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Learning Objectives in this Lesson
• Understand the Java Collections Framework (JCF)
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Java Collections
Framework
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Overview of the Java Collections Framework
• The JCF is a unified architecture 

for representing & manipulating 
collections

See docs.oracle.com/javase/8/docs/technotes/guides/collections

http://docs.oracle.com/javase/8/docs/technotes/guides/collections
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• The JCF is a unified architecture 
for representing & manipulating 
collections
• A collection is an object that 

represents a group of objects
• e.g., an ArrayList<Point>

Each element in the collection is 
actually a reference to another object

Overview of the Java Collections Framework
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• The JCF is a unified architecture 
for representing & manipulating 
collections
• A collection is an object that 

represents a group of objects
• Collections can be accessed 

& manipulated independently 
of their representation

e.g., the List interface can be 
implemented as either a 

LinkedList or as an ArrayList

Overview of the Java Collections Framework



7

• JCF is based on more than a 
dozen collection interfaces

The collection interfaces contain two 
groups
• java.util.Collection

java.util.Set
java.util.SortedSet
java.util.NavigableSet
java.util.Queue
java.util.concurrent.BlockingQueue
java.util.concurrent.TransferQueue
java.util.Deque
java.util.concurrent.BlockingDeque

Overview of the Java Collections Framework
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• JCF is based on more than a 
dozen collection interfaces

The collection interfaces contain two 
groups
• java.util.Collection
• java.util.Map

java.util.SortedMap
java.util.NavigableMap
java.util.concurrent.ConcurrentMap
java.util.concurrent.

ConcurrentNavigableMap

Overview of the Java Collections Framework
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• JCF is based on more than a 
dozen collection interfaces
• Includes implementations of 

these interfaces & algorithms 
to manipulate them

JCF implementations use inheritance, polymorphism, & generics extensively

Inter
face

Hash 
Table

Resize
Array

Balanced 
Tree Linked List Hash Table+ 

Linked List

Set HashSet Tree
Set

Linked
Hash
Set

List Array
List LinkedList

Deque Array
Deque LinkedList

Map HashMap TreeMap
Linked
Hash
Map

Overview of the Java Collections Framework

http://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayDeque.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
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• JCF has several key benefits
Overview of the Java Collections Framework
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• JCF has several key benefits
• Reduces programming effort 

• By providing data structures 
& algorithms so developers 
don’t need to write them

Overview of the Java Collections Framework
class ArrayList ... {

...
public Object[] toArray() {
return Arrays
.copyOf(elementData, 

size);
}
...
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• JCF has several key benefits
• Reduces programming effort 
• Enables interoperability 

• e.g., gives a common way to pass 
collections 

Overview of the Java Collections Framework
class Vector ... {

...
boolean addAll(Collection<? 

extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper
(elementCount + numNew);

System.arraycopy(a, 0, 
elementData, 
elementCount, 
numNew);

elementCount += numNew;
return numNew != 0;

} ...
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• JCF has several key benefits
• Reduces programming effort 
• Enables interoperability 
• Increases performance

• Highly optimized implementations 
of data structures & algorithms

Overview of the Java Collections Framework
class ConcurrentHashMap ... {

...
public V get(Object key) {
...
int h = spread(key

.hashCode());
if ((tab = table) != null && 

((e = tabAt(tab, (n - 1) 
& h)) != null) {

if (key.equals(ek)))
return e.val;

}
...

See www.ibm.com/developerworks/library/j-jtp08223

http://www.ibm.com/developerworks/library/j-jtp08223
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• JCF has several key benefits
• Reduces programming effort 
• Enables interoperability 
• Increases performance
• Reduces effort designing & 

learning new (non ad hoc) APIs

Overview of the Java Collections Framework
class AbstractList ... {

...
public Iterator<E> iterator(){
return new Itr();

}  

private class Itr implements 
Iterator<E> {

public boolean hasNext() 
{ ... }

public E next() { ... }
...

}
...
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• JCF has several key benefits
• Reduces programming effort 
• Enables interoperability 
• Increases performance
• Reduces effort designing & 

learning new (non ad hoc) APIs
• Fosters software reuse

• By providing standard interfaces 
for collections & algorithms that 
manipulate them

Overview of the Java Collections Framework
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import java.util.ArrayList; 
...
List<String> myList =

new ArrayList<>();

myList.add("I");
myList.add("am");
myList.add("Ironman");

String itemOne = myList.get(0);

myList.remove(0);

...

See docs.oracle.com/javase/8/docs/technotes/guides/collections

• Common JCF classes
• An ArrayList is a variable-sized 

list of items similar to a built-in 
Java array

Overview of the Java Collections Framework

http://docs.oracle.com/javase/8/docs/technotes/guides/collections
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import java.util.ArrayList; 
...
List<String> myList =

new ArrayList<>();

myList.add("I");
myList.add("am");
myList.add("Ironman");

String itemOne = myList.get(0);

myList.remove(0);

...

See docs.oracle.com/javase/8/docs/technotes/guides/collections

• Common JCF classes
• An ArrayList is a variable-sized 

list of items similar to a built-in 
Java array

Overview of the Java Collections Framework

List stores object of type 
java.lang.String, so no need 
to cast item back to String 

http://docs.oracle.com/javase/8/docs/technotes/guides/collections
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import java.util.HashMap;
...
HashMap<String, Foo> myMap = 

new HashMap<>();

Foo f1 = new Foo(); 
Foo f2 = new Foo(); 
myMap.put("one", f1); 
myMap.put("two", f2);

if (f2 == myMap.get("two")) 
...

else if (f1 == 
myMap.get("one")) 

...

• Common JCF classes
• An ArrayList is a variable-sized 

list of items similar to a built-in 
Java array

• A HashMap stores key/value pairs

Overview of the Java Collections Framework
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• Concurrent collections provide 
features that are frequently needed 
in concurrent programming

These are the concurrent-aware 
interfaces:

BlockingQueue
TransferQueue
BlockingDeque
ConcurrentMap
ConcurrentNavigableMap

Overview of the Java Collections Framework
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• Concurrent collections provide 
features that are frequently needed 
in concurrent programming

Concurrent-aware classes include

LinkedBlockingQueue
ArrayBlockingQueue
PriorityBlockingQueue
DelayQueue
SynchronousQueue
LinkedBlockingDeque
LinkedTransferQueue
CopyOnWriteArrayList
CopyOnWriteArraySet
ConcurrentHashMap

Overview of the Java Collections Framework

Concurrent collections covered in CS 892 (www.dre.vanderbilt.edu/~schmidt/cs892) 

http://www.dre.vanderbilt.edu/%7Eschmidt/cs892
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Iterating Through 
Collections in Java
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Iterating Through Collections in Java
• Java has several ways to loop 

through collections
• The conventional for loop 

used in C/C++

List<String> myStrings = 
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

for(int i = 0; 
i < myStrings.size(); 

i++) 
System.out.println
(myStrings.get(i));

Venerable, but crufty…
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Iterating Through Collections in Java
• Java has several ways to loop 

through collections
• The conventional for loop 

used in C/C++

List<String> myStrings = 
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

Object[] array = 
myStrings.toArray();

for(int i = 0; 
i < array.length; 
i++) 

System.out.println(array[i]);

Useful in certain situations, but typically overkill…
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Iterating Through Collections in Java
• Java has several ways to loop 

through collections
• The conventional for loop 

used in C/C++
• An enhanced for-each loop for 

iterating over collections

List<String> myStrings = 
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

for (String aString :
myStrings) 

System.out.println(aString);

Very clean & concise
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Iterating Through Collections in Java
• Java has several ways to loop 

through collections
• The conventional for loop 

used in C/C++
• An enhanced for-each loop for 

iterating over collections
• An Iterable interface

List<String> myStrings = 
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

for (Iterator<String> it =
myStrings.iterator();

it.hasNext();
) 

System.out.println
(it.next());

Pattern-oriented, but overly verbose compared to for-each loop
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Iterating Through Collections in Java
• Java has several ways to loop 

through collections
• The conventional for loop 

used in C/C++
• An enhanced for-each loop for 

iterating over collections
• An Iterable interface
• The forEach() method

List<String> myStrings = 
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

myStrings
.stream()
.forEach
(aString -> 

System.out.println
(aString));

Very powerful, but requires knowledge of Java lambda expressions & streams



27

End of Overvew of the Java 
Collections Framework
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