Overview

Hidden Markov Models
 and
 Gaussian Mixture Models

Steve Renals and Peter Bell

Automatic Speech Recognition-ASR Lectures 4\&5 28/31 January 2013

HMMs and GMMs

- Key models and algorithms for HMM acoustic models
- Gaussians
- GMMs: Gaussian mixture models
- HMMs: Hidden Markov models
- HMM algorithms
- Likelihood computation (forward algorithm)
- Most probable state sequence (Viterbi algorithm)
- Estimting the parameters (EM algorithm)

Fundamental Equation of Statistical Speech Recognition

If \mathbf{X} is the sequence of acoustic feature vectors (observations) and \mathbf{W} denotes a word sequence, the most likely word sequence \mathbf{W}^{*} is given by

$$
\mathbf{W}^{*}=\arg \max _{\mathbf{W}} P(\mathbf{W} \mid \mathbf{X})
$$

Applying Bayes' Theorem:

$$
\begin{aligned}
& P(\mathbf{W} \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \mathbf{W}) P(\mathbf{W})}{p(\mathbf{X})} \\
& \propto p(\mathbf{X} \mid \mathbf{W}) P(\mathbf{W}) \\
& \mathbf{W}^{*}=\arg \max _{\mathbf{W}} \underbrace{p(\mathbf{X} \mid \mathbf{W})}_{\begin{array}{c}
\text { Acoustic } \\
\text { model }
\end{array}} \\
& \underbrace{\text { model }}_{\text {Language }}
\end{aligned}
$$

Acoustic Modelling

Hierarchical modelling of speech

ASR Lectures $4 \& 5$

Acoustic Model: Continuous Density HMM

Probabilistic finite state automaton
Paramaters $\boldsymbol{\lambda}$:

- Transition probabilities: $a_{k j}=P\left(s_{j} \mid s_{k}\right)$
- Output probability density function: $b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)$

Acoustic Model: Continuous Density HMM

Probabilistic finite state automaton
Paramaters $\boldsymbol{\lambda}$:

- Transition probabilities: $a_{k j}=P\left(s_{j} \mid s_{k}\right)$
- Output probability density function: $b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)$

ASR Lectures 4\&5 Hidden Markov Models and Gaussian Mixture Models 6

HMM Assumptions

(1) Observation independence An acoustic observation \mathbf{x} is conditionally independent of all other observations given the state that generated it
(2) Markov process A state is conditionally independent of all other states given the previous state

HMM Assumptions

(1) Observation independence An acoustic observation \mathbf{x} is conditionally independent of all other observations given the state that generated it
(2) Markov process A state is conditionally independent of all other states given the previous state

HMM OUTPUT DISTRIBUTION

Output distribution

Single multivariate Gaussian with mean $\boldsymbol{\mu}^{j}$, covariance matrix $\boldsymbol{\Sigma}^{j}$:

$$
b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)=\mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}^{j}, \boldsymbol{\Sigma}^{j}\right)
$$

M-component Gaussian mixture model:

$$
b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)=\sum_{m=1}^{M} c_{j m} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}^{j m}, \boldsymbol{\Sigma}^{j m}\right)
$$

Background: cdf

Consider a real valued random variable X

- Cumulative distribution function (cdf) $F(x)$ for X :

$$
F(x)=P(X \leq x)
$$

- To obtain the probability of falling in an interval we can do the following:

$$
\begin{aligned}
P(a<X \leq b) & =P(X \leq b)-P(X \leq a) \\
& =F(b)-F(a)
\end{aligned}
$$

Background: pdf

The rate of change of the cdf gives us the probability density function (pdf), $p(x)$:

$$
\begin{aligned}
& p(x)=\frac{d}{d X} F(x)=F^{\prime}(x) \\
& F(x)=\int_{-\infty}^{x} p(x) \mathrm{d} x
\end{aligned}
$$

- $p(x)$ is not the probability that X has value x. But the pdf is proportional to the probability that X lies in a small interval centred on x.
- Notation: p for pdf, P for probability

The Gaussian distribution (univariate)

- The Gaussian (or Normal) distribution is the most common (and easily analysed) continuous distribution
- It is also a reasonable model in many situations (the famous "bell curve")
- If a (scalar) variable has a Gaussian distribution, then it has a probability density function with this form:

$$
p\left(x \mid \mu, \sigma^{2}\right)=N\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- The Gaussian is described by two parameters:
- the mean μ (location)
- the variance σ^{2} (dispersion)

Plot of Gaussian distribution

Properties of the Gaussian distribution

- Gaussians have the same shape, with the location controlled by the mean, and the spread controlled by the variance
- One-dimensional Gaussian with zero mean and unit variance $\left(\mu=0, \sigma^{2}=1\right)$:

$N\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right)$

Parameter estimation

- Estimate mean and variance parameters of a Gaussian from data $x^{1}, x^{2}, \ldots, x^{n}$
- Use sample mean and sample variance estimates:

$$
\begin{aligned}
\mu & =\frac{1}{n} \sum_{i=1}^{n} x^{i} \quad \text { (sample mean) } \\
\sigma^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x^{i}-\mu\right)^{2} \quad \text { (sample variance) }
\end{aligned}
$$

Exercise

Consider the \log likelihood of a set of N data points $\left\{x^{1}, \ldots, x^{N}\right\}$ being generated by a Gaussian with mean μ and variance σ^{2} :

$$
\begin{gathered}
L=\ln p\left(\left\{x^{1}, \ldots, x^{n}\right\} \mid \mu, \sigma^{2}\right)=-\frac{1}{2} \sum_{n=1}^{N}\left(\frac{\left(x_{n}-\mu\right)^{2}}{\sigma^{2}}-\ln \sigma^{2}-\ln (2 \pi)\right) \\
=-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}-\frac{N}{2} \ln \sigma^{2}-\frac{N}{2} \ln (2 \pi)
\end{gathered}
$$

By maximising the the log likelihood function with respect to μ show that the maximum likelihood estimate for the mean is indeed the sample mean:

$$
\mu_{M L}=\frac{1}{N} \sum_{n=1}^{N} x_{n} .
$$

The multidimensional Gaussian distribution

- The d-dimensional vector \mathbf{x} is multivariate Gaussian if it has a probability density function of the following form:

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

The pdf is parameterized by the mean vector $\boldsymbol{\mu}$ and the covariance matrix $\boldsymbol{\Sigma}$.

- The 1 -dimensional Gaussian is a special case of this pdf
- The argument to the exponential $0.5(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$ is referred to as a quadratic form.

Covariance matrix

- The mean vector $\boldsymbol{\mu}$ is the expectation of \mathbf{x} :

$$
\boldsymbol{\mu}=E[\mathbf{x}]
$$

- The covariance matrix $\boldsymbol{\Sigma}$ is the expectation of the deviation of x from the mean:

$$
\boldsymbol{\Sigma}=E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right]
$$

- $\boldsymbol{\Sigma}$ is a $d \times d$ symmetric matrix:

$$
\Sigma_{i j}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]=E\left[\left(x_{j}-\mu_{j}\right)\left(x_{i}-\mu_{i}\right)\right]=\Sigma_{j i}
$$

- The sign of the covariance helps to determine the relationship between two components:
- If x_{j} is large when x_{i} is large, then $\left(x_{j}-\mu_{j}\right)\left(x_{i}-\mu_{i}\right)$ will tend to be positive;
- If x_{j} is small when x_{i} is large, then $\left(x_{j}-\mu_{j}\right)\left(x_{i}-\mu_{i}\right)$ will tend to be negative.

Diagonal Covariance Gaussian

$$
\boldsymbol{\mu}=\binom{0}{0} \quad \boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) \quad \rho_{12}=0
$$

Full covariance Gaussian

Parameter estimation

- It is possible to show that the mean vector $\hat{\boldsymbol{\mu}}$ and covariance matrix $\boldsymbol{\Sigma}$ that maximize the likelihood of the training data are given by:

$$
\begin{aligned}
\hat{\boldsymbol{\mu}} & =\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{n} \\
\hat{\boldsymbol{\Sigma}} & =\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}^{n}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}^{n}-\hat{\boldsymbol{\mu}}\right)^{T}
\end{aligned}
$$

- The mean of the distribution is estimated by the sample mean and the covariance by the sample covariance

Mixture model

- A more flexible form of density estimation is made up of a linear combination of component densities:

$$
p(\mathbf{x})=\sum_{j=1}^{M} p(\mathbf{x} \mid j) P(j)
$$

- This is called a mixture model or a mixture density
- $p(\mathbf{x} \mid j)$: component densities
- $P(j)$: mixing parameters
- Generative model:
(1) Choose a mixture component based on $P(j)$
(2) Generate a data point \mathbf{x} from the chosen component using $p(\mathbf{x} \mid j)$

Parameter estimation

- If we knew which mixture component was responsible for a data point:
- we would be able to assign each point unambiguously to a mixture component
- and we could estimate the mean for each component Gaussian as the sample mean (just like k-means clustering)
- and we could estimate the covariance as the sample covariance
- But we don't know which mixture component a data point comes from...
- Maybe we could use the component occupation probabilities $P(j \mid \mathbf{x})$?

Component occupation probability

- We can apply Bayes' theorem:

$$
P(j \mid \mathbf{x})=\frac{p(\mathbf{x} \mid j) P(j)}{p(\mathbf{x})}=\frac{p(\mathbf{x} \mid j) P(j)}{\sum_{j=1}^{M} p(\mathbf{x} \mid j) P(j)}
$$

- The posterior probabilities $P(j \mid \mathbf{x})$ give the probability that component j was responsible for generating data point \mathbf{x}
- The $P(j \mid \mathbf{x})$ s are called the component occupation probabilities (or sometimes called the responsibilities)
- Since they are posterior probabilities:

$$
\sum_{j=1}^{M} P(j \mid \mathbf{x})=1
$$

Gaussian mixture model

- The most important mixture model is the Gaussian Mixture Model (GMM), where the component densities are Gaussians
- Consider a GMM, where each component Gaussian $N_{j}\left(\mathbf{x} ; \boldsymbol{\mu}_{j}, \sigma_{j}^{2}\right)$ has mean $\boldsymbol{\mu}_{j}$ and a spherical covariance $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$

$$
p(\mathbf{x})=\sum_{j=1}^{P} P(j) p(\mathbf{x} \mid j)=\sum_{j=1}^{P} P(j) N_{j}\left(\mathbf{x} ; \boldsymbol{\mu}_{j}, \sigma_{j}^{2}\right)
$$

GMM Parameter estimation when we know which component generated the data

- Define the indicator variable $z_{j n}=1$ if component j generated component \mathbf{x}^{n} (and 0 otherwise)
- If $z_{j n}$ wasn't hidden then we could count the number of observed data points generated by j :

$$
N_{j}=\sum_{n=1}^{N} z_{j n}
$$

- And estimate the mean, variance and mixing parameters as:

$$
\begin{aligned}
\hat{\mu}_{j} & =\frac{\sum_{n} z_{j n} x^{n}}{N_{j}} \\
\hat{\sigma}_{j}^{2} & =\frac{\sum_{n} z_{j n}\left\|\mathbf{x}^{n}-\mu_{k}\right\|^{2}}{N_{j}} \\
\hat{P}(j) & =\frac{1}{N} \sum_{n} z_{j n}=\frac{N_{j}}{N}
\end{aligned}
$$

EM algorithm

- Problem! Recall that:

$$
P(j \mid \mathbf{x})=\frac{p(\mathbf{x} \mid j) P(j)}{p(\mathbf{x})}
$$

We need to know $p(\mathbf{x} \mid j)$ and $P(j)$ to estimate the parameters of $p(\mathbf{x} \mid j)$ and to estimate $P(j)$.

- Solution: an iterative algorithm where each iteration has two parts:
- Compute the component occupation probabilities $P(j \mid \mathbf{x})$ using the current estimates of the GMM parameters (means, variances, mixing parameters) (E-step)
- Computer the GMM parameters using the current estimates of the component occupation probabilities (M -step)
- Starting from some initialization (e.g. using k-means for the means) these steps are alternated until convergence
- This is called the EM Algorithm and can be shown to maximize the likelihood

Soft assignment

- Estimate "soft counts" based on the component occupation probabilities $P\left(j \mid \mathbf{x}^{n}\right)$:

$$
N_{j}^{*}=\sum_{n=1}^{N} P\left(j \mid \mathbf{x}^{n}\right)
$$

- We can imagine assigning data points to component j weighted by the component occupation probability $P\left(j \mid \mathbf{x}^{n}\right)$
- So we could imagine estimating the mean, variance and prior probabilities as:

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}_{j} & =\frac{\sum_{n} P\left(j \mid \mathbf{x}^{n}\right) \mathbf{x}^{n}}{\sum_{n} P\left(j \mid \mathbf{x}^{n}\right)}=\frac{\sum_{n} P\left(j \mid \mathbf{x}^{n}\right) \mathbf{x}^{n}}{N_{j}^{*}} \\
\hat{\sigma}_{j}^{2} & =\frac{\sum_{n} P\left(j \mid \mathbf{x}^{n}\right)\left\|\mathbf{x}^{n}-\boldsymbol{\mu}_{k}\right\|^{2}}{\sum_{n} P\left(j \mid \mathbf{x}^{n}\right)}=\frac{\sum_{n} P\left(j \mid \mathbf{x}^{n}\right)\left\|\mathbf{x}^{n}-\boldsymbol{\mu}_{k}\right\|^{2}}{N_{j}^{*}} \\
\hat{P}(j) & =\frac{1}{N} \sum_{n} P\left(j \mid \mathbf{x}^{n}\right)=\frac{N_{j}^{*}}{N} \\
& \text { ASR Lectures 4\&5 } \quad \text { Hidden Markov Models and Gaussian Mixture Models }
\end{aligned}
$$

Maximum likelihood parameter estimation

- The likelihood of a data set $\mathbf{X}=\left\{\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N}\right\}$ is given by:

$$
\mathcal{L}=\prod_{n=1}^{N} p\left(\mathbf{x}^{n}\right)=\prod_{n=1}^{N} \sum_{j=1}^{M} p\left(\mathbf{x}^{n} \mid j\right) P(j)
$$

- We can regard the negative \log likelihood as an error function:

$$
\begin{aligned}
E & =-\ln \mathcal{L}=-\sum_{n=1}^{N} \ln p\left(\mathbf{x}^{n}\right) \\
& =-\sum_{n=1}^{N} \ln \left(\sum_{j=1}^{M} p\left(\mathbf{x}^{n} \mid j\right) P(j)\right)
\end{aligned}
$$

- Considering the derivatives of E with respect to the parameters, gives expressions like the previous slide

Example 1 fit using a GMM

Peakily distributed data (Example 2)

ASR Lectures 4\&5
\because
Example 2 fit by a Gaussian

$$
\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{T} \quad \boldsymbol{\Sigma}_{1}=0.1 \mathbf{I} \quad \boldsymbol{\Sigma}_{2}=2 \mathbf{l}
$$

$$
\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\left[\begin{array}{llll}
0 & 0
\end{array}\right]^{T} \quad \boldsymbol{\Sigma}_{1}=0.1 \mathbf{I} \quad \boldsymbol{\Sigma}_{2}=2 \mathbf{I}
$$

ASR Lectures $4 \& 5$
45
Example 2 fit by a GMM

Example 2: component Gaussians

Back to HMMs..

Output distribution:

- Single multivariate Gaussian with mean $\boldsymbol{\mu}^{j}$, covariance matrix Σ^{j} :

$$
b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)=\mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}^{j}, \mathbf{\Sigma}^{j}\right)
$$

- M-component Gaussian mixture model:

$$
b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)=\sum_{m=1}^{M} c_{j m} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}^{j m}, \boldsymbol{\Sigma}^{j m}\right)
$$

1. Likelihood: The Forward algorithm

- Goal: determine $p(\mathbf{X} \mid \boldsymbol{\lambda})$
- Sum over all possible state sequences $s_{1} s_{2} \ldots s_{T}$ that could result in the observation sequence X
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)

1. Likelihood: The Forward algorithm

- Goal: determine $p(\mathbf{X} \mid \boldsymbol{\lambda})$
- Sum over all possible state sequences $s_{1} s_{2} \ldots s_{T}$ that could result in the observation sequence X
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Forward probability, $\alpha_{t}\left(s_{j}\right)$: the probability of observing the observation sequence $\mathbf{x}_{1} \ldots \mathbf{x}_{t}$ and being in state s_{j} at time t

$$
\alpha_{t}\left(s_{j}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, S(t)=s_{j} \mid \boldsymbol{\lambda}\right)
$$

Recursive algorithms on HMMs

Visualize the problem as a state-time trellis

1. Likelihood: The Forward recursion

- Initialization

$$
\begin{aligned}
& \alpha_{0}\left(s_{l}\right)=1 \\
& \alpha_{0}\left(s_{j}\right)=0 \quad \text { if } s_{j} \neq s_{l}
\end{aligned}
$$

- Recursion

$$
\alpha_{t}\left(s_{j}\right)=\sum_{i=1}^{N} \alpha_{t-1}\left(s_{i}\right) a_{i j} b_{j}\left(\mathbf{x}_{t}\right)
$$

- Termination

$$
p(\mathbf{X} \mid \boldsymbol{\lambda})=\alpha_{T}\left(s_{E}\right)=\sum_{i=1}^{N} \alpha_{T}\left(s_{i}\right) a_{i E}
$$

1. Likelihood: Forward Recursion

$$
\alpha_{t}\left(s_{j}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, S(t)=s_{j} \mid \boldsymbol{\lambda}\right)
$$

$\alpha_{t-1}\left(s_{k}\right)$

Viterbi Recursion

Likelihood of the most probable path

Viterbi approximation

- Instead of summing over all possible state sequences, just consider the most likely
- Achieve this by changing the summation to a maximisation in the recursion:

$$
V_{t}\left(s_{j}\right)=\max _{i} V_{t-1}\left(s_{i}\right) a_{i j} b_{j}\left(\mathbf{x}_{t}\right)
$$

- Changing the recursion in this way gives the likelihood of the most probable path
- We need to keep track of the states that make up this path by keeping a sequence of backpointers to enable a Viterbi backtrace: the backpointer for each state at each time indicates the previous state on the most probable path

ASR Lectures 4\&5
Hidden Markov Models and Gaussian Mixture Models

Viterbi Recursion

Backpointers to the previous state on the most probable path

2. Decoding: The Viterbi algorithm

- Initialization

$$
\begin{aligned}
V_{0}\left(s_{l}\right) & =1 \\
V_{0}\left(s_{j}\right) & =0 \quad \text { if } s_{j} \neq s_{l} \\
b t_{0}\left(s_{j}\right) & =0
\end{aligned}
$$

- Recursion

$$
\begin{aligned}
V_{t}\left(s_{j}\right) & =\max _{i=1}^{N} V_{t-1}\left(s_{i}\right) a_{i j} b_{j}\left(\mathbf{x}_{t}\right) \\
b t_{t}\left(s_{j}\right) & =\arg \max _{i=1}^{N} V_{t-1}\left(s_{i}\right) a_{i j} b_{j}\left(\mathbf{x}_{t}\right)
\end{aligned}
$$

- Termination

$$
\begin{array}{r}
P^{*}=V_{T}\left(s_{E}\right)=\max _{i=1}^{N} V_{T}\left(s_{i}\right) a_{i E} \\
s_{T}^{*}=b t_{T}\left(q_{E}\right)=\arg \max _{i=1}^{N} V_{T}\left(s_{i}\right) a_{i E}
\end{array}
$$

3. Training: Forward-Backward algorithm

- Goal: Efficiently estimate the parameters of an HMM $\boldsymbol{\lambda}$ from an observation sequence
- Assume single Gaussian output probability distribution

$$
b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)=\mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}^{j}, \boldsymbol{\Sigma}^{j}\right)
$$

- Parameters $\boldsymbol{\lambda}$:
- Transition probabilities $a_{i j}$:

$$
\sum_{j} a_{i j}=1
$$

- Gaussian parameters for state s_{j} : mean vector $\boldsymbol{\mu}^{j}$; covariance matrix $\boldsymbol{\Sigma}^{j}$

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

ASR Lectures 4\&5
Hidden Markov Models and Gaussian Mixture Models 61

Viterbi Training

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of $a_{i j}$, if $C\left(s_{i} \rightarrow s_{j}\right)$ is the count of transitions from s_{i} to s_{j}

$$
\hat{a}_{i j}=\frac{C\left(s_{i} \rightarrow s_{j}\right)}{\sum_{k} C\left(s_{i} \rightarrow s_{k}\right)}
$$

- Likewise if Z_{j} is the set of observed acoustic feature vectors assigned to state j, we can use the standard maximum likelihood estimates for the mean and the covariance:

$$
\begin{aligned}
& \hat{\boldsymbol{\mu}}^{j}=\frac{\sum_{x \in Z_{j}} x}{\left|Z_{j}\right|} \\
& \hat{\boldsymbol{\Sigma}}^{j}=\frac{\sum_{x \in Z_{j}}\left(x-\hat{\boldsymbol{\mu}}^{j}\right)\left(x-\hat{\boldsymbol{\mu}}^{j}\right)^{T}}{\left|Z_{j}\right|} \\
& \text { ASR Lectures 4\&5 } \quad \text { Hidden Markov Models and }
\end{aligned}
$$

EM Algorithm

- Viterbi training is an approximation-we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_{t}\left(s_{j}\right)$ of occupying state s_{j} at time t given the sequence of observations.
Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm
- Each iteration has two steps:

E-step estimate the state occupation probabilities (Expectation)
M-step re-estimate the HMM parameters based on the estimated state occupation probabilities (Maximisation)

Backward Recursion

$$
\beta_{t}\left(s_{j}\right)=p\left(\mathbf{x}_{t+1}, \mathbf{x}_{t+2}, \mathbf{x}_{T} \mid S(t)=s_{j}, \boldsymbol{\lambda}\right)
$$

Backward probabilities

- To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities-the Backward probabilities

$$
\beta_{t}\left(s_{j}\right)=p\left(\mathbf{x}_{t+1}, \mathbf{x}_{t+2}, \mathbf{x}_{T} \mid S(t)=s_{j}, \boldsymbol{\lambda}\right)
$$

The probability of future observations given a the HMM is in state s_{j} at time t

- These can be recursively computed (going backwards in time) - Initialisation

$$
\beta_{T}\left(s_{i}\right)=a_{i E}
$$

- Recursion

$$
\beta_{t}\left(s_{i}\right)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\mathbf{x}_{t+1}\right) \beta_{t+1}\left(s_{j}\right)
$$

- Termination

$$
p(\mathbf{X} \mid \boldsymbol{\lambda})=\beta_{0}\left(s_{l}\right)=\sum_{j=1}^{N} a_{l j} b_{j}\left(\mathbf{x}_{1}\right) \beta_{1}\left(s_{j}\right)=\alpha_{T}\left(s_{E}\right)
$$

State Occupation Probability

- The state occupation probability $\gamma_{t}\left(s_{j}\right)$ is the probability of occupying state s_{j} at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$
\gamma_{t}\left(s_{j}\right)=P\left(S(t)=s_{j} \mid \mathbf{X}, \boldsymbol{\lambda}\right)=\frac{1}{\alpha_{T}\left(s_{E}\right)} \alpha_{t}(j) \beta_{t}(j)
$$

recalling that $p(\mathbf{X} \mid \boldsymbol{\lambda})=\alpha_{T}\left(s_{E}\right)$

- Since

$$
\begin{aligned}
\alpha_{t}\left(s_{j}\right) \beta_{t}\left(s_{j}\right)= & p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, S(t)=s_{j} \mid \boldsymbol{\lambda}\right) \\
& p\left(\mathbf{x}_{t+1}, \mathbf{x}_{t+2}, \mathbf{x}_{T} \mid S(t)=s_{j}, \boldsymbol{\lambda}\right) \\
= & p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, \mathbf{x}_{t+1}, \mathbf{x}_{t+2}, \ldots, \mathbf{x}_{T}, S(t)=s_{j} \mid \boldsymbol{\lambda}\right) \\
= & p\left(\mathbf{X}, S(t)=s_{j} \mid \boldsymbol{\lambda}\right)
\end{aligned}
$$

$$
P\left(S(t)=s_{j} \mid \mathbf{X}, \boldsymbol{\lambda}\right)=\frac{p\left(\mathbf{X}, S(t)=s_{j} \mid \boldsymbol{\lambda}\right)}{p(\mathbf{X} \mid \boldsymbol{\lambda})}
$$

Re-estimation of Gaussian parameters

- The sum of state occupation probabilities through time for a state, may be regarded as a "soft" count
- We can use this "soft" alignment to re-estimate the HMM parameters:

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}^{j} & =\frac{\sum_{t=1}^{T} \gamma_{t}\left(s_{j}\right) x_{t}}{\sum_{t=1}^{T} \gamma_{t}\left(s_{j}\right)} \\
\hat{\boldsymbol{\Sigma}}^{j} & =\frac{\sum_{t=1}^{T} \gamma_{t}\left(s_{j}\right)\left(x_{t}-\hat{\boldsymbol{\mu}}^{j}\right)\left(x-\hat{\boldsymbol{\mu}}^{j}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}\left(s_{j}\right)}
\end{aligned}
$$

Pulling it all together

- Iterative estimation of HMM parameters using the EM algorithm. At each iteration

E step For all time-state pairs
(1) Recursively compute the forward probabilities $\alpha_{t}\left(s_{j}\right)$ and backward probabilities $\beta_{t}(j)$
(2) Compute the state occupation probabilities $\gamma_{t}\left(s_{j}\right)$ and $\xi_{t}\left(s_{i}, s_{j}\right)$
M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: mean vectors $\boldsymbol{\mu}^{j}$, covariance matrices $\boldsymbol{\Sigma}^{j}$ and transition probabilities $a_{i j}$

- The application of the EM algorithm to HMM training is sometimes called the Forward-Backward algorithm

Re-estimation of transition probabilities

- Similarly to the state occupation probability, we can estimate $\xi_{t}\left(s_{i}, s_{j}\right)$, the probability of being in s_{i} at time t and s_{j} at $t+1$, given the observations:

$$
\begin{aligned}
\xi_{t}\left(s_{i}, s_{j}\right) & =P\left(S(t)=s_{i}, S(t+1)=s_{j} \mid \mathbf{X}, \boldsymbol{\lambda}\right) \\
& =\frac{P\left(S(t)=s_{i}, S(t+1)=s_{j}, \mathbf{X} \mid \boldsymbol{\lambda}\right)}{p(\mathbf{X} \mid \Lambda)} \\
& =\frac{\alpha_{t}\left(s_{i}\right) a_{i j} b_{j}\left(\mathbf{x}_{t+1}\right) \beta_{t+1}\left(s_{j}\right)}{\alpha_{T}\left(s_{E}\right)}
\end{aligned}
$$

- We can use this to re-estimate the transition probabilities

$$
\hat{a}_{i j}=\frac{\sum_{t=1}^{T} \xi_{t}\left(s_{i}, s_{j}\right)}{\sum_{k=1}^{N} \sum_{t=1}^{T} \xi_{t}\left(s_{i}, s_{k}\right)}
$$

Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If \mathbf{x}_{t}^{r} is the t th frame of the r th utterance \mathbf{X}^{r} then we can compute the probabilities $\alpha_{t}^{r}(j), \beta_{t}^{r}(j), \gamma_{t}^{r}\left(s_{j}\right)$ and $\xi_{t}^{r}\left(s_{i}, s_{j}\right)$ as before
- The re-estimates are as before, except we must sum over the R utterances, eg:

$$
\hat{\boldsymbol{\mu}}^{j}=\frac{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}\left(s_{j}\right) x_{t}^{r}}{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}\left(s_{j}\right)}
$$

Extension to Gaussian mixture model (GMM)

- The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian
- In this case an M-component Gaussian mixture model is an appropriate density function:

$$
b_{j}(\mathbf{x})=p\left(\mathbf{x} \mid s_{j}\right)=\sum_{m=1}^{M} c_{j m} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}^{j m}, \boldsymbol{\Sigma}^{j m}\right)
$$

Given enough components, this family of functions can model any distribution.

- Train using the EM algorithm, in which the component estimation probabilities are estimated in the E-step

Doing the computation

- The forward, backward and Viterbi recursions result in a long sequence of probabilities being multiplied
- This can cause floating point underflow problems
- In practice computations are performed in the log domain (in which multiplies become adds)
- Working in the log domain also avoids needing to perform the exponentiation when computing Gaussians

EM training of HMM/GMM

- Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities $\gamma_{t}\left(s_{j}, m\right)$: the probability of occupying mixture component m of state s_{j} at time t
- We can thus re-estimate the mean of mixture component m of state s_{j} as follows

$$
\hat{\boldsymbol{\mu}}^{j m}=\frac{\sum_{t=1}^{T} \gamma_{t}\left(s_{j}, m\right) x_{t}}{\sum_{t=1}^{T} \gamma_{t}\left(s_{j}, m\right)}
$$

And likewise for the covariance matrices (mixture models often use diagonal covariance matrices)

- The mixture coefficients are re-estimated in a similar way to transition probabilities:

$$
\hat{c}_{j m}=\frac{\sum_{t=1}^{T} \gamma_{t}\left(s_{j}, m\right)}{\sum_{\ell=1}^{M} \sum_{t=1}^{T} \gamma_{t}\left(s_{j}, \ell\right)}
$$

Summary: HMMs

- HMMs provide a generative model for statistical speech recognition
- Three key problems
(1) Computing the overall likelihood: the Forward algorithm
(2) Decoding the most likely state sequence: the Viterbi algorithm
(3) Estimating the most likely parameters: the EM (Forward-Backward) algorithm
- Solutions to these problems are tractable due to the two key HMM assumptions
(1) Conditional independence of observations given the current state
(2) Markov assumption on the states

References: HMMs

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195-304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/ SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", IEEE ASSP Magazine, 3 (1), 4-16.
- Renals and Hain (2010). "Speech Recognition", Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.

