Overview of IDM (Case management) NTDs Laboratory Diagnosis and Diagnostic needs

Dr Daniel Argaw Dagne IDM/NTDS, WHO

World Health Organization

Neglected Tropical Diseases

IDM

BU, LEP, HAT, LEISH, CHAGAS, YAWS, Mycetoma Individual diagned World Health Organization /surgery/chronic care/ rehabilitation

Primary Aim: To reduce morbidity/disability/death Secondary aim: To eliminate and interrupt transmission

> Case management approaches : LF Onchocerciasis Trachoma Podoconiosis Echinococcosis

- Good health system essential
- Access to care (UHC)
- Research to develop better tools

Neglected Zoonotic Disease (NZDs)

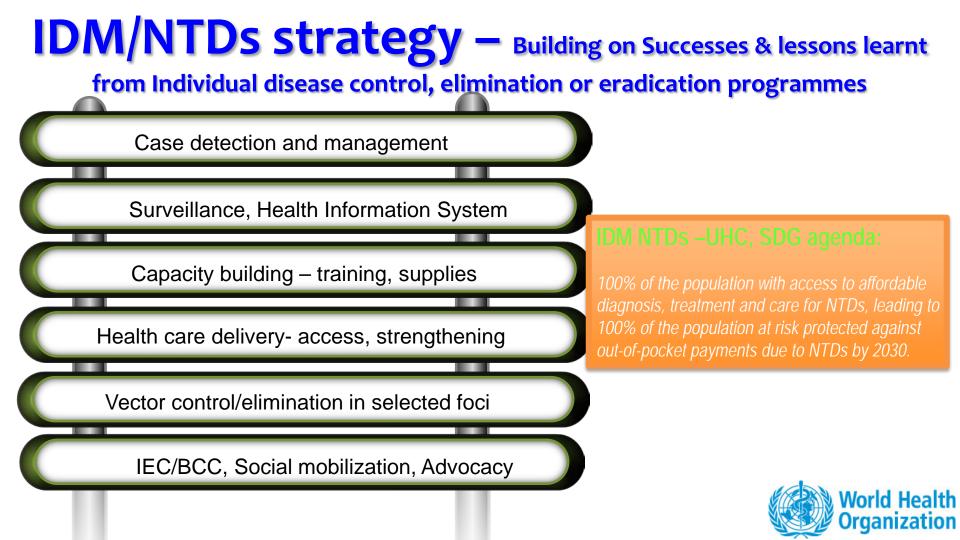
Collaborative, cross-sectoral efforts of human and animal health systems and a multidisciplinary approach

LF, SCH, STH, ONCHO, TRA,

PCT

Large-scale population treatment with safe and effective medicines

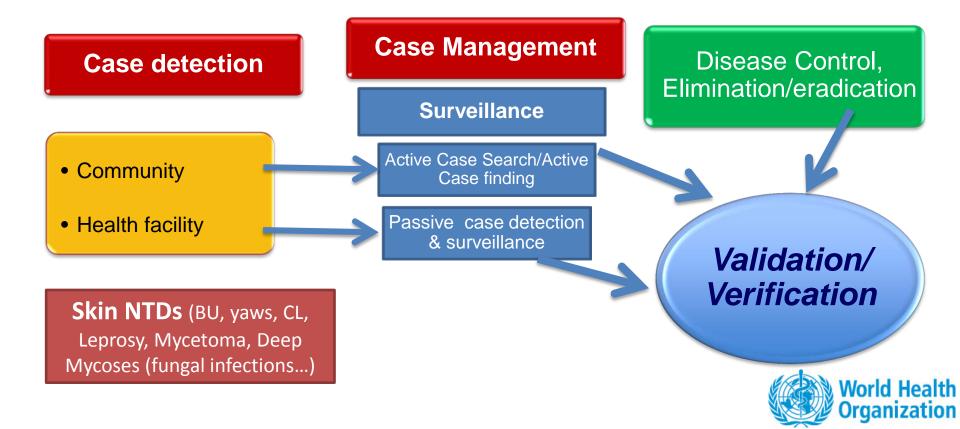
Primary Aim: To achieve high coverage to reduce burden and transmission of diseases Secondary aim: To reduce morbidity


> PCT approaches: Yaws Leprosy (contacts) Taeniasis/Cysticercosis

Community participation key to increasing uptake & coverage

Some features of CM NTDs

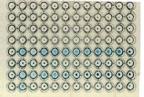
- Disease are prevalent in the remotest areas- marginalized communities – weak health services
- Focal distribution and clustering around the same communities
- Several vectors and reservoirs involved
- Diverse diseases groups could be fatal if not treated or may lead to deformity, disfiguring, disability
- Stigma and discrimination
- Case management diagnosis may involve multiple steps, clinical staging or severity assessments, use of potentially toxic drugs or drugs with many side effects



Diagnostics are essential in all phases of IDM NTDs control

Case detection/diagnosis is the centrepiece in the IDM/NTDs control, elimination or eradication strategy

Diagnostics are essential in all phases of IDM NTDs control



CM NTDs Diagnostics - current

- Current diagnostic methods for case management (IDM) diseases are not satisfactory
 - Diagnosis is based on demonstration of the parasites in tissue aspirates or blood, detection of antibody to the parasites, detection of parasite products in the blood or body secretions, or quantitative/qualitative detection of parasite DNA.
- Most of the diagnostic tests require invasive sampling and lack appropriate sensitivity and specificity.
- Multiple steps or extended algorithmic and/or combination of tests to reach diagnosis

Table 4Summary of characteristics of available diagnostics

Disease	Parasite demonstration			Parasite DNA detection			Serology		
	Source	Sensitivity	Specificity	Test	Sensitivity	Specificity	Test	Sensitivity	Specificity
Chagas disease	Blood	>70% when smear per- formed 15–30 days after onset of symptoms (only in the acute phase)	100%	PCR RT-PCR	~60% (in children)	lf properly done, can be 100%	IHA , IIF, ELISA (chronic phase)	94%–99.5% (kit- dependent difference)	94%–96% (kit- dependent difference)
Human African trypa- nosomiasis	Blood	44.8%–91% (combination including mAECT)	~100%	PCR RT PCR LAMP	~95%	~100%	CATT	68%–99.5% (regional differences)	83.5%– 98.4%
Visceral leishmaniasis	Spleen	90%–95%(smear)	~100%	PCR RT-PCR	~95%	~100%			
	Bone marrow	60%–85%(smear)	~100%	PCR RT-PCR	~95%	~100%			
	Lymph node	50%–60%(smear)	~100%	Not extensively studied					
	Blood			PCR RT-PCR	~80%-95%	~100%	DAT ELISA rK39-ICT	91%-100% 85%-95% 90%-100%	72%-100% 70%-85% 93%-100%
Cutaneous leishmaniasis	Skin	30%–90% depending on the parasite species (smear)	~100%	PCR	~90%-95%	~100%			
	Lymph node	40%–70% in <i>L. braziliensis</i> infections (aspirate culture)	~100%	Not extensively studied		·			

CATT, card agglutination test for trypanosomiasis; DAT, direct agglutination test; ELISA, enzyme-linked immunosorbent assay; ICT, immunochromatography test; IHA, indirect haemaglutination; IIF, indirect immunofluorescence; LAMP, loop mediated isothermal amplification; mAECT, miniature anion exchange centrifugation technique; PCR, polymerase chain reaction; RT-PCR, reverse transcriptase polymerase chain reaction.

WHO Technical Report Series, No. 975, 2012

Current & potential roles of diagnostics for IDM NTDs

Roles	General Test performance requirements
Case detection/screening diagnosis	High sensitivity
Individual case diagnosis and management	High sensitivity and specificity – case confirmation is required for case management
Prevalence & epidemiological surveysHigh prevalenceLow prevalence	Medium sensitivityHigh sensitivity
Verification of elimination; Post-elimination surveillance	 High throughput tests – as large no. of people, vectors or intermediate hosts may need to be sampled; high sensitivity and specificity
Differentiate new infections vs relapses/past	High specificity, point-of-care test

Other roles: drug resistance monitoring; test of cure, clinical prognosis, progression from infection to disease ...

Currently used diagnostic methodologies

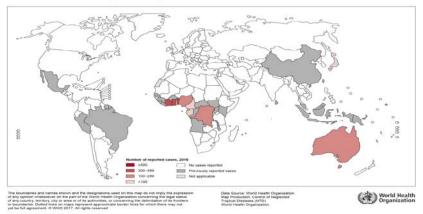
CM (IDM)NTDs	Diagnosis	Tests used	Remarks
Buruli Ulcer	Clinical; PCR; Microscopy; histopathology & culture	Microscopy – ZN AFB; PCR; TLC	PCR most commonly used methods
Chagas Disease	Parasitology; Serology Epid link; xenodiagnosis, imaging	RDTs; Indirect Haemaglutination, Indirect immunoflourescence, ELISA	Microscopy in the acute phase of infection
Human African trypanosomiasis	Clinical + Epid link & Serology & parasitology	CATT; RDTs; TL; PCR; mAECT; LAMP; microscopy	Multiple steps – screening, parasitological, staging
Leishmaniasis (Cutaneous & MCL)	Clinical + Epid link &/or Microscopy; culture	Microscopy-Giemsa stain; PCR; LST	Commonly clinical & skin smear
Leishmaniasis (VL)	Clinical + Serology or Parasitology; PCR	RDTs (rk39, rk16, rk 28); PCR; DAT; IFAT; ELISA	RDTs commonly used methods- perform well in certain regions
Leprosy	Clinical signs; slit-skin smears or nerve biopsy	Slit-skin smear –ZN stain-AFB	3 cardinal signs
Mycetoma; deep mycoses (Fungal Skin infections)	Clinical + Epid &/or Microscopy or histopathology; culture, imaging	Cytological, histochemical, microscopy, X-ray, US, CT, MRI	Invasive, time consuming, combination of tests
yaws	Dark field Microscopy; Serology, PCR	TPHA/TPPAA; RPR &VDRL Multiplex Assay, DPP, PCR	One confirmed case is required for MDA

Case management NTDs – diagnostic needs

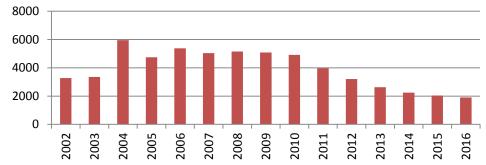
CM (IDM)NTDs	Diagnostic needs not in the order of priority		
Buruli Ulcer	RDTs – POC; screening tests; monitoring drug effectiveness		
Chagas Disease	POC for acute infection, chronic Chagas, congenital Chagas, assessment of treatment, cure vs relapse; prognostic tests (Biomarkers predictive of disease progression		
Human African trypanosomiasis	Non-invasive POC RDT to detect & Staging; test of cure; surveillance of drug resistance; verification elimination; post-elimination surveillance		
Leishmaniasis (Cutaneous & MCL)	POC RDT for CL -confirmatory, Mucocutaneous leishmaniasis; DCL		
Leishmaniasis (VL)	Improved RDTs, prognostic tests, TOC, prognostic test, monitoring drug resistance; optimized test for VL in HIV coinfection, diagnosis of PKDL		
Leprosy	Diagnostic-early diagnosis/Confirmatory tests; monitoring treatment & resistance		
Mycetoma; deep mycoses (Fungal Skin infections)	Simple POC RDTs, monitoring treatment/ drug efficacy		
yaws	Diagnostics to guide when to stop MDA; post-elimination surveillance		

Summary – IDM Diagnostic Gaps & Needs

- Point-of-care (POC) RDT new or improved POC diagnostics for case detection and diagnosis and epidemiological surveillance
- Test of cure and diagnostics for clinical trials –end- point
- Diagnostics for drug resistance monitoring
- Verification of elimination, post-elimination surveillance
- Simplification, standardization and field-friendly modifications are needed for meaningful application of PCR
- Exploring digitization new platforms, possible synergies for integrating of testing approaches
- As the sensitivity and specificity of a method may vary in different endemic regions, the selection of the diagnostic tests should be based on several parameters, including the sensitivity and specificity as well as the cost, the availability of equipment and qualified personnel, rapidity and field applicability.
- Ensuring utilization of available diagnostics access

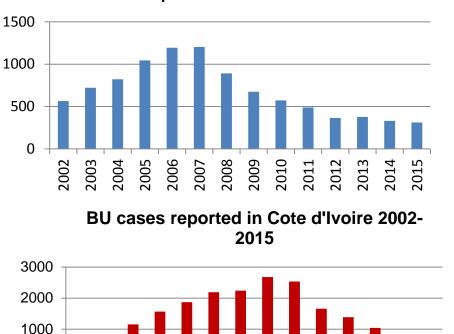


Buruli ulcer control

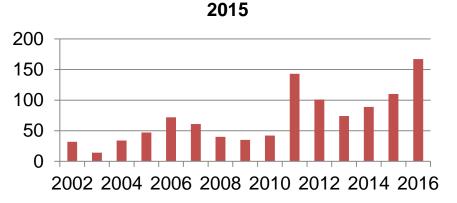

- WHO's recommendation to use a combination of antibiotics treatment in 2004 marked a major advance in Buruli ulcer control
- The comparative study with Rifampicin & streptomycin versus rifampicin & clarithromycin (oral) completed and oral antibiotic therapy recommended for control and treatment

Distribution of Buruli ulcer, worldwide, 2016

Buruli ulcer cases reported 2002-2016

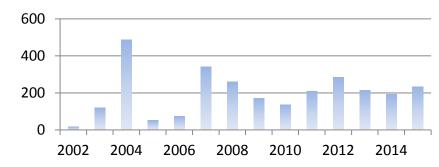


Before antibiotics After antibiotics HOSPITAL Surgery for all cases HOSPITALS. 1998 Surgery Referred cases HEALTH CENTRE **HEALTH CENTER** -Detection -Detection -inj Streptomycin 2004 -Wound care -Wound care - Referral -Referrals COMMUNITY COMMUNITY 2017 - Detection - Early detection 2017 : Study completed and Referra oral antibiotic therapy incorporated into control & treatment; Benin, Ghana Norld Health


Organization

-Referral

Epidemiology – Selected countries



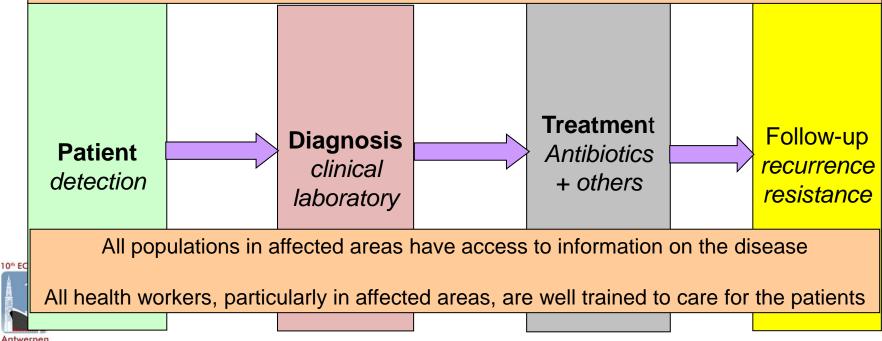
BU cases reported in Benin 2002-2015

BU cases reported in Australia 2002-

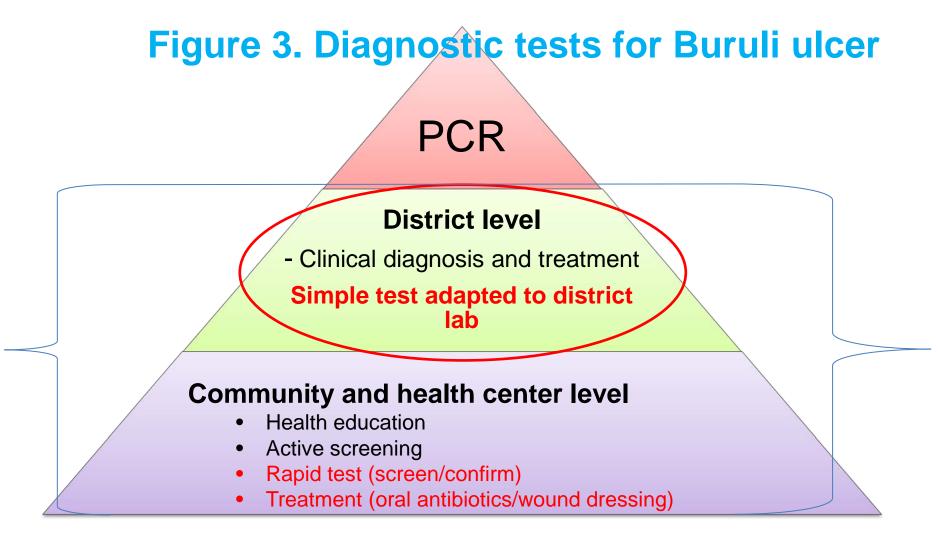
BU cases reported in DRC 2002-2015

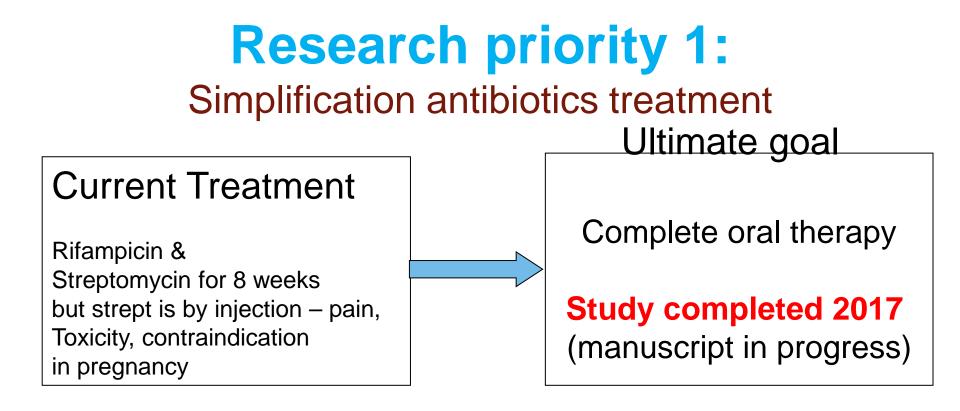
Buruli ulcer Research progress and priorities

Antibiotic treatment (oral)


Development of diagnostic test

Mode of transmission




Figure 1. Key axes of Buruli ulcer strategy

Objective: To ensure that every Buruli ulcer patient has access to diagnosis and treatment

Antwerper 16-20 October 201

Research priority 2: Diagnosis and development of tests

Clinical diagnosis is possible but difficult for non-ulcerative disease PCR is sensitive >98% but not available in remote rural clinics

Mycolactone detection test

Antigen capture and human biomarkers but in discovery phase

Simplified PCR

