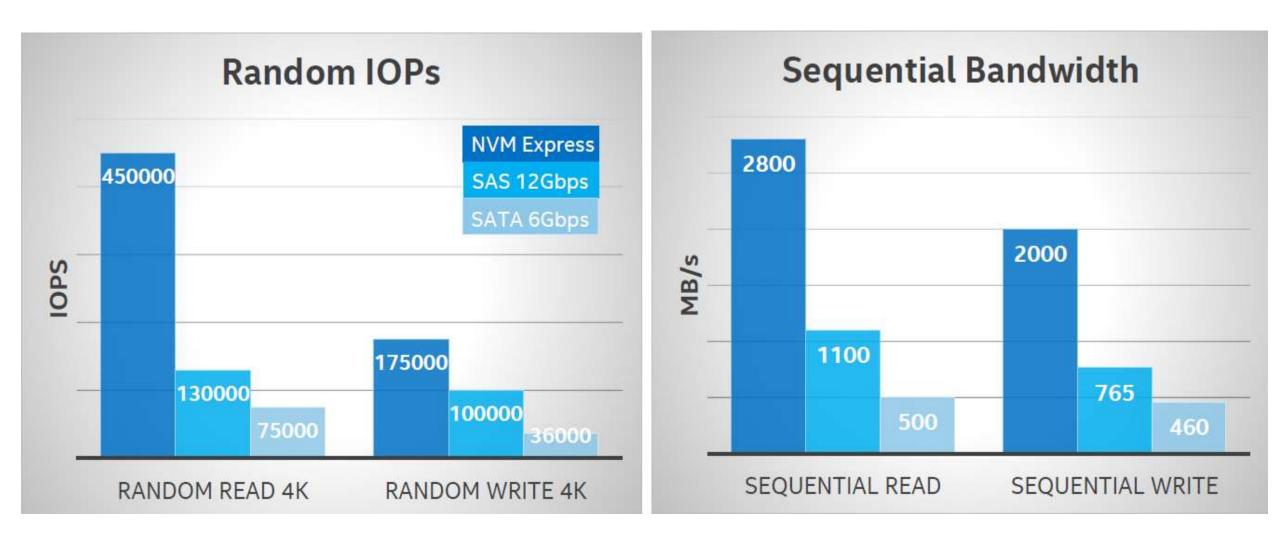


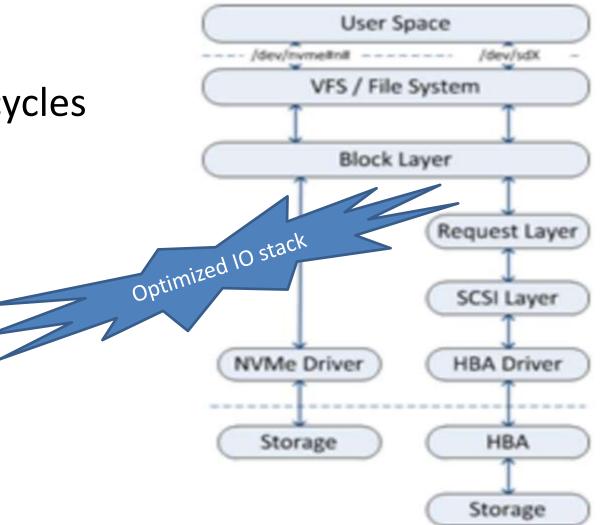
Overview of the NVMe Management Interface Specification

SNIA SDC INDIA, May 26th 2016 Karthik Venkatasubba Manjunath AM Dell R&D, Bangalore


Agenda

- NVMe
 - Legacy storage stacks on modern SSS no performance improvement
 - NVMe's improvisation over legacy protocols exploiting flash characteristics
- NVMe Management
 - In-band v/s Out-of-Band management paradigms
 - Out-of-band mgmt. protocol framework
 - OSI Model
 - Architectural Model
- Overview of Features in NVMe Management Interface
 - Control Primitives
 - NVMe Management Commands
 - NVMe Admin Commands
 - PCIe Commands
- Q&A

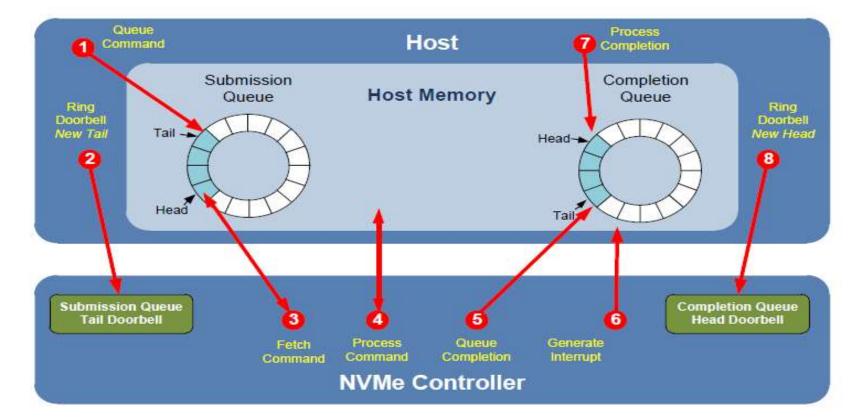
NVMe's Comparative Performance


Current Performance Bottleneck (Resolved)

Software Stack Improvements

- Submission latency and CPU cycles reduced > 50 %
 - SAS: 6.0 us, 19,500 cycles
 - NVMe: 2.8 us, 9,100 cylces

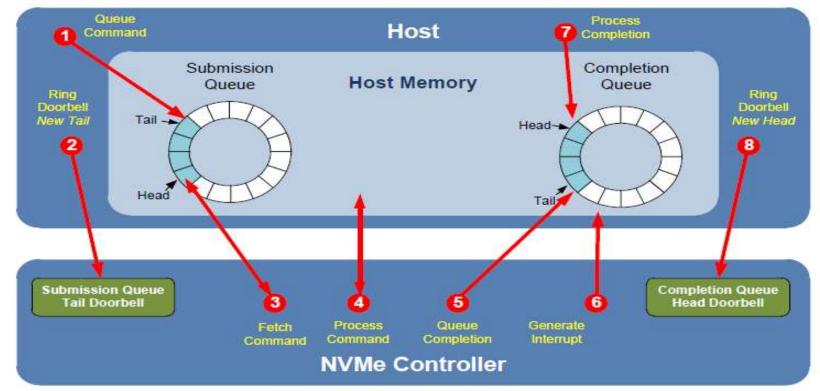
Architected for Performance


Storage Protocols Compared

	SATA	SAS		PCle	
	SATA	SAS	Multilink	SOP/PQI	NVMExpress
	1.8",2.5",				
DriveForm Factors	3.5"	2.5", 3.5"	2.5"	2.5"	2.5", Card
No of Ports/ Lanes	I	1,2	1, 2, 4	1, 2, 4	1,2, 4(8 on card)
Command Set/Que	ATA /	SCSI /	SCSI /	SCSI	134
Interface	SATA-IO	SAS	SAS	/SOP/PQI	NVM Express
Transfer Rate	6Gb/s	I2Gb/s	I2Gb/s	8 Gb/s	8 Gb/s
DriveConnector	SFF-xxxx	SFF-8680	SFF-8639	SFF-8639	SFF-8639 (2.5''),CEM (Edge-Card)
Express Bay Compatible?	Yes, 2.5"	Yes, 2.5"	Yes, 2.5"	Yes, 2.5"	Yes, 2.5"
	9W	9W	Upto	100, 2.0	100, 210
Drive Power (Typical)	Typical	Typical	25W	Upto 25W	Upto 25W
Max Bandwidth	0.6GB/s	4.8 GB/s (x2)	9.6GB/s (x4)	8 GB/s (×4)	8 GB/s (x4)
Host DriverStack (Stg Cntlr/Direct				Common Driver	Common Driver
Drives)	AHCI	IHV	IHV	(SOP/PQI)	(NVMExpress)

Command Submission

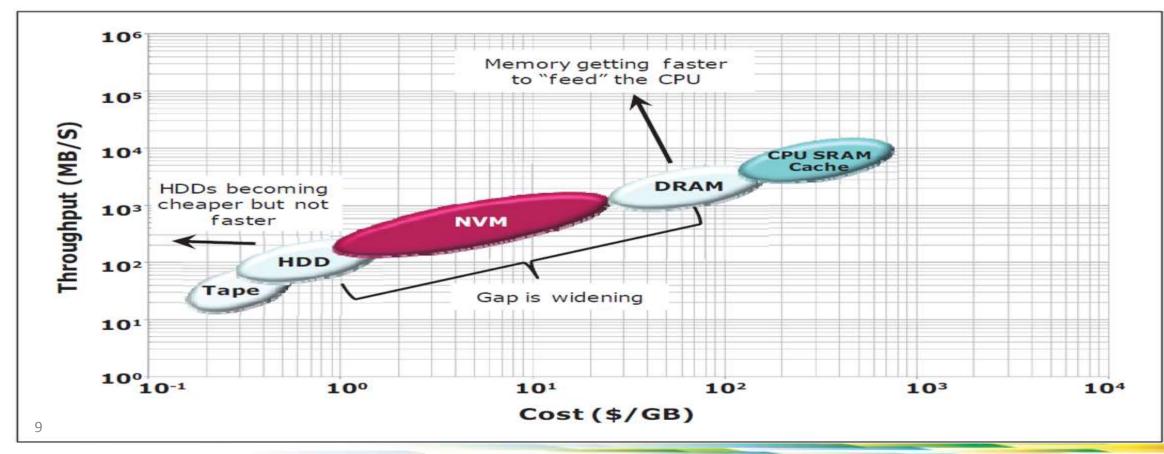
Command Submission


- 1. Host writes command to Submission Queue
- 2. Host writes updated Submission Queue tail pointer to doorbell

Command Processing

- 3. Controller fetches command
- 4. Controller processes command

Command Completion


Command Completion

- 5. Controller writes completion to Completion Queue
- 6. Controller generates MSI-X interrupt
- 7. Host processes completion
- 8. Host writes updated Completion Queue head pointer to doorbell

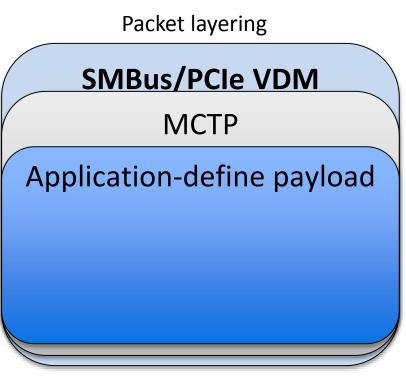
Why NVMe is becoming popular?

 There is an increasing gap in the performance of DRAM and hard drives. NVMe in the form of Solid State Drives is filling this gap.

PCIe SSD Form Factors

Add-in Card (AIC)

• 2.5" SSD FF (hot plug)



NVME MANAGEMENT

Management Protocol Stack

Transactions - Memory, IO, configuration dium-specific Control Mediu	mpleter- Memory, IO, configurationPhysical medium-specific	mpleter - Memory, IO, configuration Physical medium-specific
- Memory, I configuratio dium-specifi	mpleter - Memory, I configuration Physical medium-specifi	mpleter - Memory, I configuration Physical medium-specifi
	mpleter Physical me	mpleter Physical me

In-Band vs Out-of-Band Management

- Management Controller Host Processor (BMC) Host Operating System **BMC** Operating System NVMe Driver **NVMe-MI** Driver PCIe Root PCIe Root PCIe Root SMBus/I2C Port Port Port 2 PCle PCIe VDM SMBus/I2C Bus PCIe Bus PCle Port SMBus/I2C **NVM Subsystem** PCIe SSD
- NVMe driver communicates to NVMe controllers over PCIe per NVMe Spec
- 2. Two OOB paths: PCIe VDM and SMBus
- Note: PCIe VDMs are completely separate from inband PCIe traffic though they share the same physical connection

In-band vs Out-of-Band Management (cont'd)

- In-Band Management (OS agents)
 - Many host OSes to support (Windows, Linux, VMWare, etc.)
 - Several different flavors/distros of each OS
 - Developing/maintaining/validating a management application for every OS variant is resource/cost-prohibitive
 - New revisions of OS and NVMe driver released over time
 - If given a choice, customers would want to do away with installing management agents in the OS which continuously consume CPU cycles
 - Security implications
 - Management features vary per OS
- Out-of-Band Management (Agent-free)
 - Develop management application in one operating environment (i.e. BMC)
 - Works the same across any host OS
 - Works across no OS cases (pre-boot, deployment)
 - Doesn't consume host CPU cycles

 A programming interface that allows <u>out-of-band management</u> of an NVMe <u>Field Replaceable Unit</u> (FRU) or an embedded NVMe NVM Subsystem

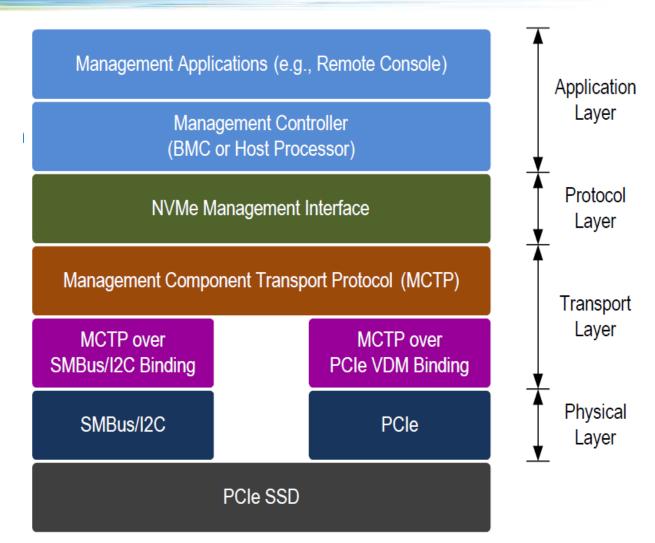
Four pillars of systems management:

- Inventorying
- Configuration
- Monitoring
- Change Management

Management operational times:

- Deployment (No OS)
- Pre-OS (e.g. UEFI/BIOS)
- Runtime
- Decommissioning
- Auxiliary Power

NVMe-MI OSI Model



MCTP defines the transport layer

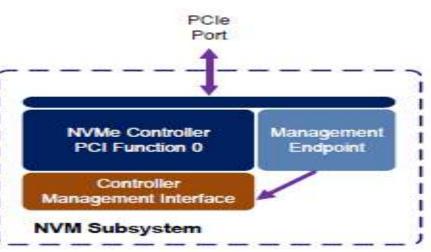
• Refer to DMTF Specs: DSP0236, DSP0237, DSP0238, DSP0235

NVMe-MI defines:

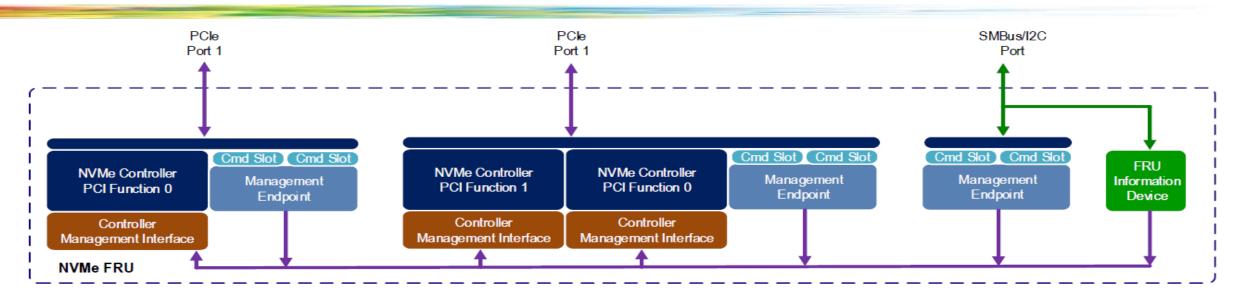
- Messages for BMC (aka SP or MC) to NVMe (aka device or PCIe SSD) out-ofband communication
- Additional flow control and exception handling on top of MCTP

VPD access

NVMe-MI Architectural Model


• **NVM Subsystem** - one or more controllers, one or more namespaces, one or more PCI Express ports, a non-volatile memory storage medium, and an interface between the controller(s) and non-volatile memory storage medium

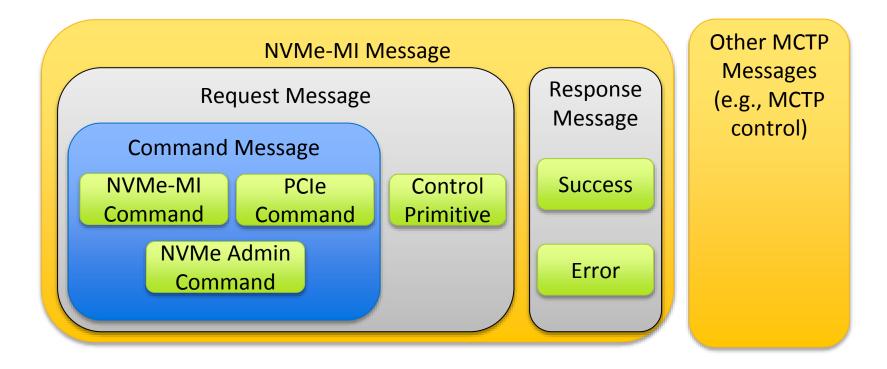
NVM Subsystem : One Controller/Port


NVM Subsystem's anatomy

Architected for Performance

NVMe-MI Architectural Model (cont'd)

An NVMe FRU consists of one and only one NVM Subsystem with


- One or more PCIe ports (PCIe VDM)
- Optional SMBus/I2C port
- Management Endpoint per port
- Two Command Slots per Management Endpoint
- Controller Management Interface per NVMe Controller
- FRU Information Device

NVME MANAGEMENT COMMANDS

NVMe-MI Message Types

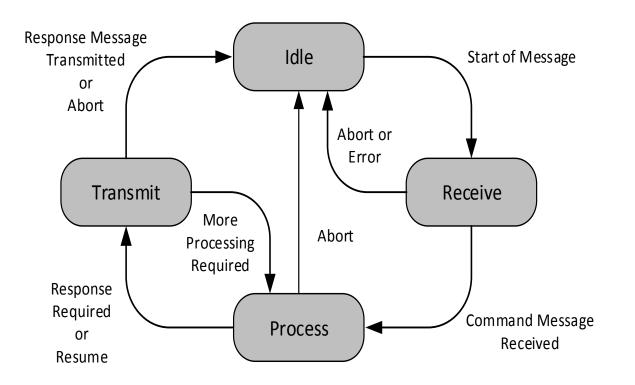
Types of MCTP Messages

Mandatory

 Control Primitives enable a Management Controller to utilize flow control and to detect and recover from errors

ent	Control Primitive	O/IVI
C	Pause	Mandatory
	Resume	Mandatory
ket and	Abort	Mandatory
	Get State	Mandatory

Replay


. . . .

 Control Primitives fit into a single packet and Abort do not require message assembly
 Get State

- Each NVMe-MI Management Endpoint has two Command Slots to service Command Messages
- Each Command Slot follows this state machine

Management Interface Command Set

- Discover Capabilities
- Optimized Health Monitoring/polling
- Initialize & troubleshoot
 NVMe-MI
- Efficiently manage NVMe at the FRU level
- Sub-system level

Command	O/M
Configuration Set	Mandatory
Configuration Get	Mandatory
Controller Health Status Poll	Mandatory
NVM Subsystem Health Status Poll	Mandatory
Read NVMe-MI Data Structure	Mandatory
Reset	Mandatory
VPD Read	Mandatory
VPD Write	Mandatory
Vendor Specific	Optional

NVMe Admin Commands

 NVMe-MI defines mechanism to send existing NVMe Admin Commands out-of-band

• Admin Commands target a controller in the NVM subsystem

Command	0/М
Get Features	Mandatory
Get Log Page	Mandatory
Identify	Mandatory
Firmware Activate/Commit	Optional
Firmware Image Download	Optional
Format NVM	Optional
Namespace Management	Optional
Security Send	Optional
Security Receive	Optional
Set Features	Optional
Vendor Specific	Optional

 PCIe Commands provide optional functionality to read and modify PCIe memory

Command	0/М
PCIe Configuration Read	Optional
PCIe Configuration Write	Optional
PCIe Memory Read	Optional
PCIe Memory Write	Optional
PCIe I/O Read	Optional
PCIe I/O Write	Optional

- Simple and optional command
- Intended for Vendors/System integrators looking for a lightweight NVMe out-of-band device monitoring
- Does not use MCTP
- Limited set of attributes could be monitored by the host via SMBus like : Temperature, Critical Warnings and Life Remaining
- Mode of operation is very much like a typical VPD access to FRU information device

Example SMBus block read of the drive's status (status flags, SMART warnings, temperature):

NVMe-MI standardizes an <u>out-of-band</u> management interface to discover, monitor and configure NVMe devices NVMe-MI adds the ability to manage NVMe <u>at the FRU level</u>

NVMe Management Interface Specification Revision 1.0 ratified and available at <u>http://www.nvmexpress.org/</u>.

Thank You!

- SSD Form Factor Working Group, <u>http://www.ssdformfactor.org/</u>
- SMBus, <u>http://smbus.org/</u>
- PCI SIG, <u>https://pcisig.com/</u>
- DMTF, <u>http://dmtf.org/</u>
- NVMe, <u>www.nvmexpress.org</u>