
October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Introduction 1

Overview about a typical trojan banker

Author: Alexandre Borges
Date: OCTOBER/10/2017 – revision 1

Introduction

Few days ago, I received a sample of a trojan banker (possibly, a Brazilian malware, but the remote

server is not active this time). It can be downloaded from the following link:

https://www.hybrid-

analysis.com/sample/7e4da0be4da21c81ea562b6c98ba6e51f133ac3e49a2d2f06ceb720c2784072

e?environmentId=100

In this article, we are using the following environment malware: VMware Workstation, a virtual

machine running Windows 7 SP1 x86 and another virtual machine running Kali Linux 2.x with

Volatility 2.6 already installed. Of course, it is not complicated to install it, but it would not be

suitable to describe the process here.

First information

Obviously, as usual, let’s start collecting information about the infected file itself and all respective

hashes:

root@kali:/analysis# file banker_trojan.bin
banker_trojan.bin: PE32 executable (DLL) (console) Intel 80386 (stripped to external PDB), for MS
Windows

root@kali:/analysis# rahash2 -a md5,sha1,sha256 banker_trojan.bin
banker_trojan.bin: 0x00000000-0x001e98a7 md5: 6e9f5f6ded365f78b8a0930ad2e04bd8
banker_trojan.bin: 0x00000000-0x001e98a7 sha1: 3cec77e8b37f179f6a8f54b4e4d500891ec997d0
banker_trojan.bin: 0x00000000-0x001e98a7 sha256:
7e4da0be4da21c81ea562b6c98ba6e51f133ac3e49a2d2f06ceb720c2784072e

It’s sad that the malware’s author has not provided us the symbols for making our analysis easier.

☺

Next step is to check what the main anti-viruses programs tell us about our trojan (a DLL file) by

using Viper, as shown below:

https://www.hybrid-analysis.com/sample/7e4da0be4da21c81ea562b6c98ba6e51f133ac3e49a2d2f06ceb720c2784072e?environmentId=100
https://www.hybrid-analysis.com/sample/7e4da0be4da21c81ea562b6c98ba6e51f133ac3e49a2d2f06ceb720c2784072e?environmentId=100
https://www.hybrid-analysis.com/sample/7e4da0be4da21c81ea562b6c98ba6e51f133ac3e49a2d2f06ceb720c2784072e?environmentId=100

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 2

As we can see, it is a malicious file. Furthermore, the output shows little possible good

information:

• It could have been packed by using VMProtect.

• It seems to be trojan banker, actually.

• Eventually, it might be a spy program that steals typed information (bank account number

and passwords) as well takes pictures of the system’s screen.

We are going to confirm this information later.

Checking the strings is another good option. However, as the output is a bit long, it is appropriate

to restrict it by listing strings longer than 15 characters, as shown below:

root@kali:/analysis# strings -a -n15 banker_trojan.bin

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 3

Highlighting only the URLs, we have the following:

Clearly, the websites listed above are related to digital certification. Additionally, we should

remember that oscp.comodoca. com is a web service (from Comodo in UK), which allows

different clients to check whether a SSL certificate is really valid (it could be have been revoked).

Unfortunately, the oscp.comodoca.com has not a very good reputation when we are talking about

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 4

malwares. It is important to make clear that many companies continue classifying it as safe,

though the Comodo itself has been classified as suspicious. Other websites (symauth.com and

thawte.com) are also related to the verification and checking if the certificate was or not revoked,

and they are associated to their companies Symantec (USA) and Thawte(USA and South Africa).

For now, we are not sure whether the malware is packed or not, but we can check it against

VMprotect strings because the initial output using Viper:

root@kali:/analysis# strings banker_trojan.bin | grep -i vmprotect
VMProtect Software1
VMProtect Software CA0
VMProtect Client ipn56721
VMProtect Software0
VMProtect Software1
VMProtect Software CA0
VMProtect Software1
VMProtect Software CA

Look at the output. We have a second (weak) evidence about the VMProtect’ s presence.

Analyzing the binary itself, we have a better idea about the malware as shown below (edited

output because it is very long and complete):

root@kali:/analysis# /root/softwares/ds/pecheck.py banker_trojan.bin

PE check for 'banker_trojan.bin':

Entropy: 7.976971 (Min=0.0, Max=8.0)

MD5 hash: 6e9f5f6ded365f78b8a0930ad2e04bd8
SHA-1 hash: 3cec77e8b37f179f6a8f54b4e4d500891ec997d0
SHA-256 hash: 7e4da0be4da21c81ea562b6c98ba6e51f133ac3e49a2d2f06ceb720c2784072e
SHA-512 hash:
9699656545e9b6c1440011a29cdc6f67564a0c09c8298180ac80870d1dddaa69ff314a14467e57934
be875de80d17ad8b76935ebcc50b3810ef507291410f25c

.text entropy: 0.000000 (Min=0.0, Max=8.0)
.data entropy: 0.000000 (Min=0.0, Max=8.0)
.rdata entropy: 0.000000 (Min=0.0, Max=8.0)
.eh_fram entropy: 0.000000 (Min=0.0, Max=8.0)
.bss entropy: 0.000000 (Min=0.0, Max=8.0)
.edata entropy: 0.000000 (Min=0.0, Max=8.0)
.idata entropy: 0.000000 (Min=0.0, Max=8.0)
.CRT entropy: 0.000000 (Min=0.0, Max=8.0)
.tls entropy: 0.483985 (Min=0.0, Max=8.0)
..bla0 entropy: 0.000000 (Min=0.0, Max=8.0)
..bla1 entropy: 7.978251 (Min=0.0, Max=8.0)
.reloc entropy: 2.808567 (Min=0.0, Max=8.0)

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 5

….

PEiD:
Error: signature database missing → PeiD is unable to detect the packer.
Entry point:
ep: 0x003f97bb
ep address: 0x661797bb
Section: ..bla1
ep offset: 0x001e7dbb

Overlay:
 Start offset: 0x001e8000
 Size: 0x000018a8 6.2 KB 0.31%
 MD5: fd0138dbef6457be925a7e6d8d2d959e
 SHA-256: 2443a099b68bf1ba1b2bde34f3f00095ef02bd8af6f1b73aafe752d10db796e9

 MAGIC: a8180000 �...
 PE file without overlay:
 MD5: 407e7da5304789830c8d6bc9fba8947b
 SHA-256: b229b55adddc9827d7d256a887014fed5ee28fadaac3e8f2cc4459ff7923688a

From the output above, we have learned that:

• The total entropy is 7.976971, indicating that the malware is likely packed.

• The .bla1 section holds almost whole entropy.

• Probably, the .bla0 section will be written by the unpacked malware.

• There is a TLS section, so something is being executed before the entry point (EP).

• There is a small overlay in the file and it could be the certificate.

Many people prefer using Radare2 to check only the entropy, so we can also use it here:

Another checking of the entropy, which shows a graph, follows:

Physical size equal to zero, but the virtual size is
equal to 2125824, so it is another clue that this
section will receive the unpacked code.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 6

It is interesting to know the offset point from where the entropy increases. Nice. ☺

Finally, we confirm the packer used on this malware, its overlay and entropy by using DiE:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 7

As we have already suspected:

• The malware was packed by using VMProtect.

• It was compiled by using MinGW and using the GNU Linker.

Additionally, the entropy’s graph that is presented by the DiE is similar to that we have seen by

using binwalk:

It is packed !

Eventually it is packed and

related to the digital signature.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 8

Using the same DiE tool, we can see the overlay information, which includes information about

Thawte digital signature, as shown in the screenshot below:

If we have stopped collecting information here, probably it would be enough. Nevertheless, there

are other great tools that could bring a more summarized view about the necessary information

and, why not, useful hints. For example, let’s run the peframe tool and check what it can do for us

(red and blue colors are mine):

root@kali:/analysis# peframe banker_trojan.bin

Short information
--
File type PE32 executable (DLL) (console) Intel 80386 (stripped to external PDB), for MS
Windows
File name banker_trojan.bin
File size 2005160
Hash MD5 6e9f5f6ded365f78b8a0930ad2e04bd8
Compile time 1969-12-31 19:00:00 → ridiculous compile time!
Sections 12 (11 suspicious)
Directories import, export, tls, relocation, security → Code being executed before the entry
point!
Detected sign, antidbg → probably there is an anti-debug technique
Dll True
Import Hash f498f281687f2d462ea27ca059308d46
….
Import function
--
ADVAPI32.dll 6
KERNEL32.dll 17

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 9

msvcrt.dll 1 → It supports multi-thread and implements C Run Time support (native, mixed
native and managed code as well managed code).
WTSAPI32.dll 1 → It is a DLL related to Remote Desktop Service.
USER32.dll 1

Antidbg info
--
GetLastError

Export function
--
CryptUIDlgCertM 0x65d81600
DllMain@12 0x65d81730
a8u34tA 0x65d81610

Apialert info
--
DeleteCriticalSection
ExitProcess → It can means a known trick for stopping the debugging process. Obviously,
setting a breakpoint here would be enough for evaluating the code better.
GetCurrentProcess
GetModuleFileNameW
GetModuleHandleA
GetProcAddress
LoadLibraryA
Sleep

Sign info
--
hash_md5 94b81e4ce61bd8c51c0f2185742cfdd9
block_size 6312
hash_sha1 ed55b97a7e4d3874c25add2878d7ab9ff9be0980
virtual_address 1998848

Filename found
--
Library ADVAPI32.dll
Library USER32.dll
Library KERNEL32.dll
Library msvcrt.dll
Library WTSAPI32.dll
Library wKZ3vc.dll → It could be an useful information.

Url found
--
http://ts-crl.ws.symantec.com/tss-ca-g2.crl0(
http://ocsp.comodoca.com0
http://crl.thawte.com/ThawteTimestampingCA.crl0

This exported functions will be

used later. ☺

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 10

http://pki-
crl.symauth.com/offlineca/TheInstituteofElectricalandElectronicsEngineersIncIEEERootCA.crl0
http://pki-ocsp.symauth.com0
http://crl.comodoca.com/COMODORSACertificationAuthority.crl0q
http://crl.comodoca.com/COMODORSACodeSigningCA.crl0t
http://ocsp.thawte.com0
http://crt.comodoca.com/COMODORSAAddTrustCA.crt0$
https://secure.comodo.net/CPS0C
http://pki-crl.symauth.com/ca_219679623e6b4fa507d638cbeba72ecb/LatestCRL.crl07
http://ts-ocsp.ws.symantec.com07
http://crt.comodoca.com/COMODORSACodeSigningCA.crt0$
http://ts-aia.ws.symantec.com/tss-ca-g2.cer0<

Another useful tool for acquire details about the malware is the PortexAnalyzer

(http://katjahahn.github.io/PortEx/, written by Karsten Hahn), which it is executed by running the

following command:

java -jar PortexAnalyzer.jar -o C:\analysis\banker_trojan.txt -p
C:\analysis\banker_portanalyzer_image.jpg C:\analysis\banker_trojan.bin

Heavily packed

http://katjahahn.github.io/PortEx/

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 11

The Portex Analyzer shows us another interesting information. As we already known, the IAT is

packed in a protected malware. Thus, the information below exactly shows this fact because we

have already learned that the .bla1 section is the packed section (high entropy):

data directory rva -> offset size in section file offset
--
export table 0x2234d4 0x11ad4 0x76 11 ..bla1 0xf8
import table 0x232e38 0x21438 0xb4 11 ..bla1 0x100
certificate table 0x1e8000 0x1dd000 0x18a8 10 ..bla0 0x118
base relocation table 0x3fa000 0x1e7e00 0x128 12 .reloc 0x120
TLS table 0x3f372c 0x1e1d2c 0x28 11 ..bla1 0x140
IAT 0x231000 0x1f600 0x88 11 ..bla1 0x158

If you don’t remember about this fact, it follows a quick picture on the packing process:

According to our analysis so far, the malware is using VMProtect, which is an excellent packer. Of
course, it is not appropriate to make an extensive explanation about the topic, but few important
points about the VMProtect follow below:

1. This is a 32-bit DLL example. However, most code protected with VMProtect is seen in 64-
bit malwares.

2. Any function from the original malware is removed of the IAT. This is means that IAT
shown by Portex Analyzer and peframe tools is associated to the packer itself.

3. VMProtect checks the file memory integrity. Therefore, any attempt to change the
malware on memory is easily detected.

.data

EAT

IAT

.rdata

.rsrc

.text

Packed

code

PE HEADER

Code for

unpacking

PE HEADER

Packed malware

Unpacked malware

As usual, the original EP is
redirected to a new entry point.
After unpacking the malware,
the execution is transferred back
to the OEP.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 12

4. Instructions (CPU code) are virtualized and transformed into virtual machine instructions
(RISC instruction).

5. The obfuscation is stack based.
6. The virtualized code is polymorphic, so there are many representations referring the same

CPU instruction.
7. The original code is never entirely decrypted on the memory.
8. There are many dead and useless codes. Thus, the static analysis is usually trouble.
9. There are many hooks on calls such as LoadString() and LdrAccessResource() functions

(resources are usually encrypted).
10. It has few anti-debugger and anti-vm tricks.
11. Calls to IAT functions are replaced by calls at VMProtect section (VMProtect’s IAT).
12. There are also fake push instructions.

Thus, at this point, the IAT is useless for us because it is 100% from the packer. Anyway, the IDA
Pro provides us the Imports as supplemental information, as shown below:

The respective explanation for each function follows below:

• DeleteCriticalSection() → Releases all resources used by an unowned critical section
object.

• __dllonexit → Registers a routine to be called at exit time.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| First information 13

• WTSSendMessageW() → Displays a message box on the client desktop of a specified
Remote Desktop Services session.

• LoadLibraryA() → Loads the specified module into the address space of the calling
process. The specified module may cause other modules to be loaded.

• CharUpperBuffW()→ Converts lowercase characters in a buffer to uppercase characters.
The function converts the characters in place.

• RegQueryValueExA() → Retrieves the type and data for the specified value name
associated with an open registry key.

• GetLastError() → Retrieves the calling thread's last-error code value. The last-error code
is maintained on a per-thread basis. Multiple threads do not overwrite each other's last-
error code.

• GetCurrentThread() → Retrieves a pseudo handle for the current thread.

• SetThreadAffinityMask() → Sets a processor affinity mask for the specified thread.

• Sleep() → Suspends the execution of the current thread for a specified interval.

• GetModuleFileNameW() → Retrieves the fully qualified path for the file containing the
specified module.

• FreeLibrary() → Decrements the reference count of the loaded DLL. When the reference
count reaches zero, the module is unmapped from the address space of the calling
process.

• LoadLibraryA() → Maps the specified executable module into the address space of the
calling process.

• GetModuleHandleA() → Retrieves a module handle for the specified module.

• GetProcAddress() → Retrieves the address of an exported function or variable from the
specified DLL.

• LocalAlloc() → Allocates the specified number of bytes from the heap.

• LocalFree() → Frees the specified local memory object and invalidates its handle

• GetCurrentProcess() → Retrieves a pseudo handle for the current process.

• GetProcessAffinityMask() → Retrieves a process affinity mask for the specified process
and the system affinity mask for the system.

• SetProcessAffinityMask() → Sets a processor affinity mask for the threads of a specified
process.

• ExitProcess() → Ends the calling process and all its threads.

• OpenSCManagerW() → Establishes a connection to the service control manager on the
specified computer and opens the specified service control manager database.

• EnumServicesStatusExW() → Enumerates services in the specified service control
manager database based on the specified information level.

• OpenServiceW() → Opens an existing service.

• QueryServiceConfigW() → Retrieves the configuration parameters of the specified
service.

• CloseServiceHandle() → Closes the specified handle to a service control manager object
or a service object.

As supplemental information, we have tried the Dependency Walker tool for checking the DLLs.
The advantage of this tool is that we can examine all DLLs related to our malware, which functions
from each DLL are used and other details that could be useful for our case as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 14

Unpacking and basic dyn./static analysis

This malware is packed (probably using VMProtect) and it may be using several anti-vm
protections for preventing to be analyzed using a virtual environment like VMware and Virtualbox.
Anyway, as it is a DLL, we have tried to discover the DLL entry points for performing a simple test
on the command line using rundll32.exe later. As you should remember, we have found the entry
points by using pecheck.py tool previously. However, there are many ways for finding the same
information.

By using IDA Pro, we found the following export information:

Few points are important here:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 15

1. As pecheck.py has shown, the malware has three main entry points:
a. CryptUIDlgCertMgr
b. DllMain@12
c. a8u34tA

2. There are TLS exported functions, so the malware might be performing some activity

before reaching the main entry point.

According to IDA Pro, the related exported code is:

Similar information is also shown by using PE Bear tool (https://hshrzd.wordpress.com/pe-bear/,
written by Hasherezade):

Certainly you remember that “o” means offset
cross-reference , which can originate either from
instruction or data location, indicating the
address of a location is being used.

Maybe it
is the real
DLL name.

The
packed
malware
section
(.bla1).

https://hshrzd.wordpress.com/pe-bear/

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 16

At first time, I tried running the malware by using all these exported entry points, but I didn’t get
anything relevant because the malware stopped (probably because that ExitProcess() function
that we have seen previously):

C:\analysis> rundll32.exe banker_trojan.dll,CryptUIDlgCertMgr
C:\analysis> rundll32.exe banker_trojan.dll,DllMain@12
C:\analysis> rundll32.exe banker_trojan.dll,a8u34tA

During these command executions, I kept running tools such as Process Monitoring (excluding
several unrelated processes), Process Explorer, TcpView and Wireshark (in my particular case, I
have setup up few filters such as !ssdp && !ipv6 and so on…). As it is a DLL that is protected by a
very powerful packer, so I have already assumed as hypothesis that nothing would correctly
happen. I tried using a debugger (x64dbg and OllyDbg), but it didn’t worked too because the
possible protections of the malware (specifically, from its packer) that prevented it. Actually,
nothing really special has come up.

Eventually, there two interesting side notes that I can mention here:

1. If the reader to pay attention at IDA Pro color bar, you will realize that most malware is
presented as unexplored, so confirming the packed status of the malware.

2. When I don’t find the appropriate export function, so I make up one fake. This could force
the DLL to be loaded on memory and, eventually, it could be automatically decrypted.
Sometimes, it works (you could dump the DLL from memory and check it on IDA Pro for
checking whether the colors changed).

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 17

Thus, at this point, I had two quick available options:

1. Try to run the DLL and bypassing all VMProtect tricks. It is not so hard because there are
several plugins and techniques for accomplishing this goal.

2. Because I didn’t the original malware executable (I had only the DLL), I could try to find
what executable on Windows could be using this DLL.

If we took the first path as the definitive solution, I would have to bypass few protections tricks
such as:

• BeingDebug → It is value from PEB used by most packers for checking any debugger
running.

• NtGlobalFlag / HeapFlags / StartupInfo / NtQueryInformationProcess / NtClose → anti-
debugger tricks.

• Removing the Entry Point breakpoint → typical from VMProtect packer.

• Stop at TLS code (remember: our malware code has a TLS section)

• Skip any Entry Point outside of the main code → typical from VMProtect packer.

Unfortunately, I don’t have enough time to comments all these tricks here. Nevertheless, I have
lectured a talk in BSIDES Sao Paulo 2017 explaining about few of these anti-debugging techniques
(Malwares: Introduction to few Anti-Forensics and Unpacking Techniques, by Alexandre Borges
http://www.blackstormsecurity.com/docs/BSIDES_2017_B_version.pdf)

Therefore, taking the first option as a simple experiment, when I run the DLL in the debugger
(bypassing all VMProtect techniques by using a collection of plugins), I could not see any new
connection on TCPView and Wireshark tools. At same way, none new process was launched and
all new files created in the file system were normal, supposedly.

From OllyDbg tool, the following modules (Executable Modules window) have come during the
test running the DLL alone, as shown below:

http://www.blackstormsecurity.com/docs/BSIDES_2017_B_version.pdf

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 18

As we can see, there is not any strange module and it was expected because we have run only the
DLL alone.

During the same test, I have also collected the Memory Map and tried to check all segments for
any interesting content (usually marked with RWE permission, but not always) such as
executable/dlls (containing the MZ indicator) and configuration files (for example, a JSON file).
Unfortunately, I didn’t have lucky.

It follows the referred Memory Map window with appropriate indication:

Afterwards, I have tried another approach by finding a real application that could use our
malicious DLL and, of course, it would be also able to “activate” the “special” features of the
malware.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 19

The malicious DLL file has three exports, but only one of them is really interesting:
CryptUIDlgCertMgr. Searching this word on Google, I was able to find the following relevant
information:

• Indeed, CryptUIDlgCertMgr is a function that displays a dialog box that allows the user to
manage certificates.

• Its signature is:

BOOL WINAPI CryptUIDlgCertMgr (
 In PCCRYPTUI_CERT_MGR_STRUCT pCryptUICertMgr)

• The DLL related to it is the Cryptui.dll.

• One probably application that uses the cryptui.dll is the certmgr.exe application.

It is wonderful! There is a good chance of our malicious DLL file, which its internal name is

wKZ3vc.dll , to be really the cryptui.dll. Of course, it must be tested.

Before proceeding in a blind adventure, I have searched the cryptui.dll on my Windows 7 x86

system and I could find it at C:\Windows\System32 directory. Thus, I have examined it on CFF

Explorer as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 20

It is a good clue! The true cryptui.dll also has the same exported function, so we have a bigger
chance of having a fake DLL (our malicious DLL) in our hands.

On my system, the certmgr.exe application is at C:\Program Files\Windows Kits\10\bin\x86
directory. Therefore, eventually we found valuable information. As this malicious DLL was sent to
me without any else file, so there is good possibility that the original malware has dropped an
executable similar or equal to the certmgr.exe file.

The question is: how can we change the true cryptui.dll file by the fake one? In real cases, it is not
possible simply to copy the malicious DLL over the true one because Windows would prevent us in
doing it.

Therefore, a new decision should be done at this point:

• We could inject the malicious DLL (renamed to cryptui.dll too) into the certmgr.exe tool,
forcing it to execute the malicious code. Of course, there are few tricks that must be used
for accomplishing successfully and without facing side effects.

• Another option was to perform a DLL hijacking. In other words, put the infected DLL at
another directory that is searched before the C:\Windows\System32 directory.

Honestly, I used the first approach when I solved this malware. However, it is more error-prone
and not so easy to explain it. Furthermore, probably it is not the original method used by the
malware (remember: we only have the malicious DLL). Therefore, we are going to follow the DLL
hijack way.

The reader probably remember that there many methods for making injections of executable files
(.exe /.dll) as well shellcodes, but understanding the Window DLL search order makes the
malware authors’ life easier because it is not necessary to alter Registry keys, make hooking or
even changing the executable. Usually, applications load DLLs by using its respective name (for
example, uxtheme.dll) rather using the complete path (C:\Windows\System32\uxtheme.dll) on
disk and it could be a problem.

The DLL search order (this is the standard sequence, with the safe DLL search mode setting
disabled) used by Windows is:

1. The Windows looks for the same DLL module on memory. If the DLL is already loaded, so
the Windows won’t search for the DLL again.

2. There is a special list named Known DLLs
(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs). If the DLL exists in this list, so it is copied of the known DLL
location (including all its dependencies) rather searching for the DLL.

3. The directory where the executable is located.
4. The current directory where we execute the command.
5. The Windows system directory (it could be obtained by using GetSystemDirectory()

function).
6. The Windows directory (it could be obtained by using the GetWindowsDirectory()

function).

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 21

7. The PATH variable.

Current versions of Windows have the safe DLL search mode enabled by default, but older
version such as Windows XP SP1 had it disabled by default (Windows XP SP2 already had this
setting enabled by default).

By the way, safe DLL search mode can used enabled/disabled either by setting the registry
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\SafeDllSearchMode or either by calling the SetDllDirectory() function.

If the system is using safe DLL search mode, so the search order is a bit different:

1. The Windows looks for the same DLL module on memory. If the DLL is already loaded, so
the Windows won’t search for the DLL again.

2. There is a special list named Known DLLs
(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs). If the DLL is one in this list, so it is copied from the known DLL
location (including all its dependencies) rather searching for the DLL.

3. The directory where the executable is located.
4. The Windows system directory (it could be obtained by using GetSystemDirectory()

function).
5. The Windows directory (it could be obtained by using the GetWindowsDirectory()

function.
6. The current directory where we execute the command.
7. The PATH variable.

It is amazing! Based on facts mentioned above, we have an easy solution for our problem. To
make the malware to run as would be really expected, it is enough to copy it to the same directory
of the certmgr.exe file, but renaming it to cryptui.dll, as shown below:

C:\analysis> dir

07/07/2017 05:07 AM 451,538 banker_portanalyzer_image.jpg
07/03/2017 08:47 PM 2,005,160 banker_trojan.bin
07/03/2017 08:47 PM 2,005,160 banker_trojan.dll
07/07/2017 05:07 AM 41,149 banker_trojan.txt

C:\analysis> runas /user:Win32\Administrator /env "cmd /c copy banker_trojan.bin
\"C:\Program Files\Windows Kits\10\bin\x86\cryptui.dll\""

Enter the password for Win32\Administrator: Infected!
Attempting to start cmd /c copy banker_trojan.bin "C:\Program Files\Windows
Kits\10\bin\x86\cryptui.dll" as user "Win32\Administrator" ...

C:\analysis> dir "C:\Program Files\Windows Kits\10\bin\x86\cryptui.dll"

07/03/2017 08:47 PM 2,005,160 cryptui.dll

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 22

It is done! Now, it is time to run the certmgr.exe program and it will do all unpacking procedure
for us.

Before executing it, it necessary to setup the system again by keeping running the Process
Explorer, TCPview, RegShot, CaptureBat, Wireshark and, of course, the Process Monitor.
Additionally, the certmgr.exe was run from a debugger (OllyDbg) because we are interested in
dumping important segments (containing executable codes – starting with MZ) from the memory.

To configure the OllyDbg, launch it, go to Options → Debug Options and mark the following
checkboxes:

Therefore, when the program is executed, the OllyDbg will stop (break) at each DLL loaded and it
will be easier to analyze the memory for finding eventual new and interesting segments.

Here, it is necessary to make a simple alert: if the main debugged application was a malware,
which includes a TLS section, so it would be necessary to mark “Entry point of main module”
instead of “WinMain” option. By the way, when I directly debugged the malicious DLL (our
malware), I used this option because the malware has a TLS section. ☺

After running them, few evidences have come up:

• The malware has tried to change the HKLM\SOFTWARE\Microsoft\Security
Center\AntiVirusDisableNotify value, probably for disabling any notification in cases when
the AV was turned off.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 23

• According to the analyzed packets, the malware has tried to connect to a strange host:

Furthermore, as the strange connection has started after launching the certmgr.exe, so I
checked the TCP/IP activities of the process and found the following:

Checking two different Whois tools, we have the following:

root@kali:# whois 177.201.80.21

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 24

inetnum: 177.201.0.0/16
aut-num: AS8167
abuse-c: CSIOI
owner: Brasil Telecom S/A - Filial Distrito Federal
ownerid: 76.535.764/0326-90
responsible: Brasil Telecom S. A. - CNBRT
country: BR
owner-c: BTC14
tech-c: BTC14
inetrev: 177.201.80.0/24
nserver: ns03-cta.brasiltelecom.net.br
nsstat: 20170722 AA
nslastaa: 20170722
nserver: ns04-bsa.brasiltelecom.net.br
nsstat: 20170722 AA
nslastaa: 20170722
created: 20120928
changed: 20120928

However, when I have tested it at first time, the IP was another one (177.201.83.7) and it
is a suggestion that we could handling with a bad guy using either a DGA (Domain
Generating Algorithm) (it isn’t) or using his own home IP address (most likely here):

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 25

• A driver file (bf190a1f.sys) was created on the file system: C:\Program Files\Windows
Kits\10\bin\x86\certmgr.exe" → "C:\Windows\System32\drivers\bf190a1f.sys.
Additionally, an entry pointing to this driver was also inserted into the Registry:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 26

Calculating the hash and checking it on Virus Total (http://www.virustotal.com), I have
realized that this driver is usually used by banker trojans and one of its common names is
exactly bf190a1f.sys, as shown below:

Checking the common names of the same driver, we have found what we are looking for:

The Pestudio (https://www.winitor.com/binaries.html), from my colleague Marc
Ochsenmeier, shows us good initial information about sections and APIs used by this
driver:

Apparently, it is not our driver, but….

It is exactly our mentioned driver. ☺

http://www.virustotal.com/
https://www.winitor.com/binaries.html

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 27

Of course, it is only an overview about static characteristics of the file and we don’t know
what this driver really does. Later we are talking about it.

• An entry for starting the certmgr.exe program every time that the user to perform the
logon was created in the Registry, as shown below:

• Examining certmgr.exe’s threads, we are able to see a strange thread (EtawJa.dll) and, as
we are going to learn later, it is the real malware inside the certmgr.exe process, as shown
at next page:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 28

• The malware, through the certmgr.exe program, has tried looking for an specific
application from known Brazilian banks (Itau and Banco do Brasil, respectively), as you
are able to see below:

• Few Registry’s entries were changed such as HKU\S-1-5-21-294430955-1364854259-
672455518-1001\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Connections\DefaultConnectionSettings and HKU\S-1-5-21-294430955-
1364854259-672455518-1001\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Connections\SavedLegacySettings. Furthermore, one of them is related to the
proxy setting, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 29

Before running the certmgr.exe program, the system had the following setting in the
ConnectionSetting entry:

After running the certmgr.exe program, the value of ConnectionSetting entry was
changed, as shown below:

During the OllyDbg debugger session, I have found the following executable regions containing an
executable (MZ indicator):

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 30

Checking the dump data of this region (0x00130000 – 0x00138FFF), we have the following:

Now, for saving the content as file, right-click → Backup → Save data to file.

Repeating the same procedure to another region (0x00560000 to 0x00628FFFF), we have the
following pictures:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 31

Unfortunately, both extracted DLLs have their IAT messed up and the name of each function does
not appear because its respective virtual addressing and it is necessary to convert it to a raw
addressing, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 32

Obviously, there are many tools that are able to fix these extracted executable files such as Scylla,
Import REConstructor, pe_unmapper and so on. In this example, let’s use the pe_unmapper tool
(https://github.com/hasherezade/pe_recovery_tools/tree/master/pe_unmapper, from
Hasherezade) for performing the task:

C:\Binaries> dir *.mem

07/23/2017 04:14 AM 36,864 _00130000.mem
07/23/2017 04:17 AM 823,296 _00560000.mem

C:\Binaries> pe_unmapper.exe --help
[pe_unmapper v0.1]

Args: <input file> <load base: in hex> [*output file]
* - optional
Press any key to continue . . .

The input to this command is very simple: the extracted file (_00560000.mem), its base address in
hex (0x00560000) and the name of the output filename (560000.dll). Thus:

C:\Binaries> pe_unmapper.exe _00560000.mem 00560000 560000.dll

filename: _00560000.mem
size = 0xc9000 = 823296
Load Base: 560000
Old Base: 560000
Coping sections:
[+] .text to: 00330400
[+] .data to: 00359A00

https://github.com/hasherezade/pe_recovery_tools/tree/master/pe_unmapper

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 33

[+] .rdata to: 003DCC00
[+] .eh_fram♀Ä to: 003E2C00
[+] .bss to: 00330000
[+] .edata to: 003EBC00
[+] .idata to: 003EBE00
[+] .CRT to: 003EDE00
[+] .tls to: 003EE000
[+] .rsrc to: 003EE200
[+] .reloc to: 003EEA00
Success!
Saved output to: 560000.dll
Press any key to continue . . .

Repeating the same procedure to the second extracted file means that the extracted file
(_00130000.mem), its base address in hex (0x00130000) and the name of the output filename
(130000.dll). Thus:

C:\Binaries> pe_unmapper.exe _00130000.mem 00130000 130000.dll
…
 [+] .reloc to: 00074E00
Success!
Saved output to: 130000.dll
Press any key to continue . . .

It is done. Afterwards, checking the result using the PE Bear, we have the following picture:

All DLLs and functions are shown!

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 34

It is much better now! This time, the IAT is completely readable and we can list all their DLLs and
the respective functions. Repeating the same steps for the other fixed DLL, we also have success as
shown below:

Let’s check if any file is packed using DiE. As you can see, the first one (560000.dll) is not,
apparently, packed as shown below:

Checking the second file (130000.dll), we have:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 35

As an additional task, check few details about both files (560000.dll and 130000.dll) as the entropy
of each section:

Again, we have high entropy in the .data section from the 560000.dll file. Maybe there is
something useful for us there. About the second file (130000.dll), it is everything OK.

Before proceeding, it is curious to know the original name of both files (got from PE Bear tool), as
shown below:

560000.dll → Client-spyder.exe
1300000.dll → HookLibrary86.dll

Of course, both names are meaningful. ☺

Later, we will return to these two files, the driver (bf190a1f.sys) and any other files that can be
interesting to analyze. It will make part of the static analysis using IDA Pro.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Unpacking and basic dyn./static analysis 36

As a side note , when we are trying to extract possible injected code from the memory (it is not
this case, which we have found two DLLs on memory), a good technique is setting breakpoints up
at memory allocation functions such as VirtualAlloc(), VirtualAllocEx(), GlobalAlloc(), and so on,
instead of viewing new allocated segment memory. If you don’t remember how to do it, a
summarized procedure follows

• Open the OllyDbg/Immunity/x64dbg and set a breakpoint for all VirtuallAlloc() or
GlobalAlloc() functions.

• Once the breakpoint has been hit, observe the allocated size for checking whether there is
a reasonable space for containing an executable or DLL.

• If the allocated space is good enough, so proceed with the ALT-F9 to continue the
execution until returning to the procedure that called the VirtualAlloc() or GlobalAlloc()
functions.

• Right click on EAX (return of the function) and choose Follow in Dump . Probably, there
will be a huge empty space.

• Continue the execution by pressing F8 (step-over) until something appears at dump area.
If an executable appears, so dump it through this area or Modules windows. If nothing
useful to appear there, so repeat the steps.

• If the content to delay to appear, try to use a hardware breakpoint (on write).

Unfortunately, it is so likely to exist dozens of insignificant allocations before we are able to find
something useful:

Thus, it is suitable to narrow our search for allocations greater than a specific value (for example,
20000 bytes) by setting up a conditional breakpoint on target functions (VirtualAlloc /
GlobalAlloc). To perform it, right click at first instruction of the function → Breakpoint →
Conditional Breakpoint, as shown below:

Of course, it does not work every time, mainly because we have not analyzed it yet, but it is
always a good shot. ;)

it is so small

The permission is interesting (RWE)

ESP + 8 = Size ☺

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 37

Memory analysis

Now, we start deeper analysis and we are going to delve into interesting details. Sometimes, I
have heard from incident handlers and malware analysts that they are not used to deploying
memory analysis in their standard procedures. Honestly, I am not able to understand this choice,
but I respect it. Of course, in this specific analysis, we have the malware in our hands, but memory
analysis will help us a lot.

Additionally, when I start a real analysis in the client facilities (on site), I simply don’t know where
is the malware and, of course, the client also doesn’t know anything about it. Based on it, my first
technical action (not my first procedural action) is to acquire the memory BEFORE execute any
command. Afterwards, I use Volatility (the best memory analysis tool of the world, by far) for
performing an efficient investigation. The conclusion of this task will be used as the start point of
the static analysis using IDA Pro and/or Radare2. In my opinion, it is a perfect match. ☺

This investigation has an interesting caveat that, after about few minutes being infected by
executing the certmrg.exe program, it is rebooted non-intentionally (it is caused by the malware,
as we will see later). Therefore, we are going to work on two images, which one of them is before
rebooting (trojan_before_r.vmem) and another one is after the reboot (trojan_after_r.vmem).
The reason for the decision is that, during the certmgr.exe execution, I have access to all touched
files by the malwares while infecting and, after the rebooting, I can examine all the malware
operation while I try to open a browser for accessing a bank website (the malware is activated
during the https operation because the certmgr.exe is launched). Obviously, working on two
memory images is not so usual, usually there are few differences between them, but it can help
us.

Starting our memory investigation, execute few commands for making things easier during the
commands:

Few considerations about the commands above:

1. As the malware was tested on a Windows 7 SP1 x86, so I have setup up it as the Volatility
profile.

2. For preventing to type the path of the image in each command, so I made the image path
as constant for future command executions.

3. I have put the Volatility executable (vol.py) in the PATH variable.
4. Finally, I have check for new updates.
5. Obviously, when you need to handle the memory image after rebooting the system, so we

have to change the VOLATILITY_LOCATION variable.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 38

Once more remember that, at the beginning, we are executing commands for memory image
before rebooting the system. However, I will jump between memory images back-in-forth during
the explanation, so it is recommended to pay attention on it, please.

Thus, we are ready to list the running processes during the infection as shown below:

Nothing in special was listed. As you should remember, we run the certmgr.exe program, but
during the execution a second certmgr.exe process is created, probably because the malicious DLL
file. Therefore, it is appropriate to wonder:

1. Is there any hidden process?
2. Is the malware using hollowing?

We are able to investigate both issues. As the reader knows, DKOM is an old technique (more than
twelve years ago) used by malwares for hiding in one of seven possible sources process lists. If you
don’t remember anything about it, the basic steps for a malware using DKOM from the user land
(without needing to use a kernel driver) are:

• It enables the SeDebugPrivilege by using:

• RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &oldpriv);

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 39

• NtQuerySystemInformation () → it locates the based address of the kernel module
(ntoskrnl.exe):

• NtQuerySystemInformation(SystemModuleInformation, &infomod,
sizeof(infomod), NULL);

• Extracts the base address of the kernel execute module (ntoskrnl.exe):

• kernelbase = (ULONG)infomod.Modules[0].ImageBase

• PsInitialSystemProcess variable → it points to _EPROCESS for the System process.
Therefore, we have to get the PsInitialProcess address:

• kernelhandle = LoadLibraryA(kernelfilename); // ntoskrnl.exe
• psinitialsys_addr = (ULONG) GetProcAddress(kernelhandle,

"PsInitialSystemProcess") – (ULONG)kernelhandle + kernelbase;

• Walk in the linked list by searching for a target process to hide (remember about offset
0x88 – ActiveProcessLinks).

• NtSystemDebugControl() → it reads and writes (DebugSysReadVirtual
DebugSysWriteVirtual) 4 bytes to a specific address in kernel memory. Thus, it is possible
to overwrite the Flink and Blink pointers.

Furthermore, remember that main functions used in this process have the following arguments:

• NtSystemDebugControl (
IN SYSDBG_COMMAND Command, //

 IN PVOID InputBuffer OPTIONAL,
 IN ULONG InputBufferLength,
 OUT PVOID OutputBuffer OPTIONAL,
 IN ULONG OutputBufferLength,
 OUT PULONG ReturnLength OPTIONAL);

• NtSystemDebugControl (

 SysDbgReadVirtual,
 &dbgmembuff,
 sizeof(dbgmembuff),
 NULL,
 0,
 NULL);

In a summarized way, the DKOM technique is used to manipulate the FLINK and BLINK pointer
(from a doubly-linked list) for “skipping” a process in a list during the walkthrough.
Unfortunately, most excellent tools such as Process Explorer and Process Hacker are not able to
detect the attack.

A good graphical overview follows below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 40

Using Volatility, we can check the DKOM action on processes by running the following command:

FLINK

100

BLINK

FLINK

 101

BLINK

FLINK

 100

 BLINK

FLINK

 102

BLINK

FLINK

 101

 BLINK

FLINK

 102

 BLINK

 malware

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 41

Clearly, there is no any hidden process on the system.

About the hollowing technique, malwares can create a process in suspended mode, to “empty” its
content and filling the process container with a malicious content. Afterwards, the malware
resumes the suspended process. Thus, it is impossible to find a simple calculator (for example) is
actually a malware.

The basic steps for a malware to execute the hollowing techniques are:

• Starts a new instance of a legitimate process (in SUSPEND STATE) → CreateProcess() ;
• Opens and reads a malicious code ;
• Gathers the base address of the destination image → NtQueryProcessInformation() to

get the address of the PEB (Process Environment Block);
• Free the memory section in the target process → NtUnmapViewOfSection() ;
• Allocates a new block of memory for holding the malicious code → VirtualAllocEx() ;
• Copies the source image (malicious PE header and other PE sections) into the new

allocated memory → WriteProcessMemory() ;
• Sets the start address for the first thread (suspended) to point to the entry point of the

malicious process → GetThreadContext() + SetThreadContext () ;
• Resumes the thread → ResumeThread() ;

To find processes coming from hollowing we can compare the injected code (using VAD short +
RWE protection) against the Process Environment Block (PEB). If an executable has an entry in
the PEB, but it does not have a corresponding entry in the VAD tree, so it is hollowing evidence.
Fortunately, my colleague Monnappa KA (investigator in Cisco Systems) has written a nice plugin
name hollowfind (https://github.com/monnappa22/HollowFind.git), which makes our lives easier
when we are trying to find hollowing evidences, as shown below:

root@kali:/malwares/trojan_banker_stuff# vol.py hollowfind -v
Volatility Foundation Volatility Framework 2.6

It is great! There is not any hollowed process on the system. It is simple like that. ☺

One of first steps is to verify the IP address that the malware is trying to connect by executing the
following commands:

root@kali:/malwares/trojan_banker_stuff# export
VOLATILITY_LOCATION=file:////malwares/trojan_banker_stuff/trojan_after_r.vmem

root@kali:/malwares/trojan_banker_stuff# vol.py netscan | grep -i certmgr
Volatility Foundation Volatility Framework 2.6
0x7e255b18 TCPv4 192.168.0.6:1157 200.96.205.124:8686 SYN_SENT 3132
certmgr.exe

It is so interesting. This IP address is not the same of the original mentioned previously, so
probably the IP address is changing between reboots or, even better, from one infection to
another new one. Nonetheless, it is interesting to realize that the remote port is the same (8686).

Checking the whois service, we have the following:

https://github.com/monnappa22/HollowFind.git

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 42

root@kali:~# whois 200.96.205.124

inetnum: 200.96.0.0/16
aut-num: AS8167
abuse-c: CSIOI
owner: Brasil Telecom S/A - Filial Distrito Federal
ownerid: 76.535.764/0326-90
responsible: Brasil Telecom S. A. - CNBRT
country: BR
owner-c: BTC14
tech-c: BTC14
inetrev: 200.96.205.0/24
nserver: ns03-cta.brasiltelecom.net.br
nsstat: 20170810 AA
nslastaa: 20170810
nserver: ns04-bsa.brasiltelecom.net.br
nsstat: 20170810 AA
nslastaa: 20170810
created: 20030225
changed: 20040325

It is ok because the operator is the same and the place is close the previous one (Goiânia).

Verifying users and their respective SIDs, we have:

Apparently, there is not any really strange, except a blank username in one of the SIDs (ended
1000). As the target system does not belong to a domain (if it belonged, so blank users would be
normal), so we need to pay attention to understand whether it is an important artifact or not.

Continuing the analysis, it is suitable to check privileges associated with the infected process
(certmgr.exe) because, even the indirectly, it can show the goal of the malware.

Thus, execute the command as shown at next page:

The username used
during the logon

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 43

As we see above, the SeChangeNotifyPrivilege was explicitly changed and enabled (maybe using
AdjustTokenPrivileges() function) , which permits the caller to register a callback function
(basically, a notification engine and a modern method to perform hooking) to be executed when
any file or directory is changed, preventing any external event (administrators, analysts and
programs) to change these selected files and directories. Going forward, the next step is to check
the DLLs used by the infected executable by running the following command:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 44

It is very interesting! A DLL named EtawJa.dll has appeared at same directory of certmrg.exe
program probably because the extraction process of the infected cryptui.dll. Certainly, we are
going to examine it later.

Probably the reader could ask about the meaning of the LoadCount field indicating the 0xffff
value. This specific value indicates that the DLL was loaded from the IAT (not dinamically). Thus,
many DLLs were loaded dynamically in this case, likely using the LoadLibrary(), which uses
VirtualAlloc() function to create a new segment, or even the LdrLoadDll() native function.

Dumping the EtawJa.dll from the memory image can be accomplished by executing the following
command (--fix option forces the ImageBase to match the loaded address):

At same way that a process can be hidden by unlinking it from a doubly linked list, the process for
hiding DLL is similar because, if the reader to remember about this topic, we have _EPROCESS.PEB
→ _PEB.Ldr → _PEB_LDR_DATA (LoadOrderList, MemoryOrderList, InitOrderList) →
_LDR_DATA_TABLE_ENTRY, and all of them can be shown. For example, after calling the volshell
plugin, list the _PEB structure initially and find the Ldr field:

By using the same method, it is possible to find all remaining structures, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 45

As a quick review, remember that:

• InLoadOrderModuleList: a linked list that shows modules in the order in which they are
loaded into a process.

• InMemoryOrderModuleList: another linked list, which organizes modules in the order in
which they appear in the virtual memory layout of the process.

• InInitializationOrderModuleList: a linked list that organizes modules in the order in which
their DLLMain() function was executed. It is very important to highlight that DllMain() is
not always called immediately when a module loads and, sometimes, it could never be
called. A possible example is when a program loads a DLL from a data file.

Finally, the _LDT_DATA_TABLE_ENTRY structure is also shown in the following output:

We can make a cross checking of the VAD entries with the previous DLL lists by executing the
following command:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 46

Of course, a question comes up: “What is the DLL name of the highlighed entry above?”. It is very
easy: EtawJa.dll, as we have seen previously at dlllist’s output. A better way to find the same result
is by including the –v option at the ldrmodules plugin, as shown below:

Wow! It is the same DLL (EtawJa.dll) that we found previously. Furthermore, there is not any
hidden DLL because almost fields are True and the own executable (certmgr.exe) is never included
in the Inanity list (remember: it is not a DLL, but an executable, so it does not have the Dolman()
function ☺) . Furthermore, remember that executable files and DLL could be mapped into the

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 47

memory by functions such as MapViewOfFile() without being registered in the _PEB structure,
hence not being registered in any of these lists (InLoadOrderModuleList(),
InMemoryOrderModuleList(). and InInitializationOrderModuleList() functions) too.

None DLL was apparently injected, but there is no any code injection in this memory sample?
Before executing commands to find any code injections, the reader could remember that there are
few flavors of code injection:

• DLL Injection → It is possible to force a process to load a DLL into its address space

(LoadLibrary()). Unfortunately, it is easily detected because the DLL must be on disk before
performing the injection. Usually, it is a sequence of system calls such as OpenProcess(),
VirtualAlloc(), WriteProcessMemory() and CreateRemoteThread() functions.

• PE Injection → a PE file, which has its IAT configured for the target process, is written and
forced to be executed into the addressing space of the target process.

• Reflective Injection → it is similar to the previous one, but the code (usually a DLL) manages
its initialization without needing of LoadLibrary() and CreateRemoteThread() functions, for
example.

• Direct Injection → It’s possible to inject a code (shellcode) directly from the memory.
(WriteProcessMemory() / NtMapViewOfSection())

• APC Injection → It allows a program to execute a code in a specific thread by attaching to an
APC queue (without using the CreateRemoteThread()) and preempting this thread in an
alertable state to run the malicious code. (QueueUserAPC(), KeInitializeAPC() and
KeInsertQueueAPC()). Additionally, AtomBombing technique is also based on APCs. ☺

• Hook Injection → This method could be used to inject a DLL into a process by using functions
such as SetWindowsHookEx().

• Hollowing or Process Replacement → in few words, the malware “empties” the content of a
process on memory and inserts a malicious content (as explained previously).

• Extra Windows Memory Injection → malwares using this technique inject code into
explorer.exe’s shared memory by opening a previously created shared section, writing the
code and using GetWindowsLong()/SetWindowsLong() APIs to change the offset of a
function’s pointer to point it to the injected code of the shared section.

Therefore, examining the process certmgr.exe for injection evidence, we have the following:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 48

I have narrowed the output by only looking for execuble code/DLL (-W option), but the found
address above (0x530000) is apparently well known as being the EtawJa.dll. Anyway, we need to
dump it and this task can be accomplished by running the following command:

root@kali:/malwares/trojan_banker_stuff# vol.py malfind -p 3132 -W -D .
root@kali:/malwares/trojan_banker_stuff# file process.0x86d865f0.0x530000.dmp
process.0x86d865f0.0x530000.dmp: PE32 executable (DLL) (console) Intel 80386 (stripped to external PDB),
for MS Windows

If you check, this is the EtawJa.dll file, which we have also extracted by using dlldump plugin at
page 45. Additionally, it is the same file that we extracted from memory by using the debugger at
page 31. Probably, its IAT is destroyed, but it is extremely easy to fix it. ☺ Of course, we can check
it by executing the following command:

root@kali:/malwares/trojan_banker_stuff# peframe process.0x86d865f0.0x530000.dmp

Short information
--
File type PE32 executable (DLL) (console) Intel 80386 (stripped to external PDB), for MS Windows
File name process.0x86d865f0.0x530000.dmp
…
Compile time 2017-04-05 09:58:39
Sections 11 (5 suspicious)
Directories import, export, resource, tls, relocation
Detected packer
Dll True

Packer info
--
Microsoft Visual C++ 8
Microsoft Visual C++ 8.0
…

Filename found
--
Library sntdll.dll
Library ntdll.dll
Library ADVAPI32.dll
Library SHLWAPI.dll
Library SHELL32.dll
Library libgcj-16.dll
Library WS2_32.dll
Library msvcrt.dll
Library ole32.dll
Library MSIMG32.DLL
Library USER32.dll
Library GDI32.dll
Library KERNEL32.dll
Library libgcc_s_dw2-1.dll
Library dwmapi.dll

Url found: http://www.ibsensoftware.com/

Later, we will return to these DLLs. ☺

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 49

Are we done in memory analysis? Of course, it is not. Not even close because Volatility is
outstanding. ☺ We do not know whether our malware has installed any service, so let’s check it.
As the reader could remember, the svcscan plugin performs an excellent job by listing services
managed by the SCM and created using the CreateService() function, but it is not able to detect
services that start using the NtLoadDriver(). Anyway, it is an excellent method for listing the
existing services. As there are many services running, so it is suitable to redirect the output to a file
for analyzing all services later, as shown below:

root@kali:/malwares/trojan_banker_stuff# vol.py svcscan -v --output-file=services.txt

After analyzing the services.txt file, I found the following strange service:

Offset: 0x8c0878
Order: 2
Start: SERVICE_BOOT_START
Process ID: -
Service Name: 1C51F309C6EBA200
Display Name: 1C51F309C6EBA200
Service Type: SERVICE_KERNEL_DRIVER
Service State: SERVICE_RUNNING
Binary Path: \Driver\1C51F309C6EBA200
ServiceDll:
ImagePath: system32\drivers\bf190a1f.sys
FailureCommand:

As the reader could remember, this service is related to the same driver that we found previously.
☺ Going further, we can try to list the most recently used services by listing them in reverse order
using their time stamps. This technique has two advantages: it is able to catch services being
loaded by the NtLoadDriver() and, additionally, we don’t need to know the exact name of the
service:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 50

The output is the following:

At first analysis, nothing is wrong.

Checking the handles associated to the Registry, we have the following:

As normally malwares use the Registry for making the persistence, so it is appropriate to check the
main key used for this goal as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 51

As we expected, the malware created an entry for starting the certmgr.exe in each boot. ☺ We
can continue using the handles plugin, but this time we are going to specify a specific option to
investigate artifacts related to files, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 52

Apparently, there is not any very relevant information because the KsecDD provides kernel
security device driver and it is related to certmgr.exe process.

Checking whether the certmgr.exe hooks any critical function is our next step. Of course, Volatility
has an amazing plugin named apihook, which checks the main hook types such as Inline, Detour,
Trampoline, IAT Hooking, EAT Hooking (not so good because the it is only effective for modules
loaded the hooking), Syscalls and so on. Thus, execute the plugin as shown below:

Wow! Several functions were hooked and all them except the first one (ntdll.dll!LdrLoadDll) at
output, which was hooked by EtawJa.dll, have an unknown hook module , but a small sample
follows below:

The “unknown” status is because as the malware hooked the LdrLoadDll() function and
consequently the LoadLibrary() function , so it is not using the LoadLibrary() function to inject

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 53

the malicious code into the certmgr.exe process. Furthermore, the DLL list from the PEB (Process
Environment Block) structure was not updated and there is not any memory mapped file name
accessible from the VAD (Virtual Address Descriptor).

It is straight to check the first hooked function (LdrLoadDll()) a bit closer. From the apihooks
plugin’s output, we have the following:

Inline Hook / Trampoline

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 54

If you prefer seeing this hooking in the IDA Pro, so you can proceed by checking a good
ntdll.dll!LdrLoadDll function code first as shown below:

Good LdrLoadDll() function

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 55

Thus, you can compare this code list against the bad ntdll.dll from the memory. To accomplish this
task, dump the bad ntdll.dll from memory as shown in the next steps:

Now we should load it into the IDA Pro and see the expected hooking instruction at beginning:

I had almost forgotten, but the reader could not be able to remember the meaning of all these
functions by heart, so a much summarized list follows:

• LdrLoadDll() (NT Native API) → Loads a DLL.

• NtClose() → Closes the specified handle.

• NtCreateFile() → This function, a user-mode equivalent function to the
ZwCreateFile(), creates a new file or directory, or opens an existing file, device, directory,
or volume.

• NtCreateSection() → This routine creates a section object, which is an object that
represents a section of memory that can be shared. Additionally, we should remember
that any process can use a section object to share parts of its memory address space with
other processes and section objects provide the mechanism by which a process can map a
file into its memory address space.

• NtMapViewOfSection() → It maps a view of a section into the virtual address space of a
subject process.

• NtOpenFile() → This function opens an existing file, device, directory, or volume, and
returns a handle for the file object.

HOOKING

!

Bad LdrLoadDll function

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 56

• NtQueryAttributesFile() → Retrieves basic attributes for the specified file object (for
example, to check whether an attribute exists).

• NtQueryInformationFile() → Returns a complete information about a file object such as
file access information, flags specifying access mode, full path, and so on.

• NtQueryObject() → It retrieves information about any or all objects opened by calling
process. Additionally, it can be used with any type of object.

• NtQuerySection() → it retrieves information about the section object.

• NtQueryVirtualMemory() → It routine determines the state, protection, and type of a
region of pages within the virtual address space of the subject process.

• NtQueryVolumeInformationFile() → Retrieves information about the volume associated
with a given file, directory, storage device, or volume.

• NtReadFile() → It reads data from an open file.

• NtSetInformationFile() → It changes different types of information about a file object.

• NtUnmapViewOfSection() → It unmaps a view of a section from the virtual address space
of a subject process.

• ZwClose() → Similar to NtClose()

• ZwCreateFile() → Similar to NtCreateFile()

• ZwCreateSection() → Similar to CreateFile()

• ZwMapViewOfSection() → Similar to NtMapViewOfSection()

• ZwOpenFile() → Similar to NtOpenFile()

• ZwQueryAttributesFile() → Similar to NtQueryAttributesFile()

• ZwQueryInformationFile() → Similar to NtQueryInformationFile()

• ZwQueryObject() → Similar to NtQueryObject()

• ZwQuerySection() → Similar to NtQuerySection()

• ZwQueryVirtualMemory() → Similar to NtQueryVirtualMemory()

• ZwQueryVolumeInformationFile() → Similar to NtQueryVolumeInformationFile()

• ZwReadFile() → Similar to NtReadFile()

• ZwSetInformationFile() → Similar to NtSetInformationFile()

• ZwUnmapViewOfSection() → Similar to NtUnmapViewOfSection()

The reader might remember that both Nt and Zw function versions have a different way to check
their parameters when the function is called. For example Nt version function always validates the
parameters when it is called from user or kernel land. However, the Zw version function doesn’t
validate the parameters when it is called from the kernel mode driver. Finally, Zw version always
validates the parameters when it called from user-mode application.

Going onward, I have tried to find orphan threads. For finding them, it is necessary to make a list
of the loaded drivers and their respective start addresses, looking for each ETHREAD object,
record its start address and check if this start address is in the range of the loaded driver. If it is
not, so this thread is hidden (detached). Of course, it is not necessary the Volatility to check it
because we could open the Process Explorer, looking for the process 4 (System), go to Threads
tab and find any thread without a driver. Obviously, smart malwares could overwrite the
EPROCESS.StartAddress field with a pointer to a valid driver. ☺

Anyway, there is not any orphan thread running on the system and coming from our target
process, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 57

root@kali:/malwares/trojan_banker_stuff# vol.py -p 3132 threads -F OrphanThreads

Volatility Foundation Volatility Framework 2.6
[x86] Gathering all referenced SSDTs from KTHREADs...
Finding appropriate address space for tables...

Checking for drivers running on the system, we have found the following result:

The list is long, but there is an interesting kernel driver that deserves our attention:

It is possible to find the module associated to this driver by executing the following command:

root@kali:/malwares/trojan_banker_stuff# vol.py modules | grep 0x8986b000
Volatility Foundation Volatility Framework 2.6

0x851437a8 bf190a1f.sys 0x8986b000 0x6000 \SystemRoot\system32\drivers\bf190a1f.sys

During our previous analysis, the name of this driver has already come up, so we can dump it by
executing the following command:

Unfortunately, if we load the extracted driver into the IDA Pro, it won’t show us named functions.
However, we are able to fix this problem by using impscan plugin, which will generates all
necessary function names from the base address and make the life easier during a static analysis
later:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 58

Remember few points about this technique:

• Impscan plugin doesn’t make a new version of the dumped file, but it simply provides the
missing label to import the executable into IDA Pro.

• Impscan plugin determines all labels according to the following steps:

• The base address and the respective size of each DLL present in the process.

• By using the pefile, it parses the EAT (Export Address Table) of each DLL for
finding the offset and the respective name of each exported function.

• Afterwards, impscan plugin looks for jmp and call instructions in the code.

• At the end, the destination address takes it to an API, so it records the function
address and its respective name.

• Loading these commands into the IDA Pro is straight. Go to File → Script Command

(SHIFT + F2), past the output of the IDC script and Run. Afterwards, just in case you need,
go to Options → General → Analysis → Reanalyze Program. See the result below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 59

It is always recommended to check strings when analyzing a driver for collecting evidences, as
shown below:

Please, pay attention to few interesting facts:

• The file path “E:\Work2016\Projetos\Remoto\Client\driver\Win7Release\driver.pdb”
contains words written in Portuguese language (“Projetos” and “Remoto”). These facts
confirm our opinion that probably the author lives in Brazil.

• He/she a pdb file, which could suggest that he/she has worked on the driver code.

In the step I’ve checked if the found driver had performed any hook at IRP table. As maybe you
remember about this topic:

• On Windows, applications usually communicates with drivers by sending IRPs
(I/O Request Packets), where the IRP is a data structure which represents this
packet, identifies the operation (read, write, and so on) by using a integer and the
respective buffer involved in the operation.

• Furthermore, each driver holds a table of 28 function pointers to handle different
operations.

• If a malware hooks any entry in the driver’s IRP function table, so it can control
the communication and action performed by the driver.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 60

• Any malware that overwrites the IRP_MJ_WRITE function in the driver’s IRP can
inspect the data buffer from any write operation to disk or network.

Unfortunately, there was not any hooking at IRP table of the 1C51F309C6EBA200 driver
(bf190a1f.sys module), as shown below: ☺

Another interesting approach would be to create a timeline using MFT data and any other
interesting stuff (in this case we do not need shellbags) to understand and find any possible events
around the certmgr.exe execution. Of course, in our case, we have executed a dynamic analysis
because we have the malware. Nonetheless, when we perform incident handling procedures at
customer facilities in real cases, we do not know anything about the malware and this timeline,
which is generated from memory, it will be extremely useful.

Furthermore, if we do not hold the malware on hands then it is not possible to perform a dynamic
analysis by using Process Monitor, Process Explorer, RegShot and other excellent tools, for
example.

It is not subverted! ☺

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 61

Create an efficient timeline for both scenarios (before rebooting and during the infection process,
and after rebooting) is a simple task. To accomplish these tasks, we have to execute the following
commands:

root@kali:/malwares/trojan_banker_stuff# vol.py timeliner --output-file=timeliner_b.txt --output=body
Volatility Foundation Volatility Framework 2.6
Outputting to: timeliner_b.txt

root@kali:/malwares/trojan_banker_stuff# vol.py mftparser --output-file=mft_b.txt --output=body
Volatility Foundation Volatility Framework 2.6
Outputting to: mft_b.txt
Scanning for MFT entries and building directory, this can take a while

root@kali:/malwares/trojan_banker_stuff# cat timeliner_b.txt mft_b.txt > completetimeline_b.txt

root@kali:/malwares/trojan_banker_stuff# mactime -b completetimeline_b.txt -d -z UTC >
finaltimeline_b.txt

root@kali:/malwares/trojan_banker_stuff# export
VOLATILITY_LOCATION=file:////malwares/trojan_banker_stuff/trojan_after_r.vmem

root@kali:/malwares/trojan_banker_stuff# vol.py timeliner --output-file=timeliner_a.txt --output=body
Volatility Foundation Volatility Framework 2.6
Outputting to: timeliner_a.txt

root@kali:/malwares/trojan_banker_stuff# vol.py mftparser --output-file=mft_a.txt --output=body
Volatility Foundation Volatility Framework 2.6
Outputting to: mft_a.txt
Scanning for MFT entries and building directory, this can take a while

root@kali:/malwares/trojan_banker_stuff# cat timeliner_a.txt mft_a.txt > completetimeline_a.txt

root@kali:/malwares/trojan_banker_stuff# mactime -b completetimeline_a.txt -d -z UTC >
finaltimeline_a.txt

The sequence of commands is straight and it can be repeated in any other case.

At this time, we have both timelines (from before and after rebooting the system) and we could
find any relevant fact within them. Of course, as we have executed the certmgr.exe program, so it
would be a good shot for the first try looking for the “certmgr.exe” string and other
words/messages around it.

During this analysis, it is very important to pay attention to the time and potential associated
strings, which can raise new relevant facts. It would be wrong to imagine this procedure as an
extension of the dynamic analysis because we are examining facts and logs that occurred during
the malware execution.

It follows below a small snapshot of the certmgr.exe event within the finaltimeline_a.txt file:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 62

As you are able to see, the output is a kind of Process Monitor, but it brings all collected artifacts
from the memory. It is wonderful!

During this investigation, I was not able to find anything different from artifacts found during the
dynamic analysis (although I have not tried harder ☺). Nevertheless, as I have already explained
previously, most time we do not have the malware on hands during customer’s issues to perform
tests using dynamic analysis, so this technique certainly will be very useful. As a simple hint, try to
execute grep -i exe finaltimeline_b.txt | cut -d\| -f2 | more command. ☺

Finally, before finishing this overview about memory analysis, let’s execute the Bulk Extractor tool,
which is a recommended tool to supplement any investigation:

root@kali:/malwares/trojan_banker_stuff# bulk_extractor trojan_after_r.vmem -o bulk_output

bulk_extractor version: 1.6.0-dev
Hostname: kali
Input file: trojan_after_r.vmem
Output directory: bulk_output
Disk Size: 2147483648
Threads: 4
Attempt to open trojan_after_r.vmem
21:38:12 Offset 67MB (3.12%) Done in 0:02:55 at 21:41:07
21:38:20 Offset 150MB (7.03%) Done in 0:03:08 at 21:41:28
21:38:32 Offset 234MB (10.94%) Done in 0:03:30 at 21:42:02
…
21:43:05 Offset 2080MB (96.88%) Done in 0:00:09 at 21:43:14
All data are read; waiting for threads to finish...
…..

All Threads Finished!
Producer time spent waiting: 272.794 sec.
Average consumer time spent waiting: 0.829649 sec.

** bulk_extractor is probably CPU bound. **
** Run on a computer with more cores **
** to get better performance. **

MD5 of Disk Image: 4a9e909a08bac7d2d77eaf61ddbe79cd
Phase 2. Shutting down scanners

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 63

Phase 3. Creating Histograms
Elapsed time: 314.084 sec.
Total MB processed: 2147
Overall performance: 6.83729 MBytes/sec (1.70932 MBytes/sec/thread)
Total email features found: 634

Basically, the bulk_extractor tool carves several interesting information out of the memory dump
and organizes them over many files. Thus, after the bulk_extractor execution, we have the
following files within the bulk_output directory:

This time I also could not find any valuable information related to this specific and simple case.
However, according to my experience, it is usually a gold mine of information. To make your life
easier, I have highlighted all most important and used log files in a red rectangle. Eventually, it
could be useful for you in a near future. ☺

At last, you should never downplay the strings’ power. It is worth to believe that strings are the
foundation of any malware analysis. Do you remember when reversers only used them for
breaking serial number? Unfortunately, the world has changed a lot, but strings continue being
very important and used nowadays. Eventually, they are not fundamental at first approach, but I
have used them many times during the static analysis using IDA Pro and Radare2. Thus, it is always
suitable trying to create a list of strings from the memory and, according to the spare time, try to
filter them leveraging our previous knowledge about the infection: it has started because a DLL file
being called by the certmgr.exe! Furthermore, during most complicated cases, strings with
timelines are very useful when associated to Prefetch, Shim caches, Registry and even any
Network activity!

To make a string list from the memory, run the following commands:

root@kali:/malwares/trojan_banker_stuff# strings -td -a trojan_after_r.vmem > strings.txt
root@kali:/malwares/trojan_banker_stuff# strings -td -el -a trojan_after_r.vmem >> strings.txt
root@kali:/malwares/trojan_banker_stuff# vol.py strings -s strings.txt > final_strings.txt

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Memory analysis 64

Where:
• -td → it shows decimal offsets.

• -a → this option force the coverage of all file, including executable sections.

• -el →this options shows Unicode strings.

• -s →it scan the strings.txt files, which it was generated previously.

Afterwards, we are able to look for interesting facts such as the certmgr.exe program running, the
temporal proximity and related potential strings (related to our case or not – we still don’t know
about it) on the memory after it has been executed, as shown below:

root@kali:/malwares/trojan_banker_stuff# more final_strings.txt | grep -A 30 certmgr.exe | more

Few extracted strings follow:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 65

Reversing Overview

Finally, we reached the static analysis where we can use excellent disassemblers such as IDA Pro
(my version is 6.95) and Radare2, which is so dynamic that if you have tried a git pull more than 3
hours ago, so it is already outdated ☺.

We extracted and fixed the DLLs (130000.dll and 560000.dll files) at page 33. Additionally, we
have found a driver named bf190a1f.sys , which we can copy it from
C:\Windows\System32\drivers directory of the infected system. The goal is to perform a fast
analysis of the few functions and subroutines, and to illustrate some aspects of the malware.
Unfortunately, it is not possible to perform a complete analysis (including debuggers such as
Immunity) because it will make this article even longer than it is at this moment. ☺

Although most professionals use the IDA Pro graphical interface only because it is really excellent,
it is recommended remember that the IDA Python offers an amazing method for getting file
information and solving small encryption problems during the analysis. For example, when
analyzing shellcodes that call a decryption function for handling its encrypted hashes, it is possible
to use IDA Python to automate and make this process easier.

Furthermore, remember that the pure Python (out of the IDA Pro context) is able to accomplish
several tasks and, by writing a very small Python script, we can list all exported functions of a DLLs.
It follows a simple script named as Exports.py, which could help you to get the exported functions:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 66

import pefile
import sys

malware = pefile.PE(sys.argv[1].lower())
if ((not hasattr(malware, 'DIRECTORY_ENTRY_EXPORT')) or (malware.DIRECTORY_ENTRY_EXPORT is
None)):
 print ("[*] Sorry...there is any not exported functions from %s" % malware)
else:
 exports = []
 for sym in malware.DIRECTORY_ENTRY_EXPORT.symbols:
 if sym.name:
 exports.append(sym.name)
 for func in exports:
 print ("Exported function: %s" % func)

Running the script above against one of the extracted DLLs, we have the following result:

C:\analysis\files_fixed> python Exports.py 130000.dll

By following the same line of the explanation, it is possible to write a very similar script
(Imports.py) for finding imported DLLs and functions, as shown below:

import pefile
import sys

malware = pefile.PE(sys.argv[1].lower())
if ((not hasattr(malware, 'DIRECTORY_ENTRY_IMPORT')) or (malware.DIRECTORY_ENTRY_IMPORT is
None)):
 print "[*] Sorry...there is any not imported functions from %s" % malware
else:
 dllimport = []
 funclist = []
 for sym in malware.DIRECTORY_ENTRY_IMPORT:
 dllimport.append(sym.dll.decode('utf-8'))
 for i in sym.imports:
 funclist.append((i.name.decode('utf-8'), i.address))

Exported function: HookedNtQueryObject
Exported function: HookedNtQueryPerformanceCounter
Exported function: HookedNtQuerySystemInformation
Exported function: HookedNtQuerySystemTime
Exported function: HookedNtResumeThread
Exported function: HookedNtSetContextThread
Exported function: HookedNtSetDebugFilterState
Exported function: HookedNtSetInformationProcess
Exported function: HookedNtSetInformationThread
Exported function: HookedNtUserBuildHwndList
Exported function: HookedNtUserFindWindowEx
Exported function: HookedNtUserQueryWindow
Exported function: HookedNtYieldExecution
Exported function: HookedOutputDebugStringA

Exported function: DllExchange
Exported function: HookedBlockInput
Exported function: HookedGetLocalTime
Exported function: HookedGetSystemTime
Exported function: HookedGetTickCount
Exported function: HookedGetTickCount64
Exported function: HookedKiUserExceptionDispatcher
Exported function: HookedNativeCallInternal
Exported function: HookedNtClose
Exported function: HookedNtContinue
Exported function: HookedNtCreateThread
Exported function: HookedNtCreateThreadEx
Exported function: HookedNtGetContextThread
Exported function: HookedNtQueryInformationProcess

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 67

 for dll in dllimport:
 print ("Imported DLLs: %s" % dll)
 for i in funclist:
 print ("Imported functions: %s: 0x%08x " % i)

C:\> C:\python27\python Imports.py c:\analysis\files_fixed\bf190a1f.sys

Imported DLLs: ntoskrnl.exe
Imported functions: RtlAnsiStringToUnicodeString: 0x00402000
Imported functions: RtlFreeUnicodeString: 0x00402004
Imported functions: ZwClose: 0x00402008
Imported functions: ZwOpenKey: 0x0040200c
Imported functions: ZwSetValueKey: 0x00402010
Imported functions: KeBugCheckEx: 0x00402014
Imported functions: RtlInitAnsiString: 0x00402018

C:\> C:\python27\python Imports.py c:\analysis\banker_trojan.dll

Of course, we could improve this script a lot and, honestly, there are many gaps to be filled, but I
hope readers have understood the idea. ☺

As our focus is to analyze the malware on the IDA Pro, so the IDA Python is able to combine all
features from Python language to the IDA Pro environment, bringing many possibilities to us, as
listing segments (and their respective start and end address) of one of DLLs (130000.dll) according
to the code shown below:

Python> for segs in idautils.Segments():
Python> print idc.SegName(segs), idc.SegStart(segs), idc.SegEnd(segs)

.text 268439552 268447744
code 268447744 268455936
.idata 268455936 268456064
.rdata 268456064 268460032

Imported functions: LocalFree: 0x65fb103c
Imported functions: GetModuleFileNameW: 0x65fb1040
Imported functions: GetProcessAffinityMask: 0x65fb1044
Imported functions: SetProcessAffinityMask: 0x65fb1048
Imported functions: SetThreadAffinityMask: 0x65fb104c
Imported functions: Sleep: 0x65fb1050
Imported functions: ExitProcess: 0x65fb1054
Imported functions: GetLastError: 0x65fb1058
Imported functions: FreeLibrary: 0x65fb105c
Imported functions: LoadLibraryA: 0x65fb1060
Imported functions: GetModuleHandleA: 0x65fb1064
Imported functions: GetProcAddress: 0x65fb1068
Imported functions: OpenSCManagerW: 0x65fb1070
Imported functions: EnumServicesStatusExW: 0x65fb1074
Imported functions: OpenServiceW: 0x65fb1078
Imported functions: QueryServiceConfigW: 0x65fb107c
Imported functions: CloseServiceHandle: 0x65fb1080

Imported DLLs: KERNEL32.dll
Imported DLLs: msvcrt.dll
Imported DLLs: WTSAPI32.dll
Imported DLLs: KERNEL32.dll
Imported DLLs: USER32.dll
Imported DLLs: ADVAPI32.dll
Imported DLLs: KERNEL32.dll
Imported DLLs: ADVAPI32.dll
Imported functions: DeleteCriticalSection: 0x65fb1000
Imported functions: __dllonexit: 0x65fb1008
Imported functions: WTSSendMessageW: 0x65fb1010
Imported functions: LoadLibraryA: 0x65fb1018
Imported functions: CharUpperBuffW: 0x65fb1020
Imported functions: RegQueryValueExA: 0x65fb1028
Imported functions: LocalAlloc: 0x65fb1030
Imported functions: GetCurrentProcess: 0x65fb1034
Imported functions: GetCurrentThread: 0x65fb1038

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 68

.data 268460032 268468224

It is possible to list all functions and subroutines from one of the extracted DLLs (1300000.dll) by
using only two simple IDA Python lines, as shown below:

Python> for function in idautils.Functions():
Python> print hex(function), idc.GetFunctionName(function)

From IDA Pro, functions have many possible flag (nine in total), but two of them could be
interesting:

• FUNC_NORET → functions that do not execute a return instruction.

• FUNC_THUNK → functions that perform a jump to another function.

0x10002050L sub_10002050
0x10002120L sub_10002120
0x100021f0L sub_100021F0
0x10002240L sub_10002240
0x100022a0L sub_100022A0
0x10002300L sub_10002300
0x10002330L sub_10002330
0x10002370L sub_10002370
0x100023a0L sub_100023A0
0x10002460L sub_10002460
0x10002500L sub_10002500
0x10002530L sub_10002530
0x10002580L sub_10002580
0x100025a0L sub_100025A0
0x10002630L sub_10002630
0x10002680L sub_10002680
0x100026c0L sub_100026C0
0x10002790L sub_10002790
0x100028b0L sub_100028B0
0x10002950L sub_10002950
0x10002a30L DllEntryPoint
0x10002a3cL Process32FirstW
0x10002a42L Process32NextW
0x10002a48L CreateToolhelp32Snapshot
0x10002a4eL memcpy
0x10002a54L memcmp
0x10002a5aL _wcsnicmp
0x10002a60L memset
0x10002a66L _wcsicmp
0x1000408eL sub_1000408E
0x100040d9L sub_100040D9
0x10004122L sub_10004122
0x10004172L sub_10004172
0x100043e0L sub_100043E0

0x10001000L HookedNtSetInformationThread
0x10001060L HookedNtQuerySystemInformation
0x100010f0L HookedNtQueryInformationProcess
0x10001200L HookedNtSetInformationProcess
0x10001290L HookedNtQueryObject
0x100012f0L HookedNtYieldExecution
0x10001300L HookedNtGetContextThread
0x10001380L HookedNtSetContextThread
0x10001400L sub_10001400
0x10001480L HookedKiUserExceptionDispatcher
0x100014a0L HookedNtContinue
0x100015a0L sub_100015A0
0x10001620L HookedNativeCallInternal
0x10001650L HookedNtClose
0x100016a0L HookedGetTickCount
0x100016d0L HookedGetTickCount64
0x10001720L HookedGetLocalTime
0x10001790L HookedGetSystemTime
0x10001800L HookedNtQuerySystemTime
0x10001880L HookedNtQueryPerformanceCounter
0x10001920L HookedBlockInput
0x10001970L HookedOutputDebugStringA
0x100019a0L HookedNtUserFindWindowEx
0x10001a40L HookedNtSetDebugFilterState
0x10001a50L sub_10001A50
0x10001b10L HookedNtUserBuildHwndList
0x10001b70L HookedNtUserQueryWindow
0x10001bc0L HookedNtCreateThread
0x10001c00L HookedNtCreateThreadEx
0x10001c70L sub_10001C70
0x10001cd0L sub_10001CD0
0x10001d60L sub_10001D60
0x10001e50L sub_10001E50
0x10001f10L HookedNtResumeThread
0x10001f80L sub_10001F80

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 69

Thus, we can write a simple script to identify these types of functions for a specific extracted DLL
(again, 130000.dll), as shown below:

Python> import idc, idautils

Python> for func in idautils.Functions():
Python> flags = idc.GetFunctionFlags(func)
Python> if flags & FUNC_NORET:
Python> print GetFunctionName, hex(func), "FUNC_NORET"
Python> if flags & FUNC_THUNK:
Python> print GetFunctionName(func), hex(func), "FUNC_THUNK"

Process32FirstW 0x10002a3cL FUNC_THUNK
Process32NextW 0x10002a42L FUNC_THUNK
CreateToolhelp32Snapshot 0x10002a48L FUNC_THUNK
memcpy 0x10002a4eL FUNC_THUNK
memcmp 0x10002a54L FUNC_THUNK
_wcsnicmp 0x10002a5aL FUNC_THUNK
memset 0x10002a60L FUNC_THUNK
_wcsicmp 0x10002a66L FUNC_THUNK

Choosing any routine (for example, sub_100040D9) it would be possible to list all cross-references
to it and, additionally, disassembly the routine, as shown below:

Python> target_addr = 0x100040D9
Python> start_func = idc.GetFunctionAttr(target_addr, FUNCATTR_START)
Python> end_func = idc.GetFunctionAttr(target_addr, FUNCATTR_END)
Python> print "\nThe cross-references to this routine/function are:\n"
Python> for xrefs in XrefsTo(target_addr, flags=0):
Python> print hex(xrefs.frm)
Python> print "\nThe instructions are:\n"
Python> current_addr = start_func
Python> while (current_addr <= end_func):
Python> print hex(current_addr), idc.GetDisasm(current_addr)
Python> current_addr = idc.NextHead(current_addr, end_func)

The output of this script follows:

The cross-references to this routine/function are:

0x10004172L
0x100042baL
......(many lines were truncated)....
0x10004bbbL
0x10004c1dL
0x10004c9cL
0x10004ceeL
0x10004d58L
0x10004dafL
0x10004e31L

The instructions are:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 70

0x100040d9L mov dword ptr [ebp+1Ah], 0
0x100040e0L mov eax, [ebp+23h]
0x100040e3L movzx eax, byte ptr [eax+1]
0x100040e7L and eax, 0C7h
0x100040ecL mov ecx, 40h
0x100040f1L xor edx, edx
0x100040f3L div ecx
0x100040f5L mov [ebp+0Ah], eax
0x100040f8L cmp eax, 1
0x100040fbL jnz short loc_10004101
0x100040fdL add dword ptr [ebp+1Ah], 1
0x10004101L cmp eax, 2
0x10004104L jnz short loc_1000410A
0x10004106L add dword ptr [ebp+1Ah], 4
0x1000410aL mov [ebp+0Eh], edx
0x1000410dL shl eax, 5
0x10004110L add eax, esi
0x10004112L add eax, 1000h
0x10004117L lea eax, [eax+edx*4]
0x1000411aL add eax, [eax]
0x1000411cL add eax, 4
0x1000411fL call eax
0x10004121L retn

Well, it is enough for demonstrating the power of the IDA Python!

Remember that we have collected three files (130000.dll, 560000.dll and bf190a1f.sys) during our
previous approach. As I’ve also explained few pages ago, it is impossible to analyze all functions
and subroutines because it is very time consuming and it is not suitable for a paper (most time,
not even in real cases).

Apparently, based on the three extracted files, we can assume the following interpretation:

• 560000.dll → it seems to be the main file and the real spy, which might be responsible for
stealing data from the customer. Additionally, there is a naïve indicator about its role:

• 130000.dll → this DLL is a library containing several hooking functions. Therefore, the
attacker has concentrated the entire hooking process into a single DLL. Additionally, there
is also a good indicator about its role based on its description and exported function, as
shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 71

• bf190a1f.sys → it is a driver, which apparently has basic functions, as shown below:

Let’s start analyzing the 560000.dll file and show few evidences. Of course, our analysis is far away
to be complete because we are not using a debugger and, based on this fact, we are not able to
know about function arguments and other stacks values. Anyway, it will be interesting. ☺

Evidence set 1:

The sub_56CE60 routine, which is a very long routine, is responsible for drawing a fake window,
sent by the malware author to the victim, to deceive the customer to enter his/her bank data. The
sentences in Portuguese language “Para confirmar os dados, você precisa usar a sua senha” (to

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 72

confirm the data, you need to use your password) and “para confirmar os dados, você precisa
utilizar o seu cartão” (to confirm the data, you need to use your token card) prove our hypothesis.

Pay attention to the “clues” in the following codes:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 73

Remember that:

• ScreenToClient (from user32.dll) → it converts the screen coordinates of a specified point
on the screen to client-area coordinates.

• PtInRect (from user32.dll) → this function determines whether the specified point lies within
the specified rectangle.

• BeginPaint (from user32.dll) → this function prepares the specified window for painting.

• SetWindowLong (from user32.dll) → Changes an attribute of the specified window.

Evidence set 2:

The sub_564FB0 routine, which contains the ShellExecutionExA() function, executes several
operating system commands within this malware.

• ShellExecutionExA() function (from shell32.dll) → this function performs an operation on
a specific file, which its parameter (*pExecInfo pointer) points to a SHELLEXECUTEINFO
structure that contains and receives information about the application being executed. At
ShellExecuteInfo structure, the most interesting field is lpFile, indicating the object to be
executed. ☺

Therefore, it is called several times at different points as shown below (hint: CTRL+X hot key):

The routine containing ShellExecutionExA() function is shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 74

It is funny because the same subroutine (sub_5654E0), according to XrefsTo window (from
CRTL+X) above, performs several calls from different points to the sub_564FB0 routine, which
contains the ShellExecuteEx() function, for executing objects, such as:

• reg.exe ADD HKCU\Software\Sysinternals\VolumeID /v EulaAccepted /t REG_DW →
VolumeId.exe is a command from SysInternals suite that set the volume ID, in
hexadecimal, to a drive. In this case, the malware is accepting the EULA to prevent to warn
the user.

• shutdown.exe /r /f /t → this command forces the machine to close all applications and to
reboot after few minutes (specified by the /t parameter) . Indeed, when the certmgr.exe
program was executed and, consequently, the infected DLL file was called, the machine
was rebooted. There could be something related to this command. However, the question
is: “Is this command isolated or it is part of another command? ☺

Around these previous strings, I have found other few strange artifacts:

• eventvwr.exe

Returns the number of characters in the
formatted string using a pointer to a list
of arguments.

Write formatted output using a pointer to
a list of arguments.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 75

• reg.exe ADD HKCU\Software\Classes\mscfile\shell\open\command /ve /t REG_SZ /d
"\"%s\" c: %04x-%04x" /f',0

Of course, the malware is using a technique found by Matt Nelson (enigma0x3) used to bypass
the UAC, without needing dropping any file on disk, without needing to hijack any DLL file from the
system and, it is still better, without alerting the antivirus. The better part it the the command is
called in a high integrity context.

Usually, the registry “HKCU\Software\Classes\mscfile\shell\open\command” is set to call the
mmc.exe (Microsoft Management Console) program. Therefore, when the eventvwr.exe (a high
integrity process) is started, it looks for this Registry entry above (it contain the “mmc.exe” as
default value), which calls the eventvwr.msc and the Event Viewer is shown.

Easily, you can understand that, if we change this Registry entry
(HKCU\Software\Classes\mscfile\shell\open\command), so any command can be executed in a
high integrity context and, thus, bypassing the UAC. Wonderful! ☺

Later we will see that the target command is the sc.exe (used to manage services). ☺
Furthermore, the malware is smart enough and delete this entry for keeping under the radar.

Continuing the explanation of this evidence, at same sub_5654E0 subroutine, there are few
additional points that could be mentioned:

Finally, the sub_5654E0 routine is called from sub_570950 routine, which holds a huge sequence
of “if” conditions (cmp + jz/jmp instructions), which parts of them are shown below:

In this case, it is used to generate a random filename.

Getting the TEMP variable’s value

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 76

Evidence set 3:

The sub_570950 routine is called from the sub_570D10 routine, which was called by the
sub_570630 routine, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 77

Thus, we are analyzing both routines (sub_570630 and sub_570D10) in this subsection. First
analyzing the sub_570630 routine, we see that it starts the sub_570630 routine as a thread by
using the CreateThread() function, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 78

Clearly, the CreateThread() function is calling the sub_570D10 routine, which we will see that is
responsible for actions related to network communication.

As the reader could remember, the CreateThread() function has the following syntax:

HANDLE WINAPI CreateThread (
 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
 In SIZE_T dwStackSize,
 In LPTHREAD_START_ROUTINE lpStartAddress,
 _In_opt_ LPVOID lpParameter,
 In DWORD dwCreationFlags,
 _Out_opt_ LPDWORD lpThreadId
);

Thus, it is interesting to notice that the dwCreationgFlags is set up to zero, causing the thread to
run soon after its creation. Additionally, a thread could be created using the CREATE_SUSPENDED
flag (0x4), which the thread is created in a suspended state and only runs after the ResumeThread
function being executed (Process Hollowing technique uses this flag set up to 0x4).

The lpStartAddress parameter holds the address of the routine to be started. In our case,
0x570D10 routine.

At its beginning, the sub_0x570D10 routine calls the sub_563890 routine, which checks if the
dword_61EFD0 variable was already set up previously at sub_563890+2F. If it was not, so the
WSAStartup API, which is used as the primary function for setting up sockets, is called:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 79

From this point, a convoluted procedure to set up the socket starts. First, loading values into the
few variables:

Initially, we know that IP addresses are being loaded into the var_2C.

Between sub_56F3A0 and sub_56F3E0 routines above , the classical network functions to setup
the socket are called. Nonetheless, the question is: are we handling with a client or a server socket
case? As the reader could remember, the required sequence of APIs for setting up a client side
connection is: 1. WSAStartup() 2. socket() 3. connect() 4. send()/recv(). To set up a server

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 80

side, the required sequence is: 1. WSAStartup() 2. socket() 3. bind() 4. listen() 5. accept().
Therefore, according to the instructions below, we are handling with a client side socket:

IPv4 format

Socket Stream

port address: 8686, as we learned

previously in the memory analysis. ☺

Default Protocol (usually TCP)

IP address

IP Address
dotted-decimal format

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 81

Usually, socket functions only understand addresses and ports in numeric (binary) format, so a
series of helper functions are called such as htons() function (converts IP port number to network
byte order), inet_addr() function (converts a IPv4 dotted-decimal address to an appropriate
binary representation) and htonl() function (converts an IPv4 address in host byte format into a
IPv4 in network byte order).

About the inet_addr() function, we have the following syntax:

 unsigned long inet_addr(
 In const char *cp
);

The IDA Pro used the same parameter nomenclature (cp) as reference to the IPv4 address in string
(char) format.

It seams that the malware code is completing the local sockaddr_in structure, which its syntax is
shown below, setting values as sin_family (IPv4), sin_port(8686) and in_addr (probably IPv4
address server address):

struct sockaddr_in {
 short sin_family; // Internet protocol (AF_INET)
 u_short sin_port; // Address port (16 bits)
 struct in_addr sin_addr; // IPv4 address (32 bits)
 char sin_zero[8];
};

And the in_addr structure has the following syntax:

typedef struct in_addr {
 union {
 struct {
 u_char s_b1,s_b2,s_b3,s_b4;
 } S_un_b;
 struct {
 u_short s_w1,s_w2;
 } S_un_w;
 u_long S_addr;
 } S_un;
} IN_ADDR, *PIN_ADDR, FAR *LPIN_ADDR;

As the reader could already remember, the socket function, which is used to create a socket, has
the following syntax:

SOCKET WSAAPI socket(
 In int af,
 In int type,
 In int protocol
);

In a much summarized way, we have:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 82

• af → It specifies the family and, most time, we set it to 2 for IPv4 and 23 for IPv6.

• type → it specifies the protocol, where 1 = SOCKET_STREAM (TCP) and 2 =
SOCKET_DGRAM(UDP)

• protocol → it specifies the protocol to be used. If this parameter is set to 0, so the service
provider will choose the appropriate protocol (the default protocol).

However, before calling the socket function, the gethostbyname() function is called to resolve
eventual hostname to IP address, as shown below:

After the socket has been created, the connect() function, which establishes the connection to
the socket, is called. Its syntax is the following:

int connect(
 In SOCKET s,
 In const struct sockaddr *name,
 In int namelen
);

Where:

• s → a descriptor pointing the previously created socket.

• name → it specifies a pointer to the sockaddr structure (see below)

• namelen → the length of the sockaddr structure.

The sockaddr structure has the following syntax:

struct sockaddr {
 ushort sa_family;
 char sa_data[14];
};

Finally, we return to loc_570D92 routine (page 80) and, afterwards. the code at loc_571000
location is called, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 83

According to the code above, a new thread is being created and running the code at sub_570690
routine, which fundamentally represents a sleep routine, as shown below:

Afterwards, the flow returns to the loc_570DCC location and there is more code related to
network, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 84

At its beginning, the socket previously created is recovered and the sub_563840 routine, which is
shown below, is called :

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 85

The ioctlsocket() function (which comes from WinSock v1 specification) controls the I/O mode of
a socket (in any state) and it has the following syntax:

int ioctlsocket(
 In SOCKET s,
 In long cmd,
 Inout u_long *argp // A pointer to a parameter for cmd
);

The cmd parameter represents the command to be executed on the socket and, as readers might
remember, the possible values are:

• FIONBIO (8004667E h) → in a general way, it helps to define if the socket is operating
either in blocking mode (*argp equal to 1) or in nonblocking mode (*argp equal to 0)

• FIONREAD (4004667F h) → It offers information to determine the amount of data pending
to be read from a socket.

• SIOCATMARK (40047307 h) → It is used to check if all out of band (OOB) data has been
read.

In our case, the socket is operating in non-blocking mode and it means that functions using this
socket returns immediately (it is an asynchronous operation). Obviously, it is the opposite to
functions of sockets in blocking mode, which do not return until the target function (our functions)
completes its task.

After returning to the loc_570DCC location, the setsocket() function is called for, obviously,
configuring few socket options. It is noteworthy that the setsocket()function has the following
syntax:

int setsockopt(
 In SOCKET s, // A descriptor that identifies a socket

 In int level, // The level at which the option is defined
 In int optname, // The socket option for which the value is to be set

 In const char *optval, // A pointer to the buffer in which the value for the requested option is
specified

 In int optlen // The size, in bytes, of the buffer pointed to by the optval parameter.
);

According to the code, which is calling setsockopt(fd, 6, 1, 1, 4) , we have:

a. The fd descriptor is provided to the function from sub_563A30 routine.
b. The level parameter equal to 6 means IPPROTO_TCP.
c. optname parameter equal to 1 means TCP_NODELAY, which either disable or enables the

Nagle algorithm for coalescing the sending.
d. optval parameter comes from var_9C0 local variable and it is equal to 1. Thus, the Nagle

algorithm is being disabled.
e. optlen parameter is equal to 4 bytes.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 86

Returning to loc_570DCC location, the sub_563BA0 routine is called for setting the socket mode
by using the WSAIoctl() function (from WinSock v2 specification), as shown below:

I won’t explain the call to WSAIoctl function, which can be used to retrieve and set socket
parameters, because it is essentially equal to ioctlsocket function, but few members such as argp
parameter was broken into few additional options to have a better control.

Returning from sub_563BA0 routine, both username (from the thread that is running) and
computer name are collected ,as shown below:

 The next step is the code at loc_571045 location, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 87

There are two GetSystemMetrics() calls (sub_576460 and sub_576480) to get width
(SM_CXSCREEN) and height (SM_CYSCREEN) of the the display monitor. Additionally, the
sub_56F3A0 and sub_571F60 are called, which make use of a strange partial string that has been
used as IPv4 dotted-decimal address ("(kP3LQ%@(dvqlF0J)") in the prior code . This string (added
to other bigger string) is transformed by many instructions and tricks and, additionally, this
processing is protected by the EnterCriticalSection() function, which is used for mutual exclusion
synchronization.

The STARTUPINFO structure is seen several times along the loc_571045 location code and, as the
reader might remember, this structure is used to specify different aspects such as the window
station, desktop, standard handles, and appearance of the main window for a process at
creation time. As you could imagine (based on previous analyzed functions), it seems that the
malware intents to draw a fake window on the screen (over the bank website window) for stealing
the account number and password from the client.

typedef struct _STARTUPINFO {
 DWORD cb; // size of the structure
 LPTSTR lpReserved;

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 88

 LPTSTR lpDesktop; // name of the desktop
 LPTSTR lpTitle;
 DWORD dwX;
 DWORD dwY;
 DWORD dwXSize;
 DWORD dwYSize;
 DWORD dwXCountChars; // screen buffer width, in character columns.
 DWORD dwYCountChars; // screen buffer height, in character columns.
 DWORD dwFillAttribute;
 DWORD dwFlags;
 WORD wShowWindow;
 WORD cbReserved2;
 LPBYTE lpReserved2;
 HANDLE hStdInput;
 HANDLE hStdOutput;
 HANDLE hStdError;
} STARTUPINFO, *LPSTARTUPINFO;

The STARTUPINFO structure is filled by using the information from just called routines
(sub_576460, sub_576480 and sub_56F3A0) and its content will be used soon.

The malware also checks the Windows version by calling the sub_564770 routine and, from there,
the sub_5646F0 routine, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 89

The RtlGetVersion() function returns version information about the Windows into a
_OSVERSIONINFOW structure, as shown below:

typedef struct _OSVERSIONINFOW {
 ULONG dwOSVersionInfoSize;
 ULONG dwMajorVersion;
 ULONG dwMinorVersion;
 ULONG dwBuildNumber;
 ULONG dwPlatformId;
 WCHAR szCSDVersion[128];
} RTL_OSVERSIONINFOW, *PRTL_OSVERSIONINFOW;

Several Windows versions are tested and, if none is found, so the final answer is “Win Unknown”:

The sub_563EA0 routine is called from loc_571045 location, as shown below:

Hence, the sub_563C20 routine is called, which contains the call to send() function, as shown in
the following code:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 90

The send() function has the following syntax:

int send (
 In SOCKET s,
 In const char *buf,
 In int len,
 In int flags
);

Of course, the *buf pointer is the most important member because it tells up the data sent to the
malware author. Unfortunately, it is a bit tough to find this data information during a static
analysis (once more, it would be necessary to use a debugger)

Honestly, the send() function is called three times from sub_563EA0 routine, as we can learn
from IDA Pro by hitting X key, as shown below:

It is very funny because the malware is opening several sockets to the C2 server (a kind of channel
multiplexing). Probably, in any point of the malware, some data will be also received. Therefore, to
take care of these connections (inbound and outbound), checking for pending I/O, the select()
function is deployed.

The select() function returns the indication about which descriptor (socket) is ready to
communicate (sending or receiving) data. Thus, it prevents that the program blocks by trying
disabled sockets. ☺

The syntax of the select() function follows:

int select(
 In int nfds,
 Inout fd_set *readfds,
 Inout fd_set *writefds,
 Inout fd_set *exceptfds,
 In const struct timeval *timeout
);

It is noteworthy that the most important arguments are:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 91

• readfds → it represents a list of descriptors that are checked for immediate input data
availability (typically related to recv() and listen() functions)

• writefds → it represents a list of descriptors (fd_set structure) that are checked for
immediate output data availability (typically related to send() and connect() functions)

Furthermore, there are several macros that are used to manipulate the file descriptor list, as
shown below:

• FD_CLR → This macro removes the descriptor s from set.

• FD_ISSET →This macro tests and returns nonzero if s is a member of the set. Otherwise,
zero.

• FD_SET → This macro adds descriptor s to set.

• FD_ZERO → This macro initializes the set to the null set.

Following the calls to send() function, we see the select() being used for testing the readiness of
the file descriptors (sockets):

In this case, the writefds is set, which indicates that the select() function is testing the outbound
condition.

Evidence set 4:

Let’s change the point of our analysis and move to start of everything: start entry.

We should remember that certmgr.exe calls the infected certui.dll file, which indirectly calls our
DLL that is under analysis (560000.dll).

The exported entry is start (ordinal equal to 1) and, likely, the entry point of this malicious DLL.
Thus, the first lines follow below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 92

The GetConsoleWindows() function retrieves the windows handle used by the console associated
with the certmgr.exe (remember: browser → certmgr.exe → malicious DLL), as shown below:

The GetModuleHandleEx() function retrieves the windows handle for the module loaded by the
calling process. The possible flags to this case are either
GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS (0x00000004), which is more likely, or
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT (0x00000002).

Eventually, at loc_571CA0 location, the code sleeps a bit:

The Windows version is tested at sub_5646F0 routine (we have already analyzed it previously).

After calling the Sleep() function , the command line arguments to this DLL are retrieved by calling
the GetCommandLineW() function, as well the CommandLiineToArgv() function that parses
Unicode strings and returns an array of pointer to the arguments (remember about argv and argc
in standard C), as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 93

From the sub_563220 routine, we have the following code:

In sub_563010 routine, several tasks are accomplished such as:

• (GetProcessHeap) Retrieves the handle of the heap from the calling process.

• (HeapAlloc) Allocates a new block of memory from the heap.

• (GetComputerNameA) Retrieves the NetBios name from the current system.

• (GetVolumeInformationA) Retrieves information about the volume and file system of the
root directory.

To a quick overview about all these calls, it follows a summarized view:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 94

Once more, it would be crucial to use a debugger to understand arguments and values passed to
functions. However, as our main goal is to get an overview about the malware within the static
analysis, so it is enough. ☺

Returning to loc_571CF0 location, there is an additional and nice code to analyze.

Almost all paths take us to the sub_571D56 routine (and no more to Rome ☺). Take a look at
several blocks above and you will able to confirm my words. Nonetheless, we are going to
continue our analysis in other routines before starting the sub_57_1D56 routine overview.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 95

At first lines in the sub_5744A0 routine, there are several routines being called, as shown below:

At sub_573740 routine, a directory path (unknown during the static analysis because the value is
on the stack) is gotten by using SHGetFolderPathA() function. Soon after that, the fopen()
function is called to open a files located at this directory and read it using fread() function.

The sub_574350 routine is important, so let’s see its beginning first:

At sub_574350 → sub_573840 routine, several system information such as computer name,
volume information, etc…are acquired (we have already analyzed this routine previously).

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 96

At sub_574350 → sub_5738A0 routine, the malware finds the Windows directory (in this case,
C:\Windows) and concatenates it with the “system32\drivers” string. Therefore, it seems that the
malware is looking for the appropriate directory to drop the malicious driver (bf190a1f.sys file), as
shown below:

Returning to the sub_574350 routine, a connection to the Service Control Manager is established
by calling the OpenSCManagerA() function and a service (it not possible to determine this
moment, but we are going to reveal it at the next page) is opened by using OpenServiceA()
function. If this service already exists, so it is removed by calling the DeleteService() function, as
shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 97

Afterwards, the handle for the current process is acquired through the GetCurrentProcess()
function and the malware tests (using the IsWow64Process() function) whether this process is a
32-bit process running on an x64 system (thus, using WOW64). If it is, so the the file system
redirection is disabled for the calling thread by using the Wow64DisableWow64FsRedirection()
function, which allows a 32-bit application running under WOW64 to open a 64-bit executable at
C:\Windows\System32 directory (our case) instead of opening the 32-bit version at
C:\Windows\SysWOW64 directory.

The reason is that the driver file is created at C:\Windows\system32\drivers directory and is not
at C:\Windows\SysWOW64\drivers directory. Finally, after the current threat operation, the
redirection is re-enabled by using Wow64RevertWow64FsRedirection() function.

At sub_5744A0 routine, a connection to the Service Control Service using the
OpenServiceManagerA() function is established and a new service is created by using the
CreateServiceA() function. Additionally, it is interesting to understand that the service name is
derived from the serial number!

How does it work? If the call to CreateService() function is analyzed, its second argument is the
service name, which it is the esi register content. The esi register content was set at sub_5738A0
→ sub_573840 routine → sub_563010 routine (we mentioned this routine page 94, but
without showing any code).

To recall this fact, first the CreateService() function is showed below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 98

As the 563010 routine is long (remember, it acquires the computer name and the Volume
Information of the drive C), so we are going to show only two parts of it:

The Volume Serial Number is used as part of the service name after some manipulations:

hexadecimal format
output

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 99

The output format is according to service name that we have found previously
(1C51F309C6EBA200), which is composed by 16 hexadecimal digits. ☺

At loc_574517 location, there are initially three calls for different routines. At sub_573DD0
routine, new interesting facts happen. The malware enables the Test Signing Boot Configuration
(Test Signing Mode) option to allow using test code signing certificates (for example, certificates
generated using makecert.exe tool) for signing drivers. In other words, the malware author is able
to create his/her own certificate, sign the driver and use it on the system.

Nonetheless, this concern is only for x64 systems because, in x86 systems, the Windows enforces
the kernel mode driver signing only for kernel mode boot-start drivers and drivers involved to
protected media. Certainly, it is very convenient for malware authors. ☺

Obviously, the malware needs to set Test Signing Mode for Windows allowing it to load their own
malicious driver (bf190a1f.sys). However, remember that for enabling Test Signing Mode, the
Secure Boot (it prevents a rootkit to replace the boot loader by a malicious one) must be disabled
in the BIOS previously. Furthermore, the system must be rebooted for the Test Signing Mode to
take effect (and it is rebooted as we have learned previously ☺).

It is straight to confirm that bf190a1f.sys driver does not have any valid signature and, as you are
able see, maybe it has been created on 2017/March/29 :

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 100

At loc_574517 → sub_5740B0 routine, more attractive actions happen. A task is being created by
using the schtasks.exe /create /SC onlogon /TN task0236 /TR <directory/file> /F /RL highest
command, where /F option suppresses any warning even the task already exists and /RL option
specifies the run level for the task.

This task command is executed by using the sequence GetCommandLineA ()function, which
retrieves the command-line above that executes the schtasks command, and ShellExecuteA()
function executes the command itself.

Following the code, at loc_574517 → sub_5739C0 routine, the SHGetFolderPathA() function,
which gets a path of a folder through its CSIDL (Constant Special Item ID List) value , is called. As a
side note, the CSIDL provides a way to identify a folder often used by applications, but that
eventually does not have the same location on any given system. In our case, the CSIDL value is
0x1a, which means C:\Documents and Settings\username\Application Data or C:\Users\
username \AppData (information retrieved from https://msdn.microsoft.com/en-

us/library/windows/desktop/bb774096(v=vs.85).aspx).

The syntax of the SHGetFolderPath() function is:

HRESULT SHGetFolderPath (
 In HWND hwndOwner,
 In int nFolder,
 In HANDLE hToken, // An access token that can be used to represent a particular user.
 In DWORD dwFlags,
 Out LPTSTR pszPath
);

The overview of the associated code follows below:

https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 101

Afterwards, the file is opened for binary writing using fopen() function and it writes using the
fwrite() function.

The next trick used by the malware is to disable the AV notification of Windows through settings
on the Registry by using RegOpenKeyExA() and RegSetValueExA functions(). It changes the
SOFTWARE\\Microsoft\\Security Center\AntiVirusDisableNotify subkey. Note for malwares
authors: on Windows 10 this is a useless trick because the AntiVirusDisableNotify subkey, as well
FirewallDisableNotify and UpdatesDisableNotify subkeys, were disabled. ☺

The Notification Center (a hub for messages) is disabled through the same functions acting on
SOFTWARE\Policies\Microsoft\Windows\Explorer\ DisableNotificationCenter subkey.

At loc_5744CE location, the sub_573FD0 routine is called. This routine forces a system shutdown
(shutdown.exe –r –f –t 1) through the ShellExecuteExA() function. Remember that it was
necessary to the driver being loaded, among other things… ☺

Evidence set 5:

Returning to loc_571D56 location, which there are many references at loc_571CF0 location (page
95) was pointing, we see many interesting things that worth to be mentioned.

An event (a kernel object) is being created using CreateEventA() function. In this case, the event
is a manual-reset event. Events are a technique to notify that an operation has completed. As in
this case the event is a manual-reset event, so all threads waiting the event to be accomplished

C:\Documents and

Settings\username\Application Data

CSIDL_INTERNET: Internet Folder

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 102

become schedulable after the event has finished. Using simpler words, imagine an event as a “big
task” that all waiting threads can try to be scheduled by the processor when this “big task” has
finished. Thus, when the event starts as “not signaled”, as soon it finishes it becomes signaled and
all waiting threads know that the event has finished.

A critical section object, which is used by a code that requires exclusive (atomic) access to a shared
resource before this code to execute, is created calling InitializeCriticalSection() function. It is
suitable to remember that the thread can be preempted by another thread any time, but none
else thread can access the same resources.

At loc_571D56 → sub_576970 routine, a handle to shell.dll (which imports
CommandLineToArgW(), SHChangeNotify(), SHGetFolderPath() and ShellExecuteExA/ExW()
functions), is got by using GetModuleHandleA() and GetModuleFileNameA() functions.

Still at sub_576970 routine, it is very interesting to realize that the malware is working with
WinSxS folder (located at C:\Windows\Winsxs directory) concept, which is a kind of “native
cache” . When handling WinSxS folder, the malware can keep copies of any DLLs and files there (all
manifests included, obviously). This is the concept of assembly: a collection of DLLs, COM classes
and manifests (specified by the ACTCTX structure).

Therefore, the malware creates an activation context by using CreateActCtxA() function. The
Windows keeps a reference counter to each activation context created by CreateActCtxA()
function and activated by ActivateActCtx() function, so the context is only destroyed when the
counter reaches zero.

Usually, we have seen activation context for LoadLibrary() function (to load a specific DLL without
providing the path) and CoCreateInstance() function (to create a COM object by using the CLSID)
functions. Using few words, WinSxS is a rough way to provide reasonable deployment options for
unmanaged code as it would be possible whether it was a managed code.

Points to shell32.dll file

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 103

In sub_576A50 routine, a handle to ntdll.dll using GetModuleHandleW() function is acquired and
the address of RtlGetVersion() function, which is able to get the version information about the
currently running operating system, is gotten by calling GetProcAddress() function. The Windows
version evaluation is important for deciding to use either the SetProcessDPIAware() function
from user32.dll (used and recommended only on Windows Vista) or SetProcessDpiAwareness()
function from shcore.dll (recommended on Windows 8 versions and higher). Likely, the malware
will call graphical functions at some point (as we have seen previously, the malware shows a face
picture on the screen for stealing bank data from client)

In loc_571DB4 → sub_56EFC0 → sub_562D90 routine, the VirtualQuery() function, which
retrieves information about a region of consecutive pages at the virtual address space of the
calling process and fills the MEMORY_BASIC_INFORMATION structure, is called.

In loc_571DB4 → sub_56EFC0 → sub_578820 routine, the protection of the current thread (its ID
is retrieved using GetCurrentThreadId() function) is changed to PAGE_EXECUTE_READWRITE
(0x40) by using the VirtualProtect() function. In this case, there is a huge chance of the malware
is querying and changing the page protection for performing either code-injection or hooking
later. ☺

In loc_571DB4 → sub_56EFC0 → sub_578A70 routine , the thread is suspended by using
GetCurrentThread() + SuspendThread() functions. Right before seeing these calls, there is a
sequence of calls from sub_589720 routine, but there is not anything quite relevant there, except
some concern in controlling the access to shared data by using Semaphores and Critical Threads.

In loc_56F020 → sub_56EFC0 → sub_578A50 → sub_5789F0 → sub_5788C0, a curious sequence
occurs. First, the thread ID of the calling thread is retrieved by calling GetCurrentThreadId()
function.

Continuing within sub_5788C0 routine, we should follow to sub_578140 routine. There, the
malware gets the process handle to the current process (GetCurrenProcess() function), changes
back the memory protection to PAGE_EXECUTE_READ by using the VirtuallProtect() function
and flushes the instruction cache of the current process by using the FlushInstructionCache()
function., as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 104

Finally, the thread is resumed by calling the ResumeThread() function.

At loc_571DB4 → sub_5735A0 → sub_575980 routine, the username (GetUserNameA()

function), the computer name (GetComputerNameA () function) and volume information

(GetVolumeInformationA() function) are acquired.

We should remember that a COM class (a COM is a binary file containing functions used by other

programs) is capable to instantiating (create) objects (for example, a FileSystem object), which

have methods and properties, which allows us to manipulate and change its content (directories

and files).

In-process server, which is strongly bound to COM objects and responsible for holding the path of

a DLL, is registered by calling the ImprocServer32() function. As a programmer, we are able to

specify the thread model such both (single or multithread), free (multithread), apartment(single

thread) or neutral to be used.

The associated register (indicating where the component can be found) is

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\InprocServer32 registry sub-key.

Using In-process server (and Win SxS) could help to prevent problems such DLL Hell, when it was

hard to determine which DLL version to load. Obviously, as analyzing it within the malware world,

the purpose could be exactly the opposite that is forcing to load the bad DLL. ☺

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 105

At loc_571DB4 → sub_5735A0 → sub_575980 routine, the malware calls SHGetFolderPathA()

function again, but this time using a CLSID equal to 0x26 (C:\Program Files folder). This time, we

could realize that the malwares is tracking an existence of a legal banker program at scpbrad

directory from a Brazilian bank named Bradesco by using the PathFileExistsA() function, as shown

below:

An additional test is done by checking the existence of the C:\Program Files\Appbrad directory,

which is also used for an application from Bradesco bank, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 106

At same routine, we see other lines of code that are checking the existence of an application

named Brazil USB Token (from Banco do Brasil – another Brazilian bank), which is installed at

C:\Program Files\Brazil\Brazil USB token Tool.

To perform this check it is used the same SHGetFolderPathA() function, which uses a CLSID equal

to 0x26 that mean C:\Program Files folder), for finding the directory as well the same

PathFileExistsA() function to check the path to application exists, as shown below:

At loc_571DB4 → sub_5735A0 → sub_575980 → sub_5652F0 → sub_5650E0 routine, the

existence of another application named “Aplicativo Itau\itauaplicativo.exe” from another Brazilian

bank (Itau bank) at C:\Users\username\AppData\Local directory is also tested. We know the

directory because the CSIDL equal to 0x1C (again, you could refers to

https://msdn.microsoft.com/enus/library/windows/desktop/bb774096%28v=vs.85%29.aspx?f=25

5&MSPPError=-2147217396 page for checking it) is provide to the SHGetFolderPathA() function.

This code checking this application bank is showed below:

https://msdn.microsoft.com/enus/library/windows/desktop/bb774096%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396%20%20
https://msdn.microsoft.com/enus/library/windows/desktop/bb774096%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396%20%20

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 107

At loc_571DB4 → sub_5735A0 → sub_575980 → sub_562BA0 → sub_5627F0 → sub_562630

routine, the wininet.dll library is dynamically loaded by using the usual LoadLibrary () function,

so its functions used by the malware do not appear in the IAT (Import Address Table) during the

malware loading time. ☺ This DLL is always related to Internet access by using functions such as

InternetConnect(), InternetOpen(), InternetOpenUrl(), HttpOpenRequest(), and so on.

At loc_571DB4 → sub_5735A0 → sub_575980 → sub_562930 routine, the first clues about a

HTTP access to the Internet appear, probably indicating a C2 communication.

In general words, the wininet.dll is loaded using sub_562630 routine and few functions are called

using their respective hashes, as shown below:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 108

The hash of each function is used to help in looking up on the Export Table of wininet.dll. The

problem is that the hash function is unknown (yes, we could reverse it…). Anyway, the code

responsible for this lookup is the sub_562EC0 routine, which is called for each used function and,

before proceeding, it is appropriate to show and remember the PE header:

The respective structures are:

MAGIC_WORD (4 BYTES)

EXPORT ADDR (8 BYTES)

96 BYTES

IMAGE_FILE_HEADER

(20 BYTES)

IMAGE_OPTIONAL_HEADER
(224 BYTES)

IMPORT ADDR (8 BYTES)

IMPORT ADDR (8 BYTES)

IMAGE_NT_HEADER

IMAGE_DATA_DIRECTORY
128 BYTES

(16 ENTRIES)

 MZ

PE HEADER

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 109

It is suitable to realize that the MAGIC WORD (4 bytes) + IMAGE_FILE_HEADER (20 bytes) + 96

bytes = 120 bytes, which it is the offset of the IMAGE_DATA_DIRECTORY (and exported

addresses).

Additionally, inside the _IMAGE_EXPORT_DIRECTORY structure, there are important and known

offsets that are can be used for dynamically locating addresses and names of functions used by

malwares, mainly when they use hashes for obfuscating their use:

DWORD NumberOfFunctions; //offset 0x14
DWORD NumberOfNames; //offset 0x18
DWORD AddressOfFunctions; //offset 0x1c
DWORD AddressOfNames; //offset 0x20
DWORD AddressOfNameOrdinals; //offset 0x24

Leveraging the structures above, the following code at sub_562EC0 routine would be a bit easier

to understand:

kd> dt nt!_IMAGE_FILE_HEADER

 +0x000 Machine : Uint2B
 +0x002 NumberOfSections : Uint2B
 +0x004 TimeDateStamp : Uint4B
 +0x008 PointerToSymbolTable : Uint4B
 +0x00c NumberOfSymbols : Uint4B
 +0x010 SizeOfOptionalHeader : Uint2B
 +0x012 Characteristics : Uint2B

kd> dt _IMAGE_OPTIONAL_HEADER

 +0x000 Magic : Uint2B
 +0x002 MajorLinkerVersion : UChar
 +0x003 MinorLinkerVersion : UChar
 +0x004 SizeOfCode : Uint4B
 +0x008 SizeOfInitializedData : Uint4B
 +0x00c SizeOfUninitializedData : Uint4B
 +0x010 AddressOfEntryPoint : Uint4B
 +0x014 BaseOfCode : Uint4B
 +0x018 BaseOfData : Uint4B
 +0x01c ImageBase : Uint4B
 +0x020 SectionAlignment : Uint4B
 +0x024 FileAlignment : Uint4B
 +0x028 MajorOperatingSystemVersion : Uint2B
 +0x02a MinorOperatingSystemVersion : Uint2B
 +0x02c MajorImageVersion : Uint2B
 +0x02e MinorImageVersion : Uint2B
 +0x030 MajorSubsystemVersion : Uint2B
 +0x032 MinorSubsystemVersion : Uint2B
 +0x034 Win32VersionValue : Uint4B
 +0x038 SizeOfImage : Uint4B
 +0x03c SizeOfHeaders : Uint4B
 +0x040 CheckSum : Uint4B
 +0x044 Subsystem : Uint2B
 +0x046 DllCharacteristics : Uint2B
 +0x048 SizeOfStackReserve : Uint4B
 +0x04c SizeOfStackCommit : Uint4B
 +0x050 SizeOfHeapReserve : Uint4B
 +0x054 SizeOfHeapCommit : Uint4B
 +0x058 LoaderFlags : Uint4B
 +0x05c NumberOfRvaAndSizes : Uint4B
 +0x060 DataDirectory : [16] _IMAGE_DATA_DIRECTORY

From winnt.h:

typedef struct _IMAGE_EXPORT_DIRECTORY {

 DWORD Characteristics; //offset 0x0

 DWORD TimeDateStamp; //offset 0x4

 WORD MajorVersion; //offset 0x8

 WORD MinorVersion; //offset 0xa

 DWORD Name; //offset 0xc

 DWORD Base; //offset 0x10

 DWORD NumberOfFunctions; //offset 0x14

 DWORD NumberOfNames; //offset 0x18

 DWORD AddressOfFunctions; //offset 0x1c

 DWORD AddressOfNames; //offset 0x20

 DWORD AddressOfNameOrdinals; //offset 0x24

 }

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 110

Returning to sub_562930 routine, we see that, after the function masked by a hash having been

resolved, there is a call eax instruction for invoking it. Therefore, it is not possible to know

statically which function is called. Few lines ahead, the sub_562EC0 routine is called twice again

to resolve the function’s address and the same call eax instruction is called for invoking this

second function from wininet.dll file.

Going up to loc_571DB4 → sub_5735A0 → sub_575980, this same procedure for dynamically

resolving addresses of functions, shown at code above, is used many times for other wininet.dll’s

functions at sub_562BA0 → sub_5627F0 routine.

Checking the PE Header

_IMAGE_EXPORT_DIRECTORY structure

_IMAGE_EXPORT_DIRECTORY. AddressOfFunctions

_IMAGE_EXPORT_DIRECTORY. AddressOfNames

_IMAGE_EXPORT_DIRECTORY. AddressOfNameOrdinals

_IMAGE_EXPORT_DIRECTORY. NumberOfFunctions

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 111

At loc_571DB4 → sub_5735A0 → sub_574720 routine, the Secure Boot status (it helps to make

sure that the machine boots using only firmware that is trusted by the manufacturer and reliable

signed drivers) is tested using functions RegOpenKeyExA() and RegQueryValueExA () functions on

SYSTEM\CurrentControlSet\Control\SecureBoot\State\UEFISecureBootEnabled subkey. As we

have seen previously, having the Secure Boot feature disabled is necessary for using unsigned

malicious drivers.

Evidence set 6:

At DllEntryPoint() call, we have the following diagram:

At sub_5831D0 routine, there are several functions related to time such as

GetSystemTimeAsFileTime(), GetTickCount() and QueryPerformanceCounter(), which are

commonly used either for creating temporary file or as anti-debugger technique. Nonetheless, in

this case, it does not seem to be one of these cases, apparently.

The picture below shows us details:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 112

The DllEntryPoint() function has the following syntax:

BOOL WINAPI DllMain(
 In HINSTANCE hinstDLL,
 In DWORD fdwReason,
 In LPVOID lpvReserved
);

Where:

• hinstDLL → this is the handle to the DLL module.

• fdwReason → it indicates the reason of the DLL entry-point function is being called. There

are some options, but the most important values for us are shown below:

o (DLL_PROCESS_ATTACH) The DLL is being loaded into the virtual address space of

the current process as a result of the process starting up or as a result of a call

to LoadLibrary. It is very usual case.

o (DLL_THREAD_ATTACH) The current process is creating a new thread, so the

system makes calls to the entry-point function of all DLLs that are currently

attached to the process. When the DLL is loaded using LoadLibrary() function,

existing threads do not call the entry-point function of the newly loaded DLL.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 113

• lpvReserved → if fdwReason is DLL_PROCESS_ATTACH, so lpvReserved is NULL for

dynamic loads and non-NULL for static loads. However, if

fdwReason is DLL_PROCESS_DETACH, so the lpvReserved is equal to

NULL if FreeLibrary has been called or the DLL load failed, and non-NULL if the process is

terminating.

At sub_561270 routine, there are many function calls:

At sub_561270 → sub_5835B0 routine, there are many messages ((“Unknown pseudo relocation

protocol version”, “Unknown pseudo relocation bit size”, “Mingw-w64 runtime failure”, and so on)

associated to Cygwin framework, which probably come from pseudo-reloc.c source code.

Additionally, there are many calls to VirtualQuery() function (for gathering the protection

information from pages) and VirtualProtect() function (for change the page permission access).

At sub_561270 → sub_561040 routine, there are other calls such as initterm() function (for

initialing pointers) and a TLS Callback (they are used to call constructors and destructors for

objects).

At sub_561270 → sub_5831B0 → dword_58A4A0 [ebx*4] → sub_58A490 → sub_561450

routine, the libgcc_s_dw2-1.dll library is loaded by calling the LoadLibrary() function, and the

GetProcAddress() function is used for discovery the address of few functions such as

__register_frame_info() and __unregister_frame_info()¸which are called by GCC that it present

on Cygwin framework and often called from constructors (.ctors) and destructors (.dtors). The

same process repeats to other DLLs such as libgcj-16.dll.

Evidence set 7:

Here we start a new and interesting branch analysis of code through the StartAddress() function,

which has a very clear role in the malware: it is responsible for hooking important operating

system functions. To start, we see a general hierarchical view of calls below:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683152(v=vs.85).aspx

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 114

At sub_5720A0 routine, a handle to desktop that receives the user input is got by calling

OpenInputDesktop() function and this handle is assigned to the current thread by calling

SetThreadDesktop() function.

The CoInitialize() function (nowadays, usually CoInitializeEx() function is called), which initializes

the COM library (COM is a client/server model), is called and establishes a single-thread

apartment as concurrency model. Every time, before calling any COM function, the CoInitialize()

function must be first called to get access to COM functionality.

The SetWinEventHook() function , which is called the from client thread, probably is included in

a loop for receiving all target events. Thus, as this malware is hooking events, so it is interested in

receiving any user interface events that occur. Additionally, it is possible to use these events for

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 115

loading a DLL into the process that is responsible for starting the event itself. Thus, at end, event

hooking is a technique for loading (injecting) a DLL into a process. It is very clever!

The SetWinEventHook() function has the following syntax:

HWINEVENTHOOK WINAPI SetWinEventHook(
 In UINT eventMin,
 In UINT eventMax,
 In HMODULE hmodWinEventProc,
 In WINEVENTPROC lpfnWinEventProc,
 In DWORD idProcess,
 In DWORD idThread,
 In UINT dwflags
);

Where:

• eventMin and eventMax, specify the lowest and highest value in the range of events that

are handled by the hook function. In this case, as the value is 0x800C, so for every single

change of a object’s name an event is sent to user interface elements such as window

object, radio button, tree view, check box, cursor, list-view control, push button, radio

button and status bar control.

• hmodWinEventProc holds a handle to DLL that contains the hook function. However, if

the function is not located in a DLL, so the value is NULL.

• lpfnWinEventProc is a pointer to the event hook function, which is called in response to

events generated by an object and processes the event notification.

• dProcess specifies the ID of the process from which the hook function receives events.

When zero is specified then events from all processes on current desktop are received.

• idThread specified the ID of the thread from which the hook function receives events.

• dwflags specifies the location of the hook function. Additionally, it also specifies events to

be skipped. In our case, dwflags is equal to 0x2, so the EVENT_SYSTEM_ALERT event is

skipped.

At same function, the SetWinEventHook() function is called many times again for other events

that are hooked, as shown below:

• 8000h → all object´s creation sends an event message to user interface elements such as

window object, tree view control, toolbar control, tab control, header control and so on.

• 8002h → when a hidden object is shown, an event is sent to user interface elements such

as window object, cursor and caret.

• 20h → the system sends an event showing that the active desktop has been switched.

• 03h → the system sends an event indicating that the foreground window has changed.

Finally, the GetMessageA() function is used for retrieving a message from the calling thread's

message queue , which will be translated by TranslateMessage() function into characters.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 116

Afterwards, the DispatchMessageA() function will dispatch the message to be processed by a

window procedure.

Typically, these messages are sent using functions such as SendMessage(),

SendMessageCallback() and SendNotifyMessage(), and they are most time associated to the

window represented by the hwnd parameter. Thus, these messages are named window messages

and they do not cross desktops.

At end, all events are unhooked by calling UnhookWinEvent() function for each hooked event and

the CoUninitialize() function closes the COM library on the current thread, unloads all DLLs

loaded by the thread, frees any other resources . It keeps everything fine and the malware under

the radar. ☺

As the reader could realize, the malware is interested in capture any different interaction on the

Desktop and, based on these actions, runs routines to steal user information for sending it to a

remote server.

Evidence set 8:

This malware has an interesting behavior because it tries to draw a screen on desktop exactly

equal to the original bank’s website for stealing information from the bank customer.

At sub_575100 routine and its children, it uses the combination of BeginPaint(), BitBlt(),

StretchDIBits(), FindWindow() and CopyImage() functions for drawing fake windows that are

identical to the bank. However, there are invisible objects that are drawn on the fake windows

using the AlphaBlend() function for capturing the information. Of course, as the reader could

already know, before using drawing functions, it is necessary to retrieve a handle to the device

context (DC) for the client area of the specified window.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 117

At loc_575680 location (shown at the previous page), a hook is created for monitoring events

from the current window (bank website) by calling the SetWindowsHookEx() function. When the

message hook is installed (there is a hMod parameter that specifies the handle for the DLL that

holds the hook procedure), it is able to intercept windows messages before they reach the

window procedure. Therefore, mouse and keyboard events can be easily captured. Additionally,

the hooked information can be passed to the next hook in the chain by calling CallNextHookEx()

function, as happen in this case at sub_575100 → fn() function and sub_575100 → sub_5756F0

routine. Finally, UnhookWindowsHook() function is called to keep the malware in stealth mode.

☺

Evidence set 9:

Let’s try to make an overview about capturing typed user data. Most of Windows keyloggers

implement either polling or hooking for performing the key capture, being that hooking

(SetWindowsHook() function calls are typical) is used for notifying the malware each time that a

key is pressed, whereas that polling uses Windows functions (APIs) for regularly check the state of

the keys by using functions such as GetForegroundWindow() (it identifies the window that has

the focus) and GetAsyncKeyState() functions. The later function is used to identify whether a key

is pressed or depressed.

For example, the sub_5726F0 routine works as a keylogger. It calls the GetForegroundWindow()

function to get the window with the focus (in our case the browser, which showing the application

for seeding data from the bank website) and GetWindowThreadProcessId() function that

retrieves the thread ID used during the window creation. Additionally, the GetGUIThreadInfo()

function is used for getting information about the GUI thread. It suitable to realize that the

malware used the AttachThreadInput() function for attaching the input data from the current

thread to another one. Therefore, it makes that more than one thread receives and processes the

same keyboard and mouse events. The number of events inserted into the keyboard and/or

mouse stream is controlled by the the SendInput() function. Once more, this is very clever. ☺

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Reversing Overview 118

At same sub_5726F0 routine, the malware calls GetKeyboardState() and GetKeyState()
functions, which the former copies the status of the 256 virtual keys to a specified buffer and the
latter checks the individual key status without remembering about the last key pressed. The
MapVirtualKeyA() function is used to translate the virtual-key code into a character value.

Evidence set 10:

The sub_5657B0 routine seems to be very heavy, but it basically does three things:

1. Looks for a process on the process list.
2. Connects to the Internet for fetching some data.
3. Injects a code into this process.

The list of processes and other information is gotten by calling:

• CreateToolhelp32Snapshot() → this function gets a list of running processes, as well their
respective threads, module and heaps. However, the dwFlags works as a filter and, in this
case, it is equal to 0x2, so only a process list is acquired.

• Process32First() → After getting the process list, this function performs an enumeration
of available processes in the list.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 119

• OpenProcess() → Obtains a handle to the target process.

• GetThreadContext() → Retrieves the context of a target thread.

The Internet connection is performed by using the same wininet.dll library and by using the same
address resolution technique seen previously.

The code injection is performed by executing VirtualAllocEx() and WriteProcessMemory()
functions. Afterwards, the SetThreadContext() function is performed to set the context to the
new thread and, finally, it is run by calling ResumeThread() function.

Unfortunately, it is not feasible to acquire more information without using a debugger.

Miscellaneous

We have made a superficial analysis of the 560000.dll file at last section, but we will not follow the
same guideline again at this section.

The 130000.dll file is a library of hooked functions, so it would be very tiring to explain each
hooked function because the hooking technique is so similar. By the way, there are several ones as
shown below:

If we remember an information about page 53, the 560000.dll have hooked the LdrLoadDll()
internal function, so every function was easily hooked too. Honestly, there is nothing special to
explain here. ☺

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 120

At same way, the bf190a1f.sys device driver is frustrating because there is only the basic entry
point in the driver (DriverEntry()), few calls for string manipulation and nothing more. For
example, the kernel driver calls the RtlInitAnsiString() routine, which initializes a string of ANSI
characters. Strings are later converted to Unicode by calling RtlAnsiStringToUnicodeString()
function. By the way, what are these strings? They are key handles representing a Registry subkey
that is passed dynamically to the driver. Having this key handle, the driver opens the key by using
ZwOpenKey() native function and set it by using ZwSetValueKey() native function. Therefore, it
is the true reason that RtlAnsiStringToUnicodeString() function is necessary: to convert the
pointer to name of the value entry into Unicode because its type is PUNICODE_STRING.

All the rest of code is only boring manipulation.

As a supplemental stuff, we can perform a fast investigation using WinDbg without digging into so
many details.

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 121

A device driver (\driver\<driver name>) works as a DLL in the kernel land and it usually has one or
more associated device (\Device\<device name>), so there are device objects and few symbolic
links pointing to it.

Most drivers interact with devices and perform I/O operations, so these drivers provide entry
points for various I/O operations through an IOCTL interface and, additionally, also an array of
function points that are necessary for read and write requests, among other types of requests.

You can execute these commands on either an infected live system or a memory dump. Just in
case you want to know how to configure your system for generating a dump when it is necessary,
read “Manually Crashing Windows during Hangs” on
http://www.blackstormsecurity.com/docs/ManuallyCrashingWindows.pdf.

First, we list the certmgr.exe process, as shown below:

kd> !process 0 0 certmgr.exe

PROCESS 85573d40 SessionId: 1 Cid: 0c80 Peb: 7ffd8000 ParentCid: 0c44

 DirBase: 7f3425c0 ObjectTable: a604c828 HandleCount: 249.

 Image: certmgr.exe

Check the TEB (Thread Environment Block) of certmgr.exe process:

kd> !teb 85573d40

TEB at 85573d40

 ExceptionList: 00260003

 StackBase: 00000000

 StackLimit: 85573d48

 SubSystemTib: 85573d48

 FiberData: 85573d50

 ArbitraryUserPointer: 85573d50

 Self: 7f3425c0

 EnvironmentPointer: 00000000

 ClientId: 00000000 . 00000000

 RpcHandle: 00000000

 Tls Storage: 86edd210

 PEB Address: 86bf2d98

 LastErrorValue: 0

 LastStatusValue: 0

 Count Owned Locks: 65537

 HardErrorMode: 0

It is possible to gather more information about the target process by running the following
command:

kd> !process certmgr.exe

PROCESS 853d0690 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

 DirBase: 00185000 ObjectTable: 8a401a70 HandleCount: 573.

 Image: System

 VadRoot 85deab90 Vads 11 Clone 0 Private 4. Modified 127612. Locked 64.

 DeviceMap 8a408840

 Token 8a4011b8

 ElapsedTime 01:05:56.284

 UserTime 00:00:00.000

 KernelTime 00:00:03.510

 QuotaPoolUsage[PagedPool] 0

 QuotaPoolUsage[NonPagedPool] 0

http://www.blackstormsecurity.com/docs/ManuallyCrashingWindows.pdf

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 122

 Working Set Sizes (now,min,max) (165, 0, 0) (660KB, 0KB, 0KB)

 PeakWorkingSetSize 1445

 VirtualSize 2 Mb

 PeakVirtualSize 7 Mb

 PageFaultCount 14837

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 11

...

Check the token object for detecting any token manipulation (any privilege enabled, which it is
not the default value) by running the following command:

kd> !token 8a4011b8

_TOKEN 0xffffffff8a4011b8

TS Session ID: 0

User: S-1-5-18

User Groups:

 00 S-1-5-32-544

 Attributes - Default Enabled Owner

 01 S-1-1-0

 Attributes - Mandatory Default Enabled

 02 S-1-5-11

 Attributes - Mandatory Default Enabled

 03 S-1-16-16384

 Attributes - GroupIntegrity GroupIntegrityEnabled

Primary Group: S-1-5-18

Privs:

 02 0x000000002 SeCreateTokenPrivilege Attributes -

 03 0x000000003 SeAssignPrimaryTokenPrivilege Attributes -

 04 0x000000004 SeLockMemoryPrivilege Attributes - Enabled Default

 05 0x000000005 SeIncreaseQuotaPrivilege Attributes -

 07 0x000000007 SeTcbPrivilege Attributes - Enabled Default

 08 0x000000008 SeSecurityPrivilege Attributes -

 09 0x000000009 SeTakeOwnershipPrivilege Attributes -

 10 0x00000000a SeLoadDriverPrivilege Attributes -

 11 0x00000000b SeSystemProfilePrivilege Attributes - Enabled Default

 12 0x00000000c SeSystemtimePrivilege Attributes -

 13 0x00000000d SeProfileSingleProcessPrivilege Attributes - Enabled Default

 14 0x00000000e SeIncreaseBasePriorityPrivilege Attributes - Enabled Default

 15 0x00000000f SeCreatePagefilePrivilege Attributes - Enabled Default

 16 0x000000010 SeCreatePermanentPrivilege Attributes - Enabled Default

 17 0x000000011 SeBackupPrivilege Attributes -

 18 0x000000012 SeRestorePrivilege Attributes -

 19 0x000000013 SeShutdownPrivilege Attributes -

 20 0x000000014 SeDebugPrivilege Attributes - Enabled Default

 21 0x000000015 SeAuditPrivilege Attributes - Enabled Default

 22 0x000000016 SeSystemEnvironmentPrivilege Attributes -

 23 0x000000017 SeChangeNotifyPrivilege Attributes - Enabled Default

 25 0x000000019 SeUndockPrivilege Attributes -

 28 0x00000001c SeManageVolumePrivilege Attributes -

 29 0x00000001d SeImpersonatePrivilege Attributes - Enabled Default

 30 0x00000001e SeCreateGlobalPrivilege Attributes - Enabled Default

 31 0x00000001f SeTrustedCredManAccessPrivilege Attributes -

 32 0x000000020 SeRelabelPrivilege Attributes -

 33 0x000000021 SeIncreaseWorkingSetPrivilege Attributes - Enabled Default

 34 0x000000022 SeTimeZonePrivilege Attributes - Enabled Default

 35 0x000000023 SeCreateSymbolicLinkPrivilege Attributes - Enabled Default

Authentication ID: (0,3e7)

Impersonation Level: Anonymous

TokenType: Primary

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 123

Source: *SYSTEM* TokenFlags: 0x2000 (Token in use)

Token ID: 3ea ParentToken ID: 0

Modified ID: (0, 3eb)

RestrictedSidCount: 0 RestrictedSids: 0x0000000000000000

OriginatingLogonSession: 0

If we wanted to check for hidden processes, we could list all kernel pool entries that hold the Proc
tag. Afterwards, we should compare this output with the !process 0 0 list:

kd> !poolfind Proc

Scanning large pool allocation table for tag 0x636f7250 (Proc) (86711000 :

86911000)

8564b748 : tag Proc (Protected), size 0x2e8, Nonpaged pool

86cde978 : tag Proc (Protected), size 0x2e8, Nonpaged pool

Searching nonpaged pool (80000000 : ffc00000) for tag 0x636f7250 (Proc)

853d0678 : tag Proc (Protected), size 0x2d8, Nonpaged pool

85573d18 : tag Proc (Protected), size 0x2e8, Nonpaged pool

855cc8f0 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85631d18 : tag Proc (Protected), size 0x2e8, Nonpaged pool

856455c0 : tag Proc (Protected), size 0x2e8, Nonpaged pool

8565ed18 : tag Proc (Protected), size 0x2e8, Nonpaged pool

856e3d18 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85980248 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85999990 : tag Proc (Protected), size 0x2e8, Nonpaged pool

859a4d18 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85a50208 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85a655d0 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85abd008 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85abd700 : tag Proc (Protected), size 0x2e8, Nonpaged pool

85f41d28 : tag Proc (Protected), size 0x2d8, Nonpaged pool

85fc7d18 : tag Proc (Protected), size 0x2e8, Nonpaged pool

862c1d18 : tag Proc (Protected), size 0x2e8, Nonpaged pool

866600d0 : tag Proc (Protected), size 0x2e8, Nonpaged pool

...

From this point, we get few information about the target driver (bf190a1f.sys) by executing a
short sequence of commands:

kd> lm

start end module name

80ba3000 80bab000 kdcom (deferred)

82a00000 82a37000 hal (deferred)

82a37000 82e4a000 nt (pdb symbols)

c:\symbols\ntkrpamp.pdb\E4AF624F009A4D99A4F85690E0164DBC2\ntkrpamp.pdb

89004000 89089000 mcupdate_GenuineIntel (pdb symbols)

c:\symbols\mcupdate_GenuineIntel.pdb\26689A9400E04CF6AD63DC2E608DAA9C1\mcupdate_G

enuineIntel.pdb

89089000 8909a000 PSHED (deferred)

8909a000 890a2000 BOOTVID (deferred)

890a2000 890e4000 CLFS (deferred)

890e4000 8918f000 CI (deferred)

8918f000 89200000 Wdf01000 (deferred)

89200000 89213000 HIDCLASS (deferred)

89215000 89223000 WDFLDR (deferred)

89223000 8926b000 ACPI (deferred)

8926b000 89274000 WMILIB (deferred)

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 124

89274000 8927c000 msisadrv (deferred)

8927c000 892a6000 pci (deferred)

892a6000 892b1000 vdrvroot (deferred)

…

kd> .reload

Loading Kernel Symbols

...

..

..............................

Loading User Symbols

Loading unloaded module list

......

kd> lm

start end module name

80ba3000 80bab000 kdcom (deferred)

82a00000 82a37000 hal (deferred)

82a37000 82e4a000 nt (pdb symbols)

c:\symbols\ntkrpamp.pdb\E4AF624F009A4D99A4F85690E0164DBC2\ntkrpamp.pdb

89004000 89089000 mcupdate_GenuineIntel (deferred)

89089000 8909a000 PSHED (deferred)

...

Check for driver details by running the following commands:

kd> lm Dvm bf190a1f

Browse full module list

start end module name

89a89000 89a8f000 bf190a1f (deferred)

 Image path: \SystemRoot\system32\drivers\bf190a1f.sys

 Image name: bf190a1f.sys

 Browse all global symbols functions data

 Timestamp: Wed Mar 29 10:22:40 2017 (58DBB520)

 CheckSum: 000111B5

 ImageSize: 00006000

 Translations: 0000.04b0 0000.04e4 0409.04b0 0409.04e4

kd> !lmi 89a89000

Loaded Module Info: [89a89000]

 Module: bf190a1f

 Base Address: 89a89000

 Image Name: bf190a1f.sys

 Machine Type: 332 (I386)

 Time Stamp: 58dbb520 Wed Mar 29 05:22:40 2017

 Size: 6000

 CheckSum: 111b5

Characteristics: 102

Debug Data Dirs: Type Size VA Pointer

 CODEVIEW 59, 20e8, 8e8 RSDS - GUID: {9CBF8E9D-74A6-4A2F-

8105-3A3A3FD0963D}

 Age: 7, Pdb:

E:\Work2016\Projetos\Remoto\Client\driver\Win7Release\driver.pdb

 ?? e4, 2144, 944 [Data not mapped]

 Image Type: MEMORY - Image read successfully from loaded memory.

 Symbol Type: NONE - PDB not found from image header.

 Load Report: no symbols loaded

kd> !address 89a89000

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 125

Mapping user range ...

Mapping system range ...

Mapping page tables...

Mapping hyperspace...

Mapping HAL reserved range...

Mapping User Probe Area...

Mapping system shared page...

Mapping VAD regions...

Mapping module regions...

Mapping process, thread, and stack regions...

Mapping system cache regions...

Usage: Module

Base Address: 89a89000

End Address: 89a8f000

Region Size: 00006000

VA Type: DriverImages

Module name: bf190a1f.sys

Module path: [\SystemRoot\system32\drivers\bf190a1f.sys]

Verify if there is any object associated to the driver by executing the following command:

kd> !drvobj bf190a1f

Driver object (bf190a1f) is for:

Cannot read _DRIVER_OBJECT at bf190a1f

Unfortunately, we could not determine this information.

If we wanted to check for hidden modules, we could list all kernel pool entries that hold the Driv
tag. Afterwards, we should compare this output with the !lmt output:

kd> !poolfind Driv

Scanning large pool allocation table for tag 0x76697244 (Driv) (86711000 :

86911000)

85fce408 : tag Driv (Protected), size 0xf0, Nonpaged pool

85fd2158 : tag Driv, size 0x1b0, Nonpaged pool

85fd2470 : tag Driv (Protected), size 0xf0, Nonpaged pool

85fd0e50 : tag Driv, size 0x1b0, Nonpaged pool

85fa8698 : tag Driv (Protected), size 0xf0, Nonpaged pool

85fd5140 : tag Driv, size 0x10, Nonpaged pool

85fd5e50 : tag Driv, size 0x1b0, Nonpaged pool

8655e658 : tag Driv (Protected), size 0xf0, Nonpaged pool

85febb98 : tag Driv (Protected), size 0xf0, Nonpaged pool

85f911c8 : tag Driv (Protected), size 0xf0, Nonpaged pool

85f931e8 : tag Driv (Protected), size 0xf0, Nonpaged pool

85fbd248 : tag Driv, size 0x1b0, Nonpaged pool

85fbdb00 : tag Driv (Protected), size 0xf0, Nonpaged pool

85fc9800 : tag Driv (Protected), size 0xf0, Nonpaged pool

853e0540 : tag Driv (Protected), size 0xf0, Nonpaged pool

Searching nonpaged pool (80000000 : ffc00000) for tag 0x76697244 (Driv)

85346330 : tag Driv, size 0x10, Nonpaged pool

85346418 : tag Driv (Protected), size 0xf0, Nonpaged pool

85349998 : tag Driv (Protected), size 0xf0, Nonpaged pool

...

Check the memory of this driver by running the following command:

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 126

kd> dc 89a89000

89a89000 00905a4d 00000003 00000004 0000ffff MZ..............

89a89010 000000b8 00000000 00000040 00000000 @.......

89a89020 00000000 00000000 00000000 00000000

89a89030 00000000 00000000 00000000 000000d0

89a89040 0eba1f0e cd09b400 4c01b821 685421cd !..L.!Th

89a89050 70207369 72676f72 63206d61 6f6e6e61 is program canno

89a89060 65622074 6e757220 206e6920 20534f44 t be run in DOS

89a89070 65646f6d 0a0d0d2e 00000024 00000000 mode....$.......

List the entire PE header of the driver by executing the following command:

kd> !dh 89a89000

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

 14C machine (i386)

 5 number of sections

58DBB520 time date stamp Wed Mar 29 05:22:40 2017

 0 file pointer to symbol table

 0 number of symbols

 E0 size of optional header

 102 characteristics

 Executable

 32 bit word machine

OPTIONAL HEADER VALUES

 10B magic #

 14.00 linker version

 600 size of code

 A00 size of initialized data

 0 size of uninitialized data

 4000 address of entry point

 1000 base of code

 ----- new -----

8399f000 image base

 1000 section alignment

 200 file alignment

 1 subsystem (Native)

 10.00 operating system version

 10.00 image version

 6.01 subsystem version

 6000 size of image

 400 size of headers

 111B5 checksum

00100000 size of stack reserve

00001000 size of stack commit

00100000 size of heap reserve

00001000 size of heap commit

 540 DLL characteristics

 Dynamic base

 NX compatible

 No structured exception handler

 0 [0] address [size] of Export Directory

 404C [28] address [size] of Import Directory

 0 [0] address [size] of Resource Directory

 0 [0] address [size] of Exception Directory

 0 [0] address [size] of Security Directory

 5000 [50] address [size] of Base Relocation Directory

 2030 [38] address [size] of Debug Directory

 0 [0] address [size] of Description Directory

 0 [0] address [size] of Special Directory

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 127

 0 [0] address [size] of Thread Storage Directory

 2068 [40] address [size] of Load Configuration Directory

 0 [0] address [size] of Bound Import Directory

 2000 [20] address [size] of Import Address Table Directory

 0 [0] address [size] of Delay Import Directory

 0 [0] address [size] of COR20 Header Directory

 0 [0] address [size] of Reserved Directory

 ...

From the last output, we can examine the Import Table Address (IAT) by running the command
below:

kd> dps 89a89000+2000 L20/4

89a8b000 82c3ffa0 nt!RtlAnsiStringToUnicodeString

89a8b004 82c9c911 nt!RtlFreeUnicodeString

89a8b008 82a721e8 nt!ZwClose

89a8b00c 82a72c38 nt!ZwOpenKey

89a8b010 82a739f8 nt!ZwSetValueKey

89a8b014 82b15bde nt!KeBugCheckEx

89a8b018 82a6f530 nt!RtlInitAnsiString

89a8b01c 00000000

As we were not able to find the associated device to our driver (bf190a1f.sys), let’s try another
approach by listing all drivers in system and running the following command:

kd> !object \Driver

Object: 8a4511e0 Type: (85344358) Directory

 ObjectHeader: 8a4511c8 (new version)

 HandleCount: 0 PointerCount: 108

 Directory Object: 8a404e88 Name: Driver

 Hash Address Type Name

 ---- ------- ---- ----

 00 85febbc0 Driver rdpbus

 85e9ec60 Driver Beep

 ...

 85f4f7e8 Driver fdc

 16 85efa0f0 Driver RDPREFMP

 85df34f8 Driver 1C51F309C6EBA200

 855c5668 Driver CNG

kd> !object 85df34f8

Object: 85df34f8 Type: (853e1230) Driver

 ObjectHeader: 85df34e0 (new version)

 HandleCount: 0 PointerCount: 2

 Directory Object: 8a4511e0 Name: 1C51F309C6EBA200

kd> !address 85df34f8

Usage:

Base Address: 85200000

End Address: 89000000

Region Size: 03e00000

VA Type: NonPagedPool

kd> dt _DRIVER_OBJECT 85df34f8

nt!_DRIVER_OBJECT

 +0x000 Type : 0n4

 +0x002 Size : 0n168

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Miscellaneous 128

 +0x004 DeviceObject : (null)

 +0x008 Flags : 0x12

 +0x00c DriverStart : 0x89a89000 Void

 +0x010 DriverSize : 0x6000

 +0x014 DriverSection : 0x853437a8 Void

 +0x018 DriverExtension : 0x85df35a0 _DRIVER_EXTENSION

 +0x01c VirtualToOffset: 85dd7128 not properly sign extended

DriverName : _UNICODE_STRING "\Driver\1C51F309C6EBA200"

 +0x024 VirtualToOffset: 82da4254 not properly sign extended

VirtualToOffset: 82da4250 not properly sign extended

VirtualToOffset: 82c54330 not properly sign extended

HardwareDatabase : 0x82da4250 _UNICODE_STRING

"\REGISTRY\MACHINE\HARDWARE\DESCRIPTION\SYSTEM"

 +0x028 FastIoDispatch : (null)

 +0x02c DriverInit : 0x89a8d000 long +0

 +0x030 DriverStartIo : (null)

 +0x034 DriverUnload : 0x89a8a15c void +0

 +0x038 MajorFunction : [28] 0x82aec0e5 long

nt!IopInvalidDeviceRequest+0

The IRP dispatch table can be checked by running the following command:

kd> dx -r1 ((ntkrpamp!long (*(*)[28])(_DEVICE_OBJECT *,_IRP

*))0xffffffff85df3530)

((ntkrpamp!long (*(*)[28])(_DEVICE_OBJECT *,_IRP *))0xffffffff85df3530)

: 0xffffffff85df3530 [Type: long (*(*)[28])(_DEVICE_OBJECT *,_IRP *)]

 [0] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [1] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [2] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [3] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [4] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [5] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [6] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [7] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [8] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [9] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [10] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [11] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [12] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [13] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [14] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [15] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [16] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [17] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [18] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [19] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [20] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [21] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [22] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [23] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [24] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [25] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [26] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

 [27] : 0x82aec0e5 [Type: long (*)(_DEVICE_OBJECT *,_IRP *)]

If we request for more details about the driver object, we easily confirm that bf190a1f.sys driver
is related to the 1C51F309C6EBA200 driver, as shown below:

kd> !drvobj 85df34f8 3

Driver object (85df34f8) is for:

 \Driver\1C51F309C6EBA200

October 10, 2017 [Overview about a typical trojan banker]

http://www.blackstormsecurity.com| Conclusion 129

Driver Extension List: (id , addr)

Device Object list:

DriverEntry: 89a8d000 bf190a1f

DriverStartIo: 00000000

DriverUnload: 89a8a15c bf190a1f

AddDevice: 00000000

Dispatch routines:

[00] IRP_MJ_CREATE 82aec0e5 nt!IopInvalidDeviceRequest

[01] IRP_MJ_CREATE_NAMED_PIPE 82aec0e5 nt!IopInvalidDeviceRequest

[02] IRP_MJ_CLOSE 82aec0e5 nt!IopInvalidDeviceRequest

[03] IRP_MJ_READ 82aec0e5 nt!IopInvalidDeviceRequest

[04] IRP_MJ_WRITE 82aec0e5 nt!IopInvalidDeviceRequest

[05] IRP_MJ_QUERY_INFORMATION 82aec0e5 nt!IopInvalidDeviceRequest

[06] IRP_MJ_SET_INFORMATION 82aec0e5 nt!IopInvalidDeviceRequest

[07] IRP_MJ_QUERY_EA 82aec0e5 nt!IopInvalidDeviceRequest

[08] IRP_MJ_SET_EA 82aec0e5 nt!IopInvalidDeviceRequest

[09] IRP_MJ_FLUSH_BUFFERS 82aec0e5 nt!IopInvalidDeviceRequest

[0a] IRP_MJ_QUERY_VOLUME_INFORMATION 82aec0e5 nt!IopInvalidDeviceRequest

[0b] IRP_MJ_SET_VOLUME_INFORMATION 82aec0e5 nt!IopInvalidDeviceRequest

[0c] IRP_MJ_DIRECTORY_CONTROL 82aec0e5 nt!IopInvalidDeviceRequest

[0d] IRP_MJ_FILE_SYSTEM_CONTROL 82aec0e5 nt!IopInvalidDeviceRequest

[0e] IRP_MJ_DEVICE_CONTROL 82aec0e5 nt!IopInvalidDeviceRequest

[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL 82aec0e5 nt!IopInvalidDeviceRequest

[10] IRP_MJ_SHUTDOWN 82aec0e5 nt!IopInvalidDeviceRequest

[11] IRP_MJ_LOCK_CONTROL 82aec0e5 nt!IopInvalidDeviceRequest

[12] IRP_MJ_CLEANUP 82aec0e5 nt!IopInvalidDeviceRequest

[13] IRP_MJ_CREATE_MAILSLOT 82aec0e5 nt!IopInvalidDeviceRequest

[14] IRP_MJ_QUERY_SECURITY 82aec0e5 nt!IopInvalidDeviceRequest

[15] IRP_MJ_SET_SECURITY 82aec0e5 nt!IopInvalidDeviceRequest

[16] IRP_MJ_POWER 82aec0e5 nt!IopInvalidDeviceRequest

[17] IRP_MJ_SYSTEM_CONTROL 82aec0e5 nt!IopInvalidDeviceRequest

[18] IRP_MJ_DEVICE_CHANGE 82aec0e5 nt!IopInvalidDeviceRequest

[19] IRP_MJ_QUERY_QUOTA 82aec0e5 nt!IopInvalidDeviceRequest

[1a] IRP_MJ_SET_QUOTA 82aec0e5 nt!IopInvalidDeviceRequest

[1b] IRP_MJ_PNP 82aec0e5 nt!IopInvalidDeviceRequest

This driver is very simple because it does not have even a dedicated dispatch routine. At end,
nothing so interesting has come up from this short WinDbg analysis.

Conclusion

Honestly, I have written this document aiming to help other professionals in learning few concepts
and proving that malware analysis is not limited in getting evidences from basic static and dynamic
analysis, but it includes a deeper interest in understanding how the used infection techniques
work by taking advantage from memory and advance static analysis.

In this specific case, as we were handling a malicious DLL, so I preferred not use ring 3 debuggers
for preventing to make this document longer than it is. Finally, we made a simple overview about
a basic malware that performed usual tricks such as drawing an identical windows over the real
bank windows, capturing the data entered by the user and send them to the malware’s author.
Obviously, we have malware that are much more complex around.

No IRP Dispatch Table manipulation ☺

