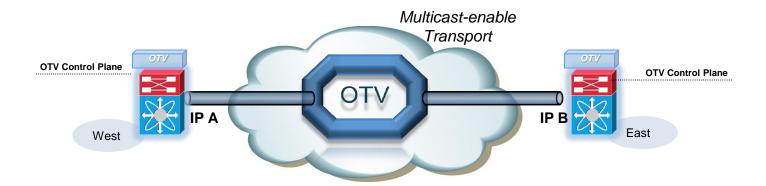
- Virtual interface with most of the OTV configuration
- Logical multi-access multicast-capable interface
- Encapsulates Layer 2 frames in IP unicast or multicast



- OTV Internal Interface
- OTV Join Interface
- OTV Overlay Interface

Building the MAC Tables

- No unknown unicast flooding (selective unicast flooding in 6.2)
- Control Plane Learning with proactive MAC advertisement
- Background process with no specific configuration
- IS-IS used between OTV Edge Devices



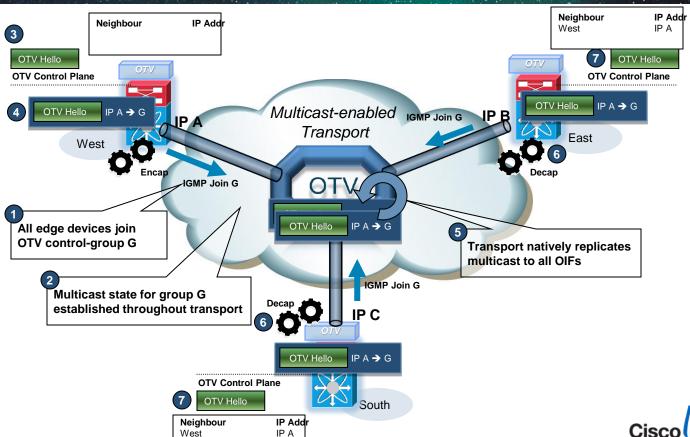
Neighbour Discovery and Adjacency Formation

- Before any MAC address can be advertised the OTV Edge Devices must:
 - Discover each other
 - Build a neighbour relationship with each other
- Neighbour Relationship built over a transport infrastructure:
 - Multicast-enabled (all shipping releases)
 - Unicast-only (from NX-OS release 5.2 & IOS-XE 3.9)

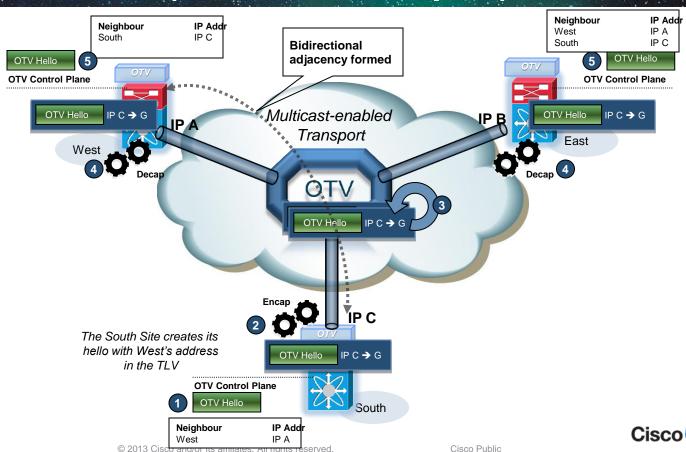
Neighbour Discovery (over Multicast Transport)

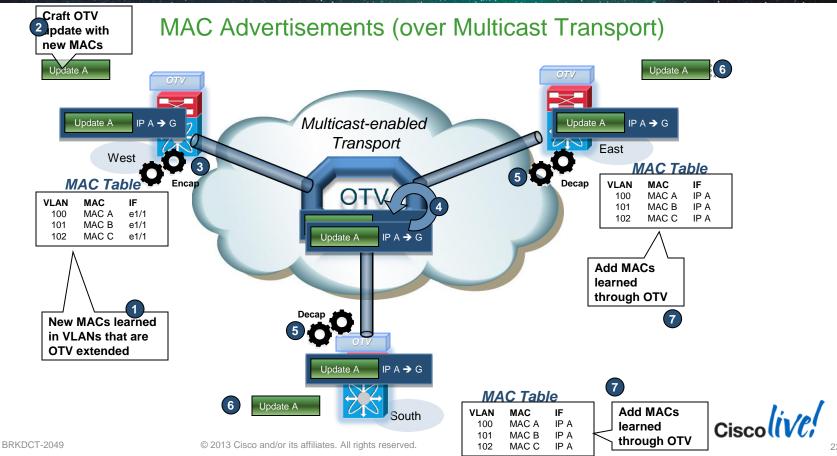
Mechanism

- Edge Devices (EDs) join an multicast group in the transport, as they were hosts (no PIM on EDs)
- OTV hellos and updates are encapsulated in the multicast group


End Result

- Adjacencies are maintained over the multicast group
- A single update reaches all neighbours


OTV Control Plane (Multicast Transport)

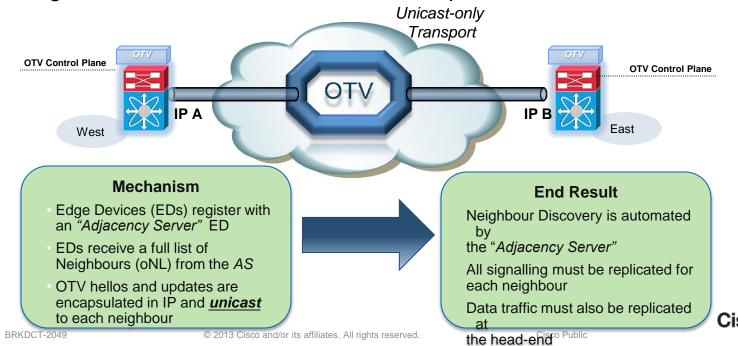

© 2013 Cisco

Cisco Public

OTV Control Plane (Multicast Transport)

Multicast Transport

OTV Control and Data Plane over Multicast Transport

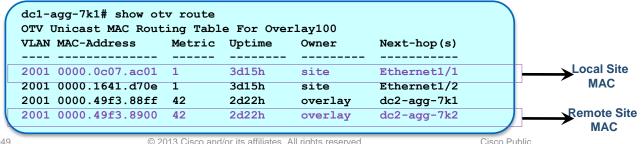

- Use a High-Available Multicast Rendez-Vous Point (RP) configuration
 - PIM Anycast (RFC4610) or MSDP (Multicast Source Discovery Protocol)
- Requirements to Control Plane
 - PIM Any-Source-Multicast (ASM)
 Sparse-Mode
- Requirements to Data Plane
 - PIM Source-Specific-Multicast (SSM) or BiDir

Example: Multicast for OTV on Nexus 7000

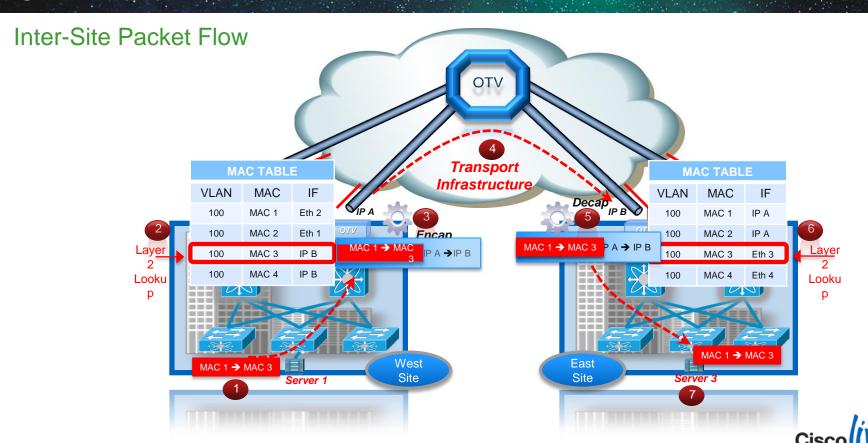
```
feature pim
!
interface loopback 0
  ip pim spare-mode
  ip address 192.168.1.100/32
!
interface loopback 1
  ip pim sparse-mode
  ip address 10.254.254.n1-x/32
!
ip pim rp-address 192.168.1.100 group-list 239.1.1.1
  ip pim anycast-rp 192.168.1.100 10.254.254.n1
  ip pim anycast-rp 192.168.1.100 10.254.254.n2
  ip pim ssm range 232.239.1.0/24
!
interface port-channel1
# This Interface peers with the OTV Join Interface
  ip igmp version3
```

Neighbour Discovery (Unicast-only Transport)

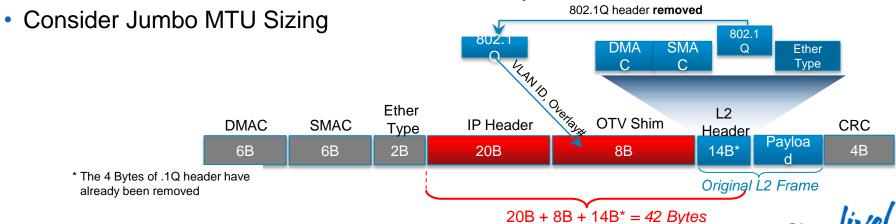
- Ideal for connecting a small number of sites
- With a higher number of sites a multicast transport is the best choice


CLI Verification

Establishment of control plane adjacencies between OTV Edge Devices (multicast or unicast transport):

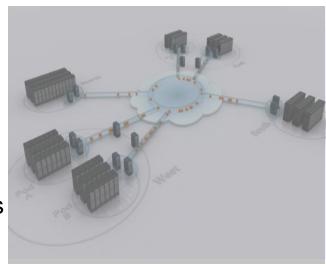

```
dc1-agg-7k1# show otv adjacency
Overlay Adjacency database
Overlay-Interface Overlay100
Hostname
             System-ID
                               Dest Addr
                                            Up Time
                                                       Adj-State
dc2-agg-7k1
             001b.54c2.efc2
                               20.11.23.2
                                            15:08:53
                                                       UP
dc1-agg-7k2
             001b.54c2.e1c3
                               20.12.23.2
                                            15:43:27
                                                       UP
dc2-agg-7k2
             001b.54c2.e142
                               20.22.23.2
                                            14:49:11
                                                       UP
```

• Unicast MAC reachability information:


OTV Data Plane

OTV Data Plane

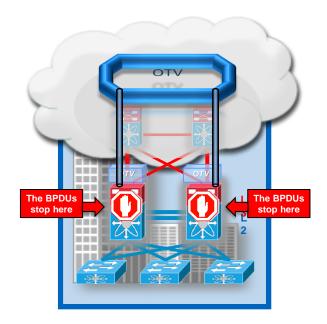
Encapsulation


- 42 Bytes overhead to the packet IP MTU size (IPv4 packet)
 - Outer IP + OTV Shim Original L2 Header (w/out the .1Q header)
- 802.1Q header is removed and the VLAN field copied over to the OTV shim header
- Outer OTV shim header contains VLAN, overlay number, etc.

of total overhead

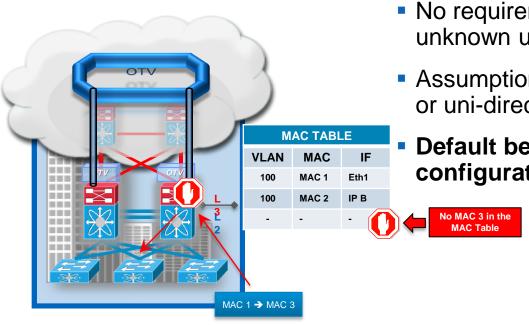
Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features



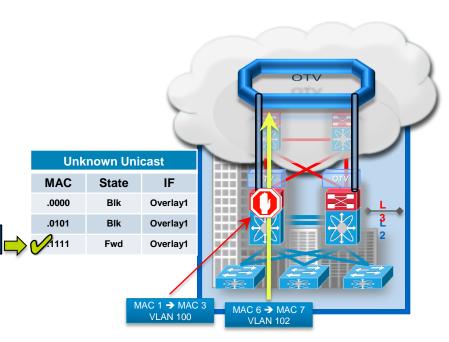
Spanning-Tree and OTV

Site Independence


- Site transparency: no changes to the STP topology
- Total isolation of the STP domain
- Default behaviour: no configuration is required
- BPDUs sent and received ONLY on Internal Interfaces

Unknown Unicast and OTV

No Longer Unknown Unicast Storms Across the DCI



- Assumption: end-host are not silent or uni-directional
 - Default behaviour: no configuration is required

Unknown Unicast and OTV

Selective Unicast Flooding

- Some Application requirement to forward unknown unicast frames
- Selective Unicast Flooding can be enabled per mac address
- Default behaviour: no unknown unicast forwarding

OTV-a # conf Enter configu

Enter configuration commands, one per line. End with \mathtt{CNTL}/\mathtt{Z}

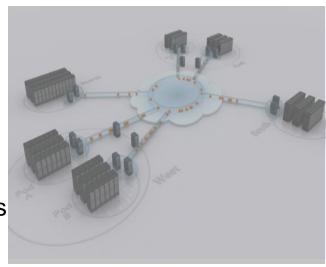
OTV-a(config) # otv flood mac 0000.2102.1111 vlan 172

Controlling ARP Traffic

ARP Neighbour-Discovery (ND) Cache

- ARP cache maintained in Edge Device by snooping ARP replies
- First ARP request is broadcasted to all sites. Subsequent ARP requests are replied by local Edge Device
- Timeout can be adjusted (as per NX-OS 6.1(1))
- Drastic reduction of ARP traffic on DCI
- ARP spoofing can be disabled
- IPv4 only feature
- Default behaviour: no configuration is required

```
OTV-a(config) # interface overlay 1
OTV-a(config-if-overlay) # no otv surpress-arp-nd
```

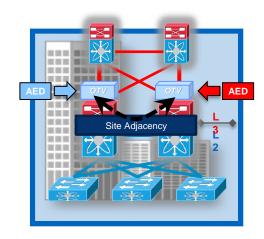

```
# Allows ARP requests over an overlay network and disables ARP caching on edge devices. This command does not support IPv6.
```

```
OTV-a(config)# interface overlay 1
OTV-a(config-if-overlay)# otv arp-nd timeout 70
```

Configures the time, in seconds, that an entry remains in the ARP-ND cache.
The time is in seconds varying from 60 to 86400. The default timeout value is 480 seconds.

Agenda

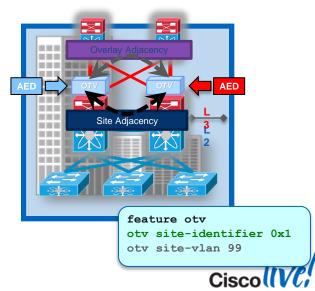
- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features



OTV Multi-Homing

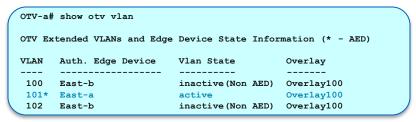
Fully Automated Multi-homing

- No additional protocols required (i.e. BGP)
- OTV site-vlan used to discover OTV neighbour in the same site
- Authoritative Edge Device (AED)
 Election takes place
- Extended VLANs are split across the AFDs
- The AED is responsible for:
 - MAC address advertisement for its VLANs
 - Forwarding its VLANs' traffic inside and outside the site

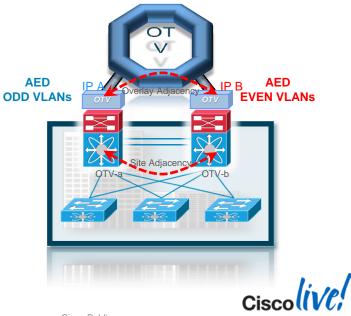

Site Adjacency used for AED election

Hardened Multi-Homing

Introducing OTV Site-identifier

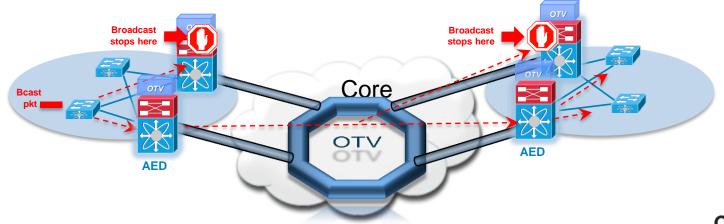

- Same site devices must use common site-identifier
- Site-id information is included in the control plane
- Makes OTV multi-homing more robust and resilient
 - Site Adjacency and Overlay Adjacency are now both leveraged for AED election
- An overlay will not come up until a site-id is configured
 - Site and Overlay Adjacency are both leveraged for AED election

OTV Multi-Homing

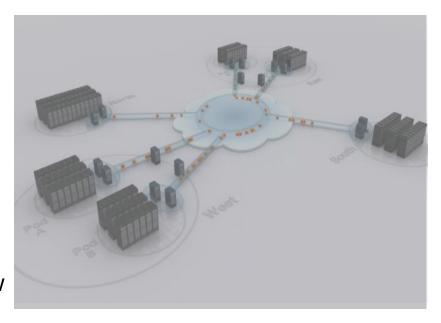

VLANs Split across AEDs

- Automated and deterministic algorithm
- In a dual-homed site:
 - Lower IS-IS System-ID (Ordinal 0) = EVEN VLANs
 - Higher IS-IS System-ID (Ordinal 1) = ODD VLANs

OTV-b#	show otv vlan			
OTV Ex	tended VLANs and Edge	Device State Infor	rmation (* - AED)	
VLAN	Auth. Edge Device	Vlan State	Overlay	
100*	East-b	active	Overlay100	
101	East-a	inactive (Non AED)	Overlay100	
102*	East-b	active	Overlay100	


Remote OTV Device MAC Table						
VLAN	VLAN MAC					
100	MAC 1	IP A				
101	MAC 2	IP B				

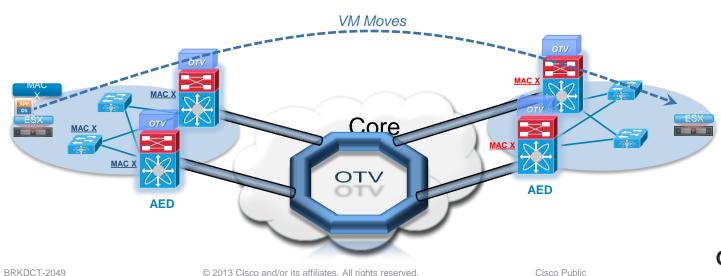
OTV Multi-Homing


AED and Broadcast Handling

- 1. Broadcast reaches all the Edge Devices within the site
- 2. Only the AED forwards the traffic to the Overlay
- 3. All the Edge Devices at the other sites receive the broadcast
- 4. At the remote sites only the AEDs forward it into the site

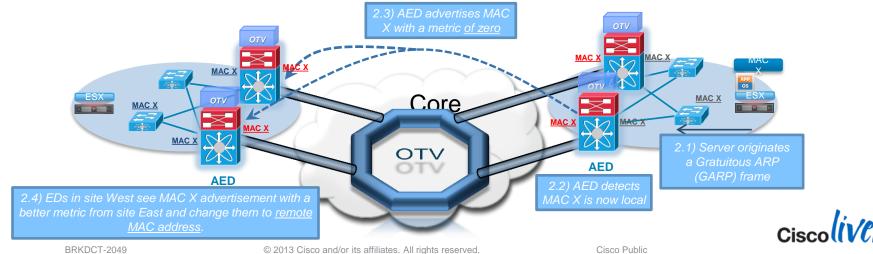
Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features



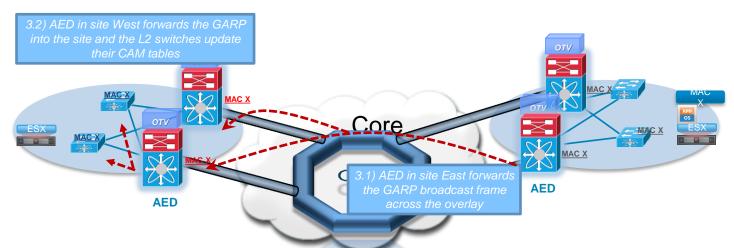
OTV and **MAC** Mobility

MAC Moving and OTV Updates (1)


1. Workload moved between Data Centre sites.

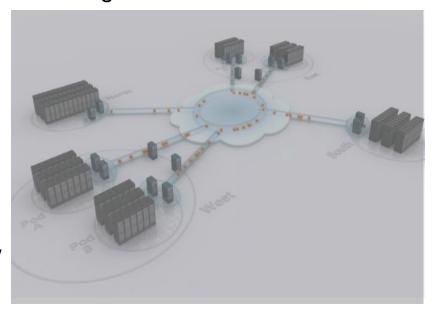
OTV and **MAC** Mobility

MAC Moving and OTV Updates (2)


- 1. Workload moved between Data Centre sites
- 2. Workload is detected in East DC and OTV control plane is triggered

OTV and **MAC** Mobility

MAC Moving and OTV Updates (3)

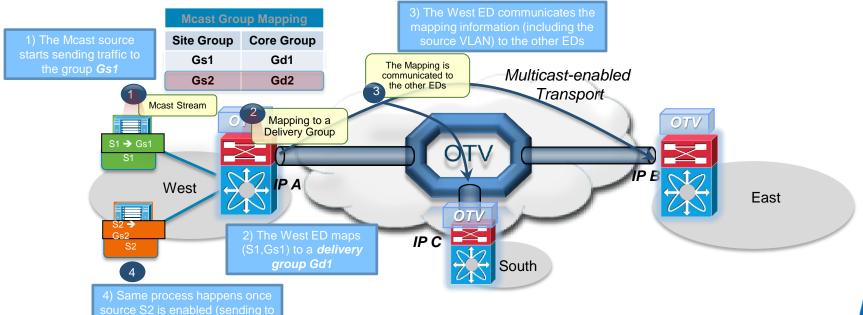

- Workload moved between Data Centre sites
- 2. Workload is detected in East DC and OTV control plane is triggered
- East to West OTV data plane traffic allows to update the MAC tables of the L2 devices in West Site

Note: GARP is used as example traffic, same behaviour is achieved with any other L2 broadcast frames exchanged

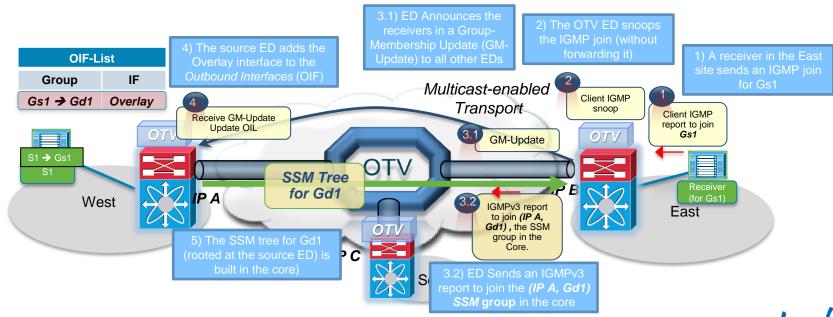
Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

L2 Multicast Traffic Between Sites

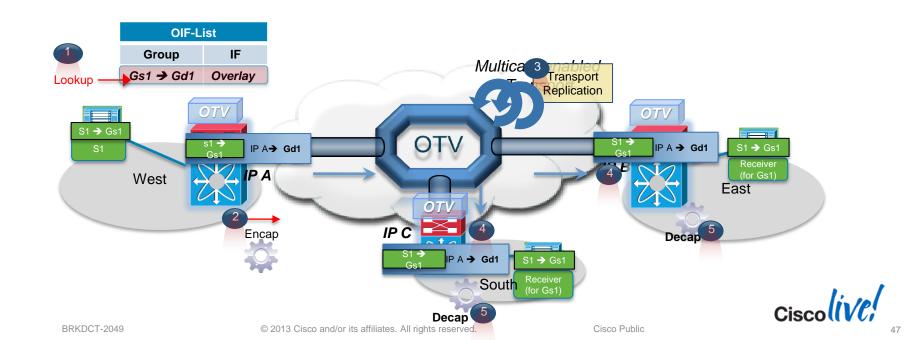

Multicast Enabled Transport

- OTV can leverage the multicast support available in the transport network to optimise the delivery of the multicast traffic for the VLANs stretched across sites
- Three steps:
 - Automated mapping of the sites' multicast groups to a range of multicast groups in the transport network
 - 2. Creation of the Multicast state information at the OTV Edge Devices
 - 3. Sites' Multicast traffic delivered over the Overlay


Step 1 – Mapping of the Site Multicast Group

- The site multicast groups are mapped to a SSM group range in the core
- Each (S1,Gs1) maps to a different SSM group in round-robin fashion

BRKDC1-2049

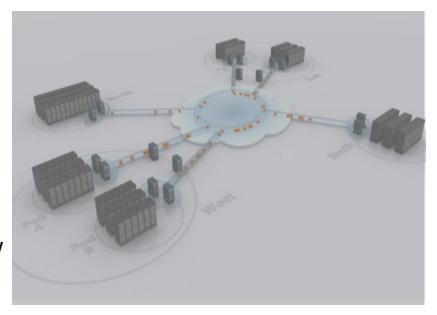

Step 2 – Multicast State Creation

It is important to clarify that the edge devices join the core multicast groups as hosts, not as routers!

Step 3 – Multicast Packet Flow

Multicast Groups in the Core

OTV can leverage the benefits of a multicast-enabled transport for both control and data planes. The following summarises the requirements for a multicast transport:

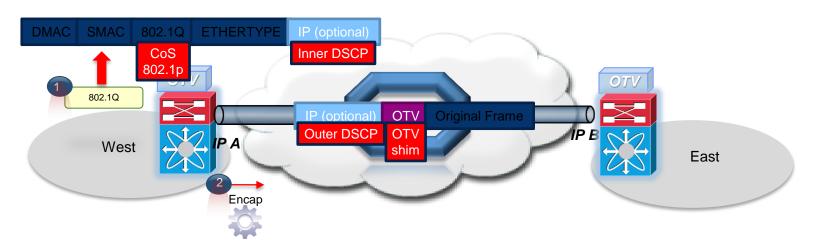

- Control group Single PIM-SM or PIM-Bidir group used to form adjacencies and exchange MAC reachability information
- Data groups Range of SSM groups used to carry multicast data traffic generated by the sites

```
interface Overlay100
otv join-interface e1/1
otv control-group 239.1.1.1
otv data-group 232.192.1.0/24
otv extend-vlan 100-150
```

The right number of SSM groups to be used depends on a tradeoff between the amount of multicast state to be maintained in the core and the optimisation of Layer 2 multicast traffic delivery

Agenda

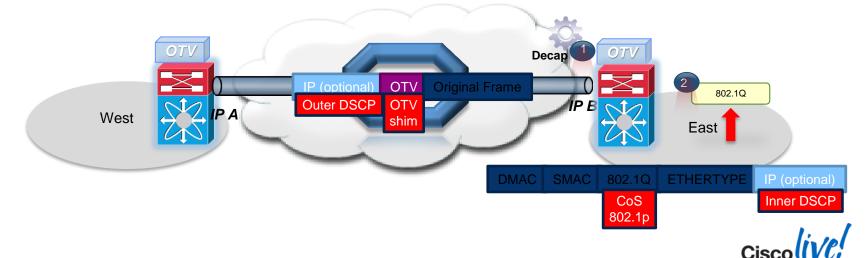
- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features



QoS and OTV

Marking on Encapsulation

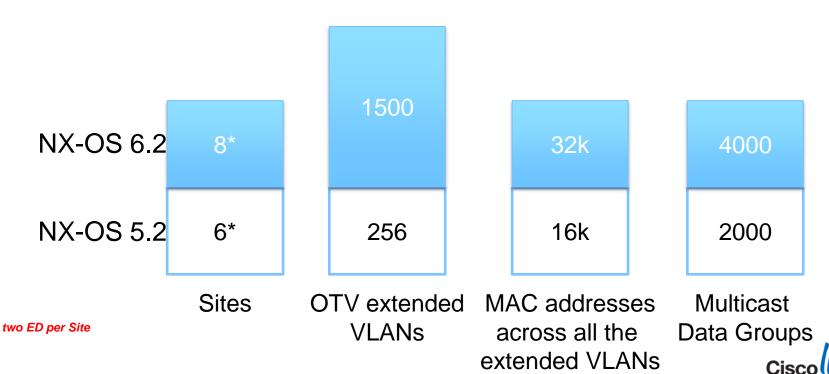
- On Encapsulation
 - CoS bits (802.1p) copied to the OTV shim header
 - If IP traffic: The original (inner) DSCP value is also copied to "outer" DSCP



QoS and OTV

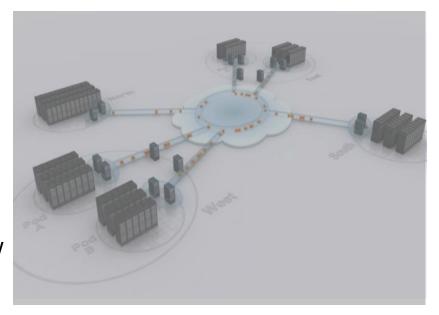
Marking on De-capsulation

- On De-capsulation
 - CoS value is recovered from the OTV shim and added to the 802.1Q header.
- Original CoS and DSCP are both preserved
- OTV Control Traffic is statically marked at CoS = 6/DSCP = 48



BRKDCT-2049

OTV Scalability


Current and Future Supported Values

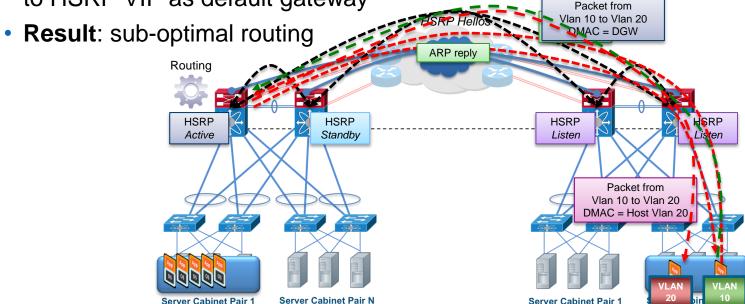
Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

Path Optimisation

Egress Routing Optimisation

Hot Potato Routing

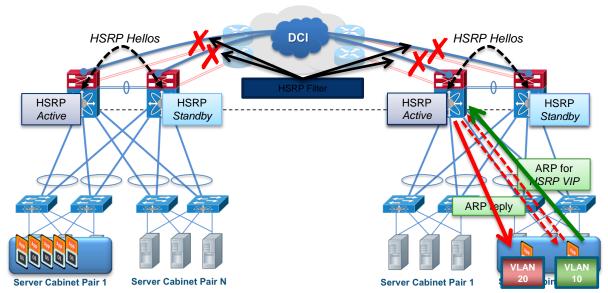

Path Optimisation

Egress Routing with LAN Extension

Extended VLANs typically have associated HSRP groups

By default, only one HSRP router elected active, with all servers pointing

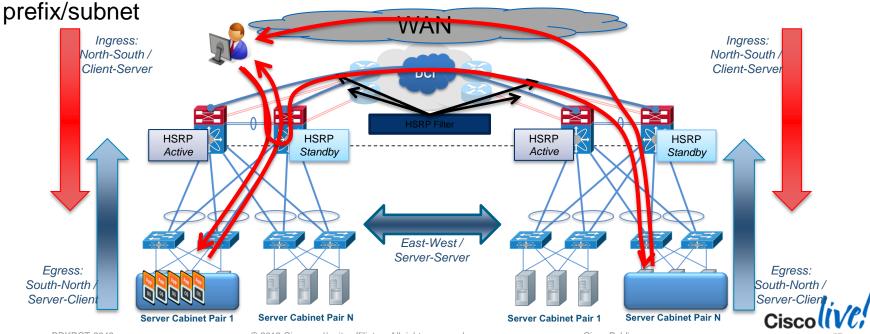
to HSRP VIP as default gateway



Egress Routing Localisation

FHRP Filtering Solution

- Filter FHRP with combination of VACL and MAC route filter
- Result: Still have one HSRP group with one VIP, but now have active router at each site for optimal first-hop routing

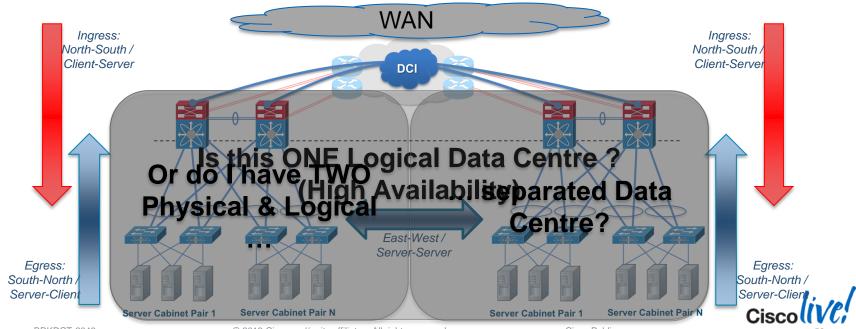


Path Optimisation

Optimal Routing Challenges

Layer 2 extensions represent a challenge for optimal routing

Challenging placement of gateway and advertisement of routing



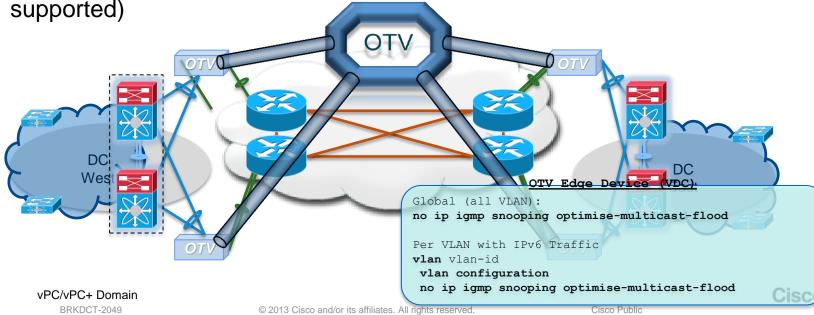
Path Optimisation

Is it relevant to my Data Centre model?

For Your Reference

- Logical Data Centre or Physical Data Centre?
- High Availability or Disaster Recovery?

For Your


Reference

Specific Use-Case

IPv6 and OTV

- IPv6 Unicast Forwarding and Multicast Flooding supported across OTV
 - Requires to disable optimised multicast forwarding (OMF) in IGMP snooping on OTV ED

• IPv6 Transport Network (Join Interface & Source Interface, not yet

Ingress Routing Localisation

Possible Solutions

Challenge

- Subnets are spread across locations
- Subnet information in the routing tables is not specific enough
- Routing doesn't know if a server has moved between locations
- Traffic may be sent to the location where the application is not available

Options

- DNS Based
- Route Injection
- LISP Locator/ID Separation Protocol

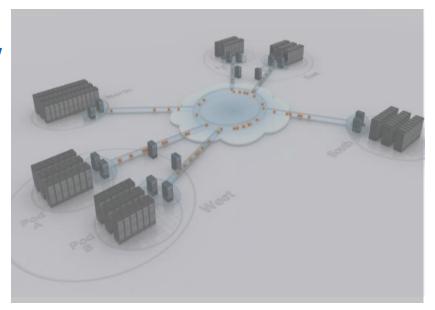
For more details on LISP and OTV Deployment see: BRKDCT-2615

OTV – Overlay Transport Virtualisation

Simplifying Data Centre Interconnect

Any Workload

Anytime


Anywhere

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
- OTV Design Considerations & New Features

OTV Support

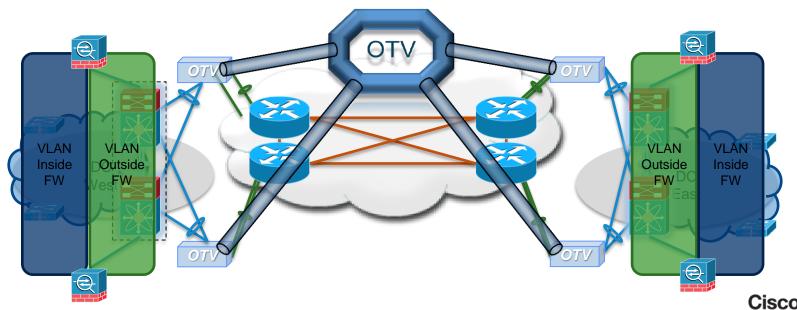
ASR1000

- OTV has been introduced in IOS XE 3.5 (Nov 2011)
- To use OTV on ASR1000, you require:
 - Advance Enterprise Image or Advance IP Service + OTV feature license
- ASR1k <-> N7k Inter-Site Interoperability has been tested
 - No ASR1k <-> N7k Multihoming Support (Intra-Site Interoperability)
- OTV on ASR1000 Use Cases are:
 - Legacy Deployments where DC may still be Catalyst based
 - New Small Data Centre and/or Disaster Recovery Sites where Main DC is equipped with Nexus 7000
 - OTV with Layer-3 Encryption where MACSec is no option for Inter-DC Encryption

OTV Support

ASR 1000

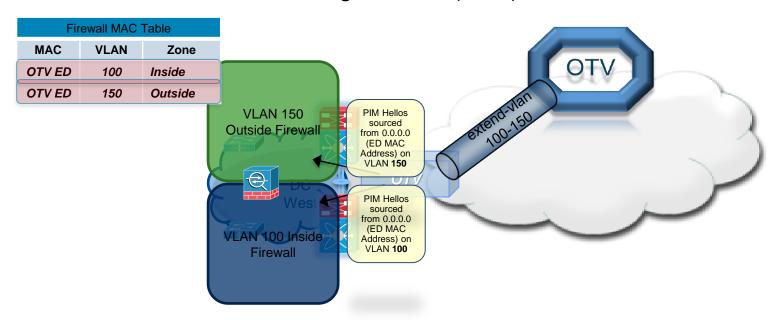
- New Features for IOS-XE 3.9
 - OTV Adjacency Server (unicast)
 - OTV with LISP ESM
 - RPVST STP Support
- New Features for IOS-XE 3.10
 - Portchannel for join interface
 - VRF Aware
 - Subinterface for join interface
 - Layer 2 portchannel



Specific Use-Case

Transparent Firewall and extended Inside & Outside VLANs

- Transparent/Bridged Firewall is separating OTV extended VLANs
- OTV is sharing the same MAC address per Edge-Device



Specific Use-Case

Transparent Firewall and extended Inside & Outside VLANs

- OTV is sending PIM hellos with source of 0.0.0.0 destination 224.0.0.13
- Hello is sourced from OTV Edge Device (VDC) MAC Address

OTV Compared to FabricPath

Is FabricPath a valid Solution to replace OTV

- OTV is purpose build for Data Centre Interconnects
 - Cisco Validated Designs (CVDs)
 - Specific Data Centre Interconnect features
- On Data Centre Interconnect, FabricPath is NOT so Plug and Play
 - No specific DCI functions
 - Designs gotchas but do not impact all customers
 - Multidestination Trees capacity planning is key
- FabricPath can be a valid Data Centre Interconnect solution when:
 - Short distances between Data Centres
 - Multicast is not massively used
 - If you know and accept where your Traffic Flows (Multidestination Trees)

OTV Compared to FabricPath

- Customer's constraints/needs are unique
- Scoping is based on
 - Application Involved
 - Number of DC sites, meshing, distances, bandwidth requirements
 - Customer Perception
 - Traffic Flows (Unicast, Multicast & Flooding)

	Operations Simplicity	Failure Isolation	Transport Failure Detection	3+ Sites Optimisation	High Availability	L2 Functions	L3 Unicast Functions	Multicast Functions	Scalability
OTV	V	VV	~	V V	~	VV	VV	VV	V
FabricPath	~	×	*	~	~	~	~	~	V
Stacking	V	V	*	*	*	V	V	~	×
VSS	~	V	×	×	V	V	V	~	V
vPC	v	v	×	×	V	V	×	×	V

New Feature for OTV in NX-OS 6.2

Nexus 7000 Hardware Support

- F3 Support for OTV in 6.2(6)
 - Enable OTV on Nexus 7700 Series

 No Tunnel Depolarisation or VLAN Translation in 6.2(6) on F3

	John Interface					
		M1	M2	F3		
Internal Interface	M1	\checkmark	\checkmark			
	M2	\checkmark	\checkmark	\checkmark		
	F1	✓	✓			
	F2e	\checkmark	\checkmark			
	F3		✓	✓		

Aggregation VDC
OTV
Internal
Interface (CE)

Interfaces to Access
(Classic-Ethernet or FabricPath)

Routed Uplinks

- F1 and F2e support for OTV internal Interface
 - F1 and F2e linecards have the ability to be internal interfaces


- M-Series interface
- F/M-Series interface

New Features for OTV

Tunnel Depolarisation & Secondary IP

- Secondary IP command introduced
 - Configured within interface, not OTV interface
- Introduction of multiple IPs results in tunnel depolarisation

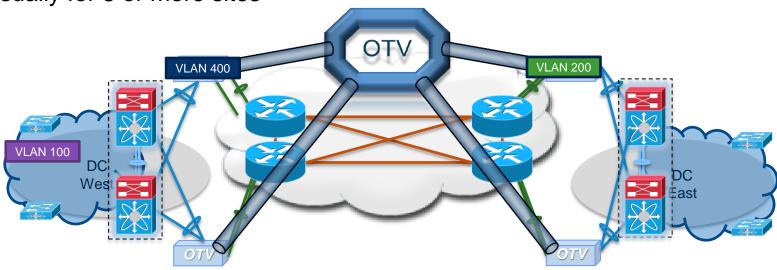

```
OTV-a(config-if) # ip address 2.100.11.1/24 secondary
Disabling IP Redirects on port-channel11 :secondary
                                                      OTV Overlay Information
configured.
OTV-a(config-if)# sh run int pol1
!Command: show running-config interface port-channel
!Time: Wed Mar 27 23:05:21 2013
                                                        VPN name
                                                        VPN state
version 6.2(2)
                                                        Extended vlans
                                                        Control group
interface port-channel11
                                                        Broadcast group
 no ip redirects
  ip address 2.100.11.100/24
                                                        Join interface(s)
  ip address 2.100.11.1/24 secondary
  ip ospf network point-to-point
                                                        Site vlan
                                                        AED-Capable
  ip router ospf 1 area 0.0.0.0
  ip igmp version 3
                                                        Capability
```

```
OTV-a (config-if)# sh otv

OTV-Overlay Information
Site Identifier 0000.0000.0011

Overlay interface Overlay1

VPN name : Overlay1


VPN state : UP
Extended vlans : 25-50 72-227 (Total:182)
Control group : 224.1.1.0
Data group range(s) : 232.1.0.0/24
Broadcast group : 224.1.1.0
Join interface(s) : Pol1 (2.100.11.100)
Secondary IP Addresses: : 2.100.11.1
Site vlan : 1 (up)
AED-Capable : Yes1
Capability : Multicast-Reachable
```

New Features for OTV

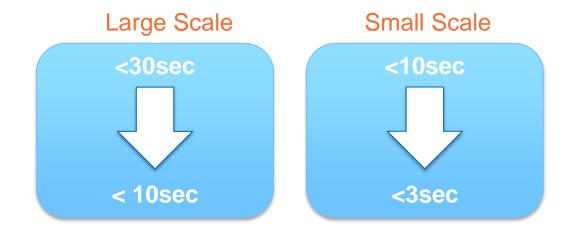
VLAN Translation: Translation through transit VLAN

When a different VLAN is used at multiple sites

Usually for 3 or more sites

New Features for OTV

VLAN Translation: Translation through transit VLAN

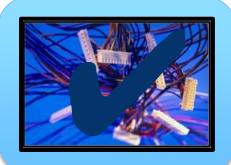

```
OTV-a(config) # int overlay1
OTV-a(config-if-overlay) # otv vlan mapping 100 to 400
OTV-a(config-if-overlay) # sh run int overlay1
!Command: show running-config interface Overlay1
!Time: Fri Mar 29 19:01:04 2013
version 6.2(2)
interface Overlay1
  otv isis hello-multiplier 9
  otv join-interface port-channel11
  otv control-group 224.1.1.0
  otv data-group 232.1.0.0/24
  otv extend-vlan 25-50, 72-497
  otv vlan mapping 100 to 400
  no shutdown
OTV-a(config-if-overlay) # sh otv vlan-mapping
Original VLAN -> Translated VLAN
           100 -> 400
```

```
OTV-B(config) # int overlay1
OTV-B (config-if-overlay) # otv vlan mapping 200 to 400
OTV-B(config-if-overlay) # sh run int overlay1
!Command: show running-config interface Overlay1
!Time: Fri Mar 29 19:02:29 2013
version 6.2(2)
interface Overlay1
  otv isis hello-multiplier 9
  otv join-interface port-channel21
  otv control-group 224.1.1.0
  otv data-group 232.1.0.0/24
  otv extend-vlan 25-50, 72-497
  otv vlan mapping 200 to 400
  no shut.down
OTV-B(config-if-overlay) # sh otv vlan-mapping
Original VLAN -> Translated VLAN
          200 -> 400
```


OTV Convergence

Small and Large Scale Targets (Extreme Failures)

Challenges in Traditional Layer 2 VPNs


Solved by OTV

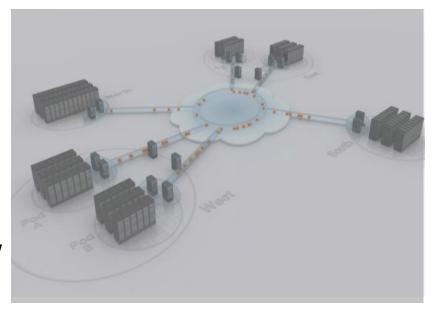
Flooding Behaviour

- Union work Plane Based for MACL parping tion
- Unicast Flooding reaches all sites

Pseudo-wire Maintenance

- Dyhamic Entempsulatione is complex
- Head-End replication is a common problem

Multi-Homing



- Re**Native Additionated**Prot**Multi8Hexteing**s STP
- Malfunctions impacts multiple sites

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

OTV – Overlay Transport Virtualisation

Simplifying Data Centre Interconnect

Any Workload

Anytime

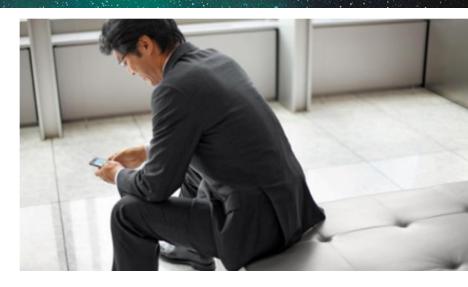
Anywhere

Where can OTV help YOU simplify Data Centre Interconnects?

http://www.cisco.com/go/DCI

Ciscolive!

Q & A


Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations.

www.CiscoLiveAPAC.com

#