
Overview of
Computer Organization

Chapter 1
S. Dandamudi

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 2

Outline

• Introduction
∗ Basic Terminology and

Notation
Views of computer systems
• User’s view
• Programmer’s view

∗ Advantages of high-level
languages

∗ Why program in assembly
language?

• Architect’s view
• Implementer’s view

• Processor
∗ Execution cycle
∗ Pipelining
∗ RSIC and CISC

• Memory
∗ Basic memory operations
∗ Design issues

• Input/Output
• Interconnection: The glue
• Historical Perspective
• Technological Advances

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 3

Introduction

• Some basic terms
∗ Computer architecture
∗ Computer organization
∗ Computer design
∗ Computer programming

• Various views of computer systems
∗ User’s view
∗ Programmer’s view
∗ Architect’s view
∗ Implementer’s view

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 4

Introduction (cont’d)

2501015P (peta)

2401012T (tera)

230109G (giga)

220106M (mega)

210103K (kilo)

BinaryDecimalTerm

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 5

A User’s View of Computer Systems

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 6

A Programmer’s View

• Depends on the type and level of language used
• A hierarchy of languages

∗ Machine language
∗ Assembly language increasing level
∗ High-level language of abstraction
∗ Application programs

• Machine-independent
∗ High-level languages/application programs

• Machine-specific
∗ Machine and assembly languages

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 7

A Programmer’s View (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 8

A Programmer’s View (cont’d)

• Machine language
∗ Native to a processor
∗ Consists of alphabet 1s and 0s
1111 1111 0000 0110 0000 1010 0000 0000B

• Assembly language
∗ Slightly higher-level language
∗ Human-readable
∗ One-to-one correspondence with most machine

language instructions
inc count

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 9

A Programmer’s View (cont’d)

• Readability of assembly language instructions is
much better than the machine language instructions

» Machine language instructions are a sequence of 1s and 0s

Assembly Language Machine Language
(in Hex)

inc result FF060A00

mov class_size,45 C7060C002D00

and mask,128 80260E0080

add marks,10 83060F000A

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 10

A Programmer’s View (cont’d)

• Assemblers translate between assembly and
machine languages
∗ TASM
∗ MASM
∗ NASM

• Compiler translates from a high-level language to
machine language
∗ Directly
∗ Indirectly via assembly language

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 11

A Programmer’s View (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 12

A Programmer’s View (cont’d)

• High-level languages versus low-level languages
In C:
result =

count1 + count2 + count3 + count4
In Pentium assembly language:

mov AX,count1

add AX,count2

add AX,count3

add AX,count4

mov result,AX

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 13

A Programmer’s View (cont’d)

• Some simple high-level language instructions can
be expressed by a single assembly instruction

Assembly Language C

inc result result++;

mov size,45 size = 45;

and mask1,128 mask1 &= 128;

add marks,10 marks += 10;

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 14

A Programmer’s View (cont’d)

• Most high-level language instructions need more
than one assembly instruction

C Assembly Language

size = value; mov AX,value

mov size,AX

sum += x + y + z; mov AX,sum

add AX,x

add AX,y

add AX,z

mov sum,AX

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 15

A Programmer’s View (cont’d)

• Instruction set architecture (ISA)
∗ An important level of abstraction
∗ Specifies how a processor functions

» Defines a logical processor

• Various physical implementations are possible
∗ All logically look the same
∗ Different implementations may differ in

» Performance
» Price

• Two popular examples of ISA specifications
∗ SPARC and JVM

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 16

Advantages of High-Level Languages

• Program development is faster
» High-level instructions

– Fewer instructions to code

• Program maintenance is easier
» For the same reasons as above

• Programs are portable
» Contain few machine-dependent details

– Can be used with little or no modifications on different
types of machines

» Compiler translates to the target machine language
» Assembly language programs are not portable

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 17

Why Program in Assembly Language?

• Two main reasons:
∗ Efficiency

» Space-efficiency
» Time-efficiency

∗ Accessibility to system hardware
• Space-efficiency

∗ Assembly code tends to be compact
• Time-efficiency

∗ Assembly language programs tend to run faster
» Only a well-written assembly language program runs faster

– Easy to write an assembly program that runs slower than
its high-level language equivalent

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 18

Architect’s View

• Looks at the design aspect from a high level
∗ Much like a building architect
∗ Does not focus on low level details
∗ Uses higher-level building blocks

» Ex: Arithmetic and logical unit (ALU)

• Consists of three main components
∗ Processor
∗ Memory
∗ I/O devices

• Glued together by an interconnect

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 19

Architect’s View (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 20

Architect’s View (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 21

Implementer’s View

• Implements the designs generated by architects
∗ Uses digital logic gates and other hardware circuits

• Example
∗ Processor consists of

» Control unit
» Datapath

– ALU
– Registers

• Implementers are concerned with design of these
components

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 22

Implementer’s View (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 23

Implementer’s View (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 24

Implementer’s View (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 25

Processor

• Execution cycle
– Fetch
– Decode
– Execute

• von Neumann architecture
» Stored program model

– No distinction between data and instructions
– Instructions are executed sequentially

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 26

Processor (cont’d)

• Pipelining
∗ Overlapped execution
∗ Increases throughput

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 27

Processor (cont’d)

• Another way of looking at pipelined execution

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 28

Processor (cont’d)

• RISC and CISC designs
∗ Reduced Instruction Set Computer

» Uses simple instructions
» Operands are assumed to be in processor registers

– Not in memory
– Simplifies design

Example: Fixed instruction size
∗ Complex Instruction Set Computer

» Uses complex instructions
» Operands can be in registers or memory

– Instruction size varies
» Typically uses a microprogram

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 29

Processor (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 30

Processor (cont’d)

• Variations of the ISA-level can be implemented by
changing the microprogram

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 31

Memory

• Ordered sequence of bytes
∗ The sequence number is called the memory address
∗ Byte addressable memory

» Each byte has a unique address
» Almost all processors support this

• Memory address space
∗ Determined by the address bus width
∗ Pentium has a 32-bit address bus

» address space = 4GB (232)
∗ Itanium with 64-bit address bus supports

» 264 bytes of address space

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 32

Memory (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 33

Memory (cont’d)

• Memory unit
∗ Address
∗ Data
∗ Control signals

» Read
» Write

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 34

Memory (cont’d)

• Read cycle
1. Place address on the address bus
2. Assert memory read control signal
3. Wait for the memory to retrieve the data

» Introduce wait states if using a slow memory
4. Read the data from the data bus
5. Drop the memory read signal

• In Pentium, a simple read takes three clocks cycles
» Clock 1: steps 1 and 2
» Clock 2: step 3
» Clock 3 : steps 4 and 5

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 35

Memory (cont’d)

• Write cycle
1. Place address on the address bus
2. Place data on the data bus
3. Assert memory write signal
4. Wait for the memory to retrieve the data

» Introduce wait states if necessary
5. Drop the memory write signal

• In Pentium, a simple write also takes three clocks
» Clock 1: steps 1 and 3
» Clock 2: step 2
» Clock 3 : steps 4 and 5

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 36

Byte Ordering

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 37

Byte Ordering (cont’d)

• Multibyte data address pointer is independent of
the endianness
∗ 100 in our example

• Little-endian
∗ Used by Pentium

• Big-endian
∗ Default in MIPS and PowerPC

• On modern processors
∗ Configurable

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 38

Design Issues

• Slower memories
Problem: Speed gap between processor and memory
Solution: Cache memory

– Use small amount of fast memory
– Make the slow memory appear faster
– Works due to “reference locality”

• Size limitations
∗ Limited amount of physical memory

» Overlay technique
– Programmer managed

∗ Virtual memory
» Automates overlay management
» Some additional benefits

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 39

Design Issues (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 40

Design Issues (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 41

Input/Output

• I/O devices are interfaced via an I/O controller
∗ Takes care of low-level operations details

• Several ways of mapping I/O
∗ Memory-mapped I/O

» Reading and writing similar to memory read/write
» Uses same memory read and write signals
» Most processors use this I/O mapping

∗ Isolated I/O
» Separate I/O address space
» Separate I/O read and write signals are needed
» Pentium supports isolated I/O

– Also supports memory-mapped I/O

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 42

Input/Output (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 43

Input/Output (cont’d)

• Several ways of transferring data
∗ Programmed I/O

» Program uses a busy-wait loop
– Anticipated transfer

∗ Direct memory access (DMA)
» Special controller (DMA controller) handles data transfers
» Typically used for bulk data transfer

∗ Interrupt-driven I/O
» Interrupts are used to initiate and/or terminate data transfers

– Powerful technique
– Handles unanticipated transfers

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 44

Interconnection

• System components are interconnected by buses
∗ Bus: a bunch of parallel wires

• Uses several buses at various levels
∗ On-chip buses

» Buses to interconnect ALU and registers
– A, B, and C buses in our example

» Data and address buses to connect on-chip caches

∗ Internal buses
» PCI, AGP, PCMCIA

∗ External buses
» Serial, parallel, USB, IEEE 1394 (FireWire)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 45

Interconnection (cont’d)

• Bus is a shared resource
∗ Bus transactions

» Sequence of actions to complete a well-defined activity
» Involves a master and a slave

– Memory read, memory write, I/O read, I/O write
∗ Bus operations

» A bus transaction may perform one or more bus operations
– Pentium burst read

Transfers four memory words
Bus transaction consists of four memory read
operations

∗ Bus arbitration

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 46

Historical Perspective

• The early generations
∗ Difference engine of Charles Babbage

• Vacuum tube generation
∗ Around the 1940s and 1950s

• Transistor generation
∗ Around the 1950s and 1960s

• IC generation
∗ Around the 1960s and 1970s

• VLSI generation
∗ Since the mid-1970s

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 47

Technological Advances

• Transistor density
∗ Until 1990s, doubled every 18 to 24 months
∗ Since then, doubling every 2.5 years

• Memory density
∗ Until 1990s, quadrupled every 3 years
∗ Since then, slowed down (4X in 5 years)

• Disk capacities
∗ 3.5” form factor
∗ 2.5” form factor
∗ 1.8” form factor (e.g., portable USB-powered drives)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 48

Technological Advances (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 49

Technological Advances (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer-Verlag, 2003.

© S. Dandamudi Chapter 1: Page 50

Technological Advances (cont’d)

Last slide

