
Overview
Brandon Starcheus & Daniel Hackney

Outline

● What is LLVM?

● History

● Language Capabilities

● Where is it Used?

What is LLVM?

What is LLVM?

● Compiler infrastructure used to develop a front end for any programming
language and a back end for any instruction set architecture.

● Framework to generate object code from any kind of source code.

● Originally an acronym for “Low Level Virtual Machine”, now an umbrella
project

● Intended to replace the GCC Compiler

What is LLVM?

● Designed to be compatible with a broad spectrum of front ends and computer
architectures.

What is LLVM?

LLVM Project

● LLVM (Compiler Infrastructure, our focus)

● Clang (C, C++ frontend)

● LLDB (Debugger)

● Other libraries (Parallelization, Multi-level IR, C, C++)

What is LLVM?

LLVM Project

● LLVM (Compiler Infrastructure, our focus)
○ API

○ llc Compiler: IR (.ll) or Bitcode (.bc) -> Assembly (.s)

○ lli Interpreter: Executes Bitcode

○ llvm-link Linker: Bitcode (.bc) -> Bitcode (.bc)

○ llvm-as Assembler: IR (.ll) -> Bitcode (.bc)

○ llvm-dis Disassembler: Bitcode (.bc) -> IR (.ll)

What is LLVM?

What is LLVM?

Optimizations

History

History

● Developed by Chris Lattner in 2000 for his grad school thesis
○ Initial release in 2003

● Lattner also created:
○ Clang
○ Swift

● Other work:
○ Apple - Developer Tools, Compiler Teams
○ Tesla - VP of Autopilot Software
○ Google - Tensorflow Infrastructure
○ SiFive - Risc-V SoC’s

History

Language Capabilities

Language Capabilities

● Infinite virtual registers

● Strongly typed

● Multiple Optimization Passes

● Link-time and Install-time Optimization

● Target Independent

Language Capabilities

● LLVM IR looks like assembly with types, without machine-specific details.
○ Must be in SSA (Static Single Assignment) form, which makes it easier to optimize.

Language Capabilities

● Multi-pass Optimizations

● Different types of passes depending on the Optimization Level (-O[X])
● Loosely coupled optimization levels
● Implementers can customize pass-order and add custom passes

○ Each LLVM pass is a C++ Class derived from the Pass class

LLVM IR LLVM IR (but faster)
Optimization Passes at -O[X]

-O[X] + 1

Language Capabilities

● Link-time and Install-time Optimization (and more)
○ Allows partial compilation: save progress to disk, continue work in the future
○ Allows optimizations across file boundaries (between .o files)
○ Allows hardware-specific optimizations (Install-Time Compilation)

Basic Optimizations

● X - 0 -> X
if (match(Op1, m_Zero()))
 return Op0;

● X - X -> 0
if (Op0 == Op1)
 return Constant::getNullValue(Op0->getType());

● (X*2) - X -> X
if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())))
 return Op1;

Language Capabilities

● Target Independent

Language Capabilities

● Target authors can create “Target Definition” (.td) files processed by the LLVM
tblgen tool

○ Eliminates ambiguity around particular computer architectures (x86, ARM, etc.)

Key Components of the API

Context

Module

IRBuilder

Function

BasicBlock

Value

API Usage

Value *IfExprAST::codegen() {
 Value *CondV = Cond->codegen();
 if (!CondV)

 return nullptr;

 // Convert condition to a bool by comparing non-equal to 0.0.
 CondV = Builder->CreateFCmpONE(

 CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");

 Function *TheFunction = Builder->GetInsertBlock()->getParent();

 // Create blocks for the then and else cases. Insert the 'then' block at the
 // end of the function.
 BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
 BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
 BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");

 Builder->CreateCondBr(CondV, ThenBB, ElseBB);
 …

}
Source: LLVM’s Kaleidoscope Example

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl05.html

Where is it Used?

Where is it Used?

● Rust - static/native compilation
● Swift
● Julia
● OpenCL: Apple, Nvidia, Intel
● Apple OS’s & Dev Tools
● Apple maintains a fork for their use
● Sony: CPU Compiler for PS4
● Nvidia - GPUs and internally
● ARM maintains a fork LLVM 9 as the "Arm Compiler"
● IBM - C/C++ and Fortran compilers
● And many more than these...

References

http://www.aosabook.org/en/llvm.html

https://mukulrathi.co.uk/create-your-own-programming-language/llvm-ir-cpp-api-tut
orial/

https://llvm.org/docs/tutorial/

http://www.aosabook.org/en/llvm.html
https://mukulrathi.co.uk/create-your-own-programming-language/llvm-ir-cpp-api-tutorial/
https://mukulrathi.co.uk/create-your-own-programming-language/llvm-ir-cpp-api-tutorial/
https://llvm.org/docs/tutorial/

