
Overview of the Java
Collections Framework

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the Java Collections Framework (JCF)

3

Java Collections
Framework

4

Overview of the Java Collections Framework
• The JCF is a unified architecture

for representing & manipulating
collections

See docs.oracle.com/javase/8/docs/technotes/guides/collections

http://docs.oracle.com/javase/8/docs/technotes/guides/collections

5

• The JCF is a unified architecture
for representing & manipulating
collections
• A collection is an object that

represents a group of objects
• e.g., an ArrayList<Point>

Each element in the collection is
actually a reference to another object

Overview of the Java Collections Framework

6

• The JCF is a unified architecture
for representing & manipulating
collections
• A collection is an object that

represents a group of objects
• Collections can be accessed

& manipulated independently
of their representation

e.g., the List interface can be
implemented as either a

LinkedList or as an ArrayList

Overview of the Java Collections Framework

7

• JCF is based on more than a
dozen collection interfaces

The collection interfaces contain two
groups
• java.util.Collection

java.util.Set
java.util.SortedSet
java.util.NavigableSet
java.util.Queue
java.util.concurrent.BlockingQueue
java.util.concurrent.TransferQueue
java.util.Deque
java.util.concurrent.BlockingDeque

Overview of the Java Collections Framework

8

• JCF is based on more than a
dozen collection interfaces

The collection interfaces contain two
groups
• java.util.Collection
• java.util.Map

java.util.SortedMap
java.util.NavigableMap
java.util.concurrent.ConcurrentMap
java.util.concurrent.

ConcurrentNavigableMap

Overview of the Java Collections Framework

9

• JCF is based on more than a
dozen collection interfaces
• Includes implementations of

these interfaces & algorithms
to manipulate them

JCF implementations use inheritance, polymorphism, & generics extensively

Inter
face

Hash
Table

Resize
Array

Balanced
Tree Linked List Hash Table+

Linked List

Set HashSet Tree
Set

Linked
Hash
Set

List Array
List LinkedList

Deque Array
Deque LinkedList

Map HashMap TreeMap
Linked
Hash
Map

Overview of the Java Collections Framework

http://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayDeque.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html

10

• JCF has several key benefits
Overview of the Java Collections Framework

11

• JCF has several key benefits
• Reduces programming effort

• By providing data structures
& algorithms so developers
don’t need to write them

Overview of the Java Collections Framework
class ArrayList ... {

...
public Object[] toArray() {
return Arrays
.copyOf(elementData,

size);
}
...

12

• JCF has several key benefits
• Reduces programming effort
• Enables interoperability

• e.g., gives a common way to pass
collections

Overview of the Java Collections Framework
class Vector ... {

...
boolean addAll(Collection<?

extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper
(elementCount + numNew);

System.arraycopy(a, 0,
elementData,
elementCount,
numNew);

elementCount += numNew;
return numNew != 0;

} ...

13

• JCF has several key benefits
• Reduces programming effort
• Enables interoperability
• Increases performance

• Highly optimized implementations
of data structures & algorithms

Overview of the Java Collections Framework
class ConcurrentHashMap ... {

...
public V get(Object key) {
...
int h = spread(key

.hashCode());
if ((tab = table) != null &&

((e = tabAt(tab, (n - 1)
& h)) != null) {

if (key.equals(ek)))
return e.val;

}
...

See www.ibm.com/developerworks/library/j-jtp08223

http://www.ibm.com/developerworks/library/j-jtp08223

14

• JCF has several key benefits
• Reduces programming effort
• Enables interoperability
• Increases performance
• Reduces effort designing &

learning new (non ad hoc) APIs

Overview of the Java Collections Framework
class AbstractList ... {

...
public Iterator<E> iterator(){
return new Itr();

}

private class Itr implements
Iterator<E> {

public boolean hasNext()
{ ... }

public E next() { ... }
...

}
...

15

• JCF has several key benefits
• Reduces programming effort
• Enables interoperability
• Increases performance
• Reduces effort designing &

learning new (non ad hoc) APIs
• Fosters software reuse

• By providing standard interfaces
for collections & algorithms that
manipulate them

Overview of the Java Collections Framework

16

import java.util.ArrayList;
...
List<String> myList =

new ArrayList<>();

myList.add("I");
myList.add("am");
myList.add("Ironman");

String itemOne = myList.get(0);

myList.remove(0);

...

See docs.oracle.com/javase/8/docs/technotes/guides/collections

• Common JCF classes
• An ArrayList is a variable-sized

list of items similar to a built-in
Java array

Overview of the Java Collections Framework

http://docs.oracle.com/javase/8/docs/technotes/guides/collections

17

import java.util.ArrayList;
...
List<String> myList =

new ArrayList<>();

myList.add("I");
myList.add("am");
myList.add("Ironman");

String itemOne = myList.get(0);

myList.remove(0);

...

See docs.oracle.com/javase/8/docs/technotes/guides/collections

• Common JCF classes
• An ArrayList is a variable-sized

list of items similar to a built-in
Java array

Overview of the Java Collections Framework

List stores object of type
java.lang.String, so no need
to cast item back to String

http://docs.oracle.com/javase/8/docs/technotes/guides/collections

18

import java.util.HashMap;
...
HashMap<String, Foo> myMap =

new HashMap<>();

Foo f1 = new Foo();
Foo f2 = new Foo();
myMap.put("one", f1);
myMap.put("two", f2);

if (f2 == myMap.get("two"))
...

else if (f1 ==
myMap.get("one"))

...

• Common JCF classes
• An ArrayList is a variable-sized

list of items similar to a built-in
Java array

• A HashMap stores key/value pairs

Overview of the Java Collections Framework

19

• Concurrent collections provide
features that are frequently needed
in concurrent programming

These are the concurrent-aware
interfaces:

BlockingQueue
TransferQueue
BlockingDeque
ConcurrentMap
ConcurrentNavigableMap

Overview of the Java Collections Framework

20

• Concurrent collections provide
features that are frequently needed
in concurrent programming

Concurrent-aware classes include

LinkedBlockingQueue
ArrayBlockingQueue
PriorityBlockingQueue
DelayQueue
SynchronousQueue
LinkedBlockingDeque
LinkedTransferQueue
CopyOnWriteArrayList
CopyOnWriteArraySet
ConcurrentHashMap

Overview of the Java Collections Framework

Concurrent collections covered in CS 892 (www.dre.vanderbilt.edu/~schmidt/cs892)

http://www.dre.vanderbilt.edu/%7Eschmidt/cs892

21

Iterating Through
Collections in Java

22

Iterating Through Collections in Java
• Java has several ways to loop

through collections
• The conventional for loop

used in C/C++

List<String> myStrings =
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

for(int i = 0;
i < myStrings.size();

i++)
System.out.println
(myStrings.get(i));

Venerable, but crufty…

23

Iterating Through Collections in Java
• Java has several ways to loop

through collections
• The conventional for loop

used in C/C++

List<String> myStrings =
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

Object[] array =
myStrings.toArray();

for(int i = 0;
i < array.length;
i++)

System.out.println(array[i]);

Useful in certain situations, but typically overkill…

24

Iterating Through Collections in Java
• Java has several ways to loop

through collections
• The conventional for loop

used in C/C++
• An enhanced for-each loop for

iterating over collections

List<String> myStrings =
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

for (String aString :
myStrings)

System.out.println(aString);

Very clean & concise

25

Iterating Through Collections in Java
• Java has several ways to loop

through collections
• The conventional for loop

used in C/C++
• An enhanced for-each loop for

iterating over collections
• An Iterable interface

List<String> myStrings =
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

for (Iterator<String> it =
myStrings.iterator();

it.hasNext();
)

System.out.println
(it.next());

Pattern-oriented, but overly verbose compared to for-each loop

26

Iterating Through Collections in Java
• Java has several ways to loop

through collections
• The conventional for loop

used in C/C++
• An enhanced for-each loop for

iterating over collections
• An Iterable interface
• The forEach() method

List<String> myStrings =
new ArrayList<>();

myStrings.add("a");
myStrings.add("b");
myStrings.add("c");

myStrings
.stream()
.forEach
(aString ->

System.out.println
(aString));

Very powerful, but requires knowledge of Java lambda expressions & streams

27

End of Overvew of the Java
Collections Framework

	Slide Number 1
	Slide Number 2
	Java Collections�Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Overview of the Java Collections Framework
	Iterating Through Collections in Java
	Iterating Through Collections in Java
	Iterating Through Collections in Java
	Iterating Through Collections in Java
	Iterating Through Collections in Java
	Iterating Through Collections in Java
	End of Overvew of the Java Collections Framework

