
Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Overview

Week 1, Lecture 1

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Course Goals

• Philosophy
– A lot of theory that we could go into … but instead …
– Pragmatic Approach

• Focus on learning principles of concurrent programming in
multicore architectures.

• “Hands-On” Course
– Write correct and efficient multi-threaded code in C or Java

using all the “state-of-the-art” tools and techniques
– Understand how to accelerate code via multi-threading
– Have notions of and some experience with distributed

memory computing

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Course Objectives

• Design applications software for chip multiprocessors
(CMPs), e.g., traditional & massively parallel multicore.

• Understand fundamental differences in writing parallel
code for traditional vs. massively parallel multicore.

• Understand importance of memory and network
subsystems in emerging CMPs.

• Understand how to transform (amenable) serial code
into GPGPU-accelerated code.

• Learn about parallelism models, communication
models, and resource limitations of CMPs.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Course Objectives (continued)

• Explain the different layers of parallelism in a CMP.
• Understand the relationship between each of the

above layers of abstraction, and more generally, the
relationship between the CMP hardware and
application software.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

What is Multicore?

• A multicore chip is a single silicon die containing
multiple fully functional sequential processor cores
tied together to form a small parallel computer.

Source: Intel Corporation

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

A Closer Look at Multicore

• Multicore Highlighted
– Intel Core 2 processor on

a larger silicon wafer.

• Anatomy
– Two cores of Intel Core 2

processor separated by a
red line.

– Cache is the very regular
portion. Light colored.

– Functional units are up
above. Dark colored.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Why Multicore?

• The MHz race has run out of steam.
– The “free ride” is now over.
– Trade-off between raw performance and practical physical

implementation and utilization.
• Power consumption an increasingly “hot” issue … enough to

nearly fry an egg.

• Result
– Virtually impossible to buy a non-multicore processor in any

computer now.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

How to Improve Performance

• Increase instructions per
clock cycle.

• Increase throughput or
work completed per unit
time.

• Lower latencies intrinsic
in the system that limit
the above metrics.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Tried-and-True Technique: Pipelining

• Basic Idea
– Breakdown complex instructions into a set of smaller steps

that are executed in order like a factory assembly line.

Source: Matthew Sottile

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Evolution of Performance and Pipelines
• Increase # of steps, thus decreasing complexity of each

step and allowing each step to complete faster.
• Fine-grained steps reduce the difference between times

in each stage for instructions of differing complexity.
• If all instructions use the same pipeline, each

instruction takes effectively the same amount of time to
complete.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Pipelining in Practice
• A fully saturated pipeline can ideally yield one completed

instruction per cycle.
• As pipelines get deeper and deeper, more important

than ever to avoid bubbles or pipeline flushes that result
in an increase in the average cycles per instruction.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Pipelining Requires ILP
• Why does pipelining work?
• Instruction level parallelism (ILP)

– Non-trivial portions of program code are composed of
sequences of instructions that can be reordered and executed
in parallel without impacting the output of the program.

• The pipeline allows multiple instructions to be “in-flight”
at any given time.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Complexity and Moores’ Law
• Complexity growth in the form of Moore’s Law

– Transistor count doubles once every ~24 months.

Source: Intel

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

The MHz Race …

• Industry got away with increases in pipeline depth
and related hardware complexity (last 4 slides) in
order to ramp-up processor clock speeds.

• “Houston … we have a problem …”
– Power and cooling are design constraints of equal

importance to performance now.
• Cooling: amount of cooling necessary, type of cooling,

packaging.
• Power: battery requirements, electric bills.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Power Density

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Power

• Power is really a function of …
– Die size

• More transistors and wires to feed
– Frequency f  How often do you need to feed them
– Voltage V  At what level do you need to feed them

• Pipelining: A double-edged sword
– Better Performance (Maybe) and Higher Power Consumption

• Increase # of small steps to realize an instruction.
More small steps = deeper pipeline = higher f and V, thus
enabling better performance but

• Better performance only if pipeline can be kept full. Difficult to do
as pipelines get deeper.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Frequency, Voltage, and Power

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Solutions to Power & Cooling

• Reduce component count (transistors and wires)
– Reduce complexity

• Shrink components
• Manage power intelligently

– Example: C. Hsu and W. Feng, “A Power-Aware Run-Time
System for High-Performance Computing,” ACM/IEEE
SC2005, November 2005.

• Reduce leakage of transistors

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Key to Performance: ILP?

• Smaller steps = deeper pipeline = more ILP = higher f but
– Hardware much more complex.
– Hardware runs hotter.
– Deeper pipelines and better ILP identification is getting harder

and more costly  diminishing returns

• Solution?
– Multicore. A change in technology direction that forces a

fundamental rethinking of how to continue boosting performance.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Multicore: Solution to Power & Performance

• Multicore Recipe
– Stop increasing the complexity of single cores.
– Replicate simpler cores on a die and exploit thread-level

parallelism (TLP).
– Reduce clock rates as pipelines do not have to be so deep,

thus reducing power requirements.

• Hyperthreading NOT!
– Many units in the CPU were shared between the “virtual

cores” that hyperthreading provided, limiting performance
seen in practice.

– Hyperthreaded processors (SMT) still suffer from the
complexity problem, leading to extreme power and cooling
requirements.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Don’t Be Misled!

• Pipelining is here to stay.
– At a certain granularity, blocks of instructions in typical

programs exhibit a good degree of ILP.

• New CPUs still improve pipelining and related single-
threaded performance improvements.
– … but it’s not the focus anymore.

Overview

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Reading Assignment

• Brian Hayes, “Computing in a Parallel Universe,”
American Scientist, November-December 2007.
http://www.americanscientist.org/issues/pub/computi
ng-in-a-parallel-universe

• Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software,”
Dr. Dobb's Journal, 30(3), March 2005.
http://gotw.ca/publications/concurrency-ddj.htm

