Overview of CAP:SAM

Lower Santa Cruz River Basin Study Meeting April 27, 2016

YOUR WATER. YOUR FUTURE.

1

CAP Service Area Model (CAP:SAM)

- Tool for projecting supply and demand in CAP's three county service area
- Accounts for complex legal and physical characteristics of users and supplies
- Can simulate a wide range variations of "driving forces"
- Designed to generate "what if" <u>scenarios</u>

CAP Service Area Model (CAP:SAM)

• All Major Water Using Entities

- 80 Municipal Providers
- 23 Irrigation Districts
- 12 Tribes and Districts
- 20+ other user categories (CAGRD, AWBA, Industrial users, etc.)
- 16 Water Supply Types
 - Includes Surface Water, Effluent, CAP, LTSC, Groundwater, Recovered Water, etc.
 - Incorporates shortage scenarios from Colorado River Simulation model (CRSS)

Model Integration

Supply, Demand & Uncertainty

Some of the major factors that affect water supply, demand and reliability:

- Growth
- Shortage
- Climate
- Socioeconomics
- Sector Trends
- Policy Changes
- Behavioral Shifts

"Driving Forces"

Challenges

- Complex relationships among supply & demand factors
 - Within demand (e.g., housing development on Ag land)
 - Within supply (e.g., use of long-term CAP contracts affects Excess CAP)
 - Between supply & demand (e.g., reductions in interior use affect effluent supplies)
- Significant uncertainties across multiple dimensions
 - The rate of growth
 - The location of growth
 - Changes in current and future demand factors
 - The use of different supply types
 - The reliability of those supplies

Interdependencies

Geographic Example

Growth

Both the <u>rate</u> of growth and the <u>location</u> of growth are critical Housing Scenarios

- Rate
 - Affects total use of supplies
- Location

- Different water use characteristics for each utility
- Different water supply portfolios
- Different regulatory and institutional requirements

Growth Rate

• Annual housing unit growth can be adjusted to account for the effects of the recession, and longer-term trends

Growth Location: Baseline

Water Provider Overlay

Reconcile Growth Rate & Location

Hypothetical Housing Unit Projection

ENTRAL ARIZONA PROJECT

Alternate Growth Scenarios

- Socioeconomic Allocation Model
 - Developed by Applied Economics
 - Land use analysis with linear regression techniques
 - 46 study areas in CAP Service Area
 - Reallocated to neighborhood level, then to water provider
 - Allocation Factors
 - Historical growth patterns
 - Major residential development projects
 - Employment centers
 - Transportation infrastructure
 - Land value

Outward Growth

• Commute time less important

Infill

- Planned residential development projects less important
- Commute time more important

Urban Redevelopment

- Planned residential development projects less important
- Additional capacity for redevelopment

Growth Scenarios

Growing Rural Provider

CENTRAL ARIZONA PROJECT

Conversion to Water Demand

• Existing Approach

- Housing units are multiplied by a provider-specific value of Gallons Per Housing Unit per Day (GPHUD)
- Can adjust rate of change, maximum change and minimum floor
- Separate calculations for new and existing housing units

Enhancements

- Interior versus exterior demand
- Commercial, industrial, and irrigation
- Socioeconomic & housing characteristics
- Changes in demographics
- Heat Island effects

- The model contains each water provider's unique portfolio of supplies (i.e., entitlements)
 - Annual supplies (e.g., CAP, surface water, effluent)
 - Volumetric supplies (e.g., LTSCs, GW allowances)
 - Accrual (and debiting) of long-term storage credits is modeled, as is incidental recharge and Pinal renewable GW allowances
 - Leases, exchanges, transfers and reallocations through time can also be modeled

An Established City, with Moderate Growth, and a Diverse Renewable Supply Portfolio

A Medium-Sized Provider, with Moderate Growth, and a Large Renewable Supply Portfolio

A Small Member Land Provider, With Low Growth, and No Renewable Supplies

A Medium-Sized Provider, with Rapid Growth, and No Renewable Supplies

Supply Utilization: Total

Urbanization of Agricultural Land

- The spatial housing unit scenarios can be used to project urbanization of agricultural land
- Agricultural Data:
 - Acreage by Crop Type (NASS, 2008-2014)
 - Usage by Supply Type (ADWR, 1985-2013)
 - Crop Consumptive Use (ADWR)

National Agricultural Statistics Service CropScape Data Layer, 2013

Example Projection of Irrigation District Supply Utilization

Service Area Analysis Example CAP Water Use by Destination

Service Area Analysis Example CAP Water Use by Destination with Shortage

Validation Steps

- Base data validation
 - Maps of projected service areas
 - Review of supply portfolios
 - Base case model run validation
 - Anticipated supply utilization
 - Incorporation of known events

Scenario Generation

- Review and confirmation of driving forces (including climate)
 - Sensitivity analysis can be used to help identify
- Selection of internally consistent ensembles of factors
 - e.g. in a "Hot & Dry" scenario, crop E_t and residential exterior demand adjusted upwards
- Review of results

Options & Strategies Runs

- Selection of "control case"
- Selection of potential adaptation/ mitigation strategies
 - e.g., new regional infrastructure, increased supply leasing, policy changes, etc.
- Comparison of Strategy versus Control Case
 - Effect on GW levels, etc.

