

OVERVIEW OF AUTOMATED DRIVING RESEARCH IN EUROPE

Dr. Angelos Amditis

Research Director, ICCS

OUTLINE

- Introduction
- L3Pilot: Pilot Testing
- INFRAMIX: Hybrid Infrastructure
- SAFERtec: Cyber-security /
 Security Assurance
- O Conclusions

INTRODUCTION

- Automation in Road Transport is a hot topic worldwide
- Several aspects are important and require attention and further research
- There are **several gaps** esp. regarding:
 - Common evaluation framework and testing
 - Road infrastructure
 - OPhysical
 - ODigital
 - Cyber-security
 - •

KEY EUROPEAN INITIATIVES

EUROPEAN PROJECTS

OL3Pilot

Testing of L3 automated vehicles functions

OINFRAMIX

Hybrid (Physical & Digital) Road Infrastructure

OSAFERtec

Cyber-security / Security Assurance

L3PILOT - OVERVIEW

- Large-scale piloting of AVs, mainly SAE Level 3 and some Level 4 functions (Sep 2017 – Aug 2021)
- 1,000 test drivers and 100 vehicles in 11 European countries

Website: http://l3pilot.eu/

OO O

L3PILOT - KEY ACTIVITIES

- Code of Practice (CoP) for Automated Driving
- Methodology for piloting, testing and evaluation (research questions and hypotheses, performance indicators & measures, impact assessment, socio-economic evaluation, etc.)
- Evaluation framework
- Legal aspects / Legislation
- Cybersecurity
- O Data logging tools & data management
- Pilots execution

PILOT SITES

EVALUATION

- Evaluation of AD functions: technical, user acceptance, driving & travel behaviour
- Assessment of long-term effects of AD on user attitudes and acceptance
- Investigation of interactions between different traffic participants in different automation modes
- Assessment of readiness and reliability of AD functions
- Tools for the effective analysis, evaluation and impact assessment

USE CASES OVERVIEW

Use cases

PREPARING ROAD INFRASTRUCTURE FOR MIXED TRAFFIC

INFRAMIX prepares road infrastructure for mixed vehicles traffic flows (June 2017-May 2020) https://www.inframix.eu/

11 partners 2 highway real test sites, towards a "hybrid" road infrastructure:

- Design new and upgrade existing physical & digital road infrastructure elements
- Design novel signaling and visualization elements
- Design and implement novel traffic estimation, monitoring and control strategies
- Develop a co-simulation environment
- Develop hybrid testing system
- Evaluate user's appreciation and acceptance
- Evaluate traffic safety
- Create a Road Infrastructure Classification Scheme

PREPARING ROAD INFRASTRUCTURE FOR MIXED TRAFFIC

Three traffic scenarios under investigation

Dynamic lane assignment to automated driving

Roadworks zones

Selection criteria:

- a) expected impact on traffic flow
- b) expected impact on traffic safety
- importance of the challenges faced, in the sense that if not handled in a proper and timely way, they will negatively influence the introduction of automated vehicles on the roads
- d) ability to generalize on the results (applicable in other scenarios and environments)

INFRAMIX 3 SCENARIOS

→ 8 USE CASES

- Scenario 1: Dynamic Lane Assignment (incl. speed recommendations)
 - Real time lane assignment under Dynamic Penetration Rate of Automated Vehicles (AVs)
 - 2. Exceptional circumstances e.g. adverse weather conditions
 - 3. A conventional vehicle drives on a dedicated lane for AVs
- Scenario 2: Roadworks zones
 - 4. Roadworks zone in mixed traffic Single Lane Closure
 - 5. Roadworks zone in mixed traffic New lane Design
- Scenario 3: Bottlenecks
 - 6. AVs Driving Behaviour Adaptation in Real Time at Sags
 - 7. Lane-Change Advice to connected vehicles at Bottlenecks
 - 8. Lane-Change Advice combined with Flow Control at Bottlenecks for all vehicles

INFRASTRUCTURE EVALUATION & OPTIMIZATION

Real tests in modern highways:

Girona (Spain)

Graz (Austria)

Co-simulation environment

 Hybrid testing: coupling infrastructure elements and vehicles on real roads with virtual traffic environment

INFRAMIX IMPACT IN AUTOMATED ROAD TRANSPORT

Hybrid testing system

- Testing of new developments of connected and automated driving
- Emulation of critical traffic situation in a safe artificial environment
- Real-time communication with real-world vehicles

Road infrastructure for mixed traffic

- New pictogram code for traffic signs for mixed traffic
- Novel traffic monitoring recommendations (wireless messages extensions)

Infrastructure Classification Scheme

- Indication of the infrastructure connectivity, automation capabilities, capability to host vehicles of different levels of automation and connectivity.
- A guide of how to incrementally upgrade levels of infrastructure to avoid stranded investments.
- Boost discussion at stakeholder's workshop

INFRASTRUCTURE-CONNECTED VEHICLES AND SECURITY ASSURANCE

Numerous interfaces and an increased attack surface are exposed

To what extent are we 'sure' that the involved technology meets the requirements for

PRIVACY

SAFETY

- Quantification of assurance is complex and costly!
 - Typically relies on generic frameworks
 - Connected-vehicle-ecosystem details: not considered

EU SAFERtec to design and experimentally evaluate an agile assurance framework tailor-made for V2I settings

Research Institutes

Project facts

Start date: January 2017 **Duration**: 36 months **Budget:** 3.8 MEuros

TRB 2018 - AD Research in EU

16

Jan 2018

WORK OVERVIEW & USE-CASES SCOPE

Now

January 2017 March 2017 June 2017 September 2017

December 2017

March 2018

Modeling of V2I use-cases

Use-cases, attack modeling, risk analysis

To test the proposed framework

Development of the connected-vehicle system Prototype vehicle with 3rd party HW/SW connected to infrastructure

Design of a Security Assurance Framework Innovative methodology to quantify V2I security/privacy assurance

• Under two general V2I instances we study:

- Optimal driving-speed advice
- Real-time traffic-hazard information
- Priority request in intersection-crossing

Connected-vehicle system

Connected-vehicle system Instance 2

Jan 2018

17

A BIT OF TECHNICALITIES:

REQUIREMENTS ELICITATION & MODELLING

 Input: the high level description of the V2I considered use-cases

 Output: identified security and privacy requirements and countermeasures

Privacy Requirements List and the

Stage 5 - Elicitation of Security and

Privacy Requirements

Step 5.1 Define Security and

Step 5.2 Define Security and Privacy Objectives

Step 5.3 Define Security and Privacy Requirements

Step 5.4 Define Security and Privacy Metrics

Stage 6 – Security and Privacy

Requirements Analysis

Step 6.2 Identify possible

Step 6.1 Analyse Security and Privacy Requirements

EXPECTED ACHIEVEMENTS AND IMPACT

Introduction of an agile security assurance framework tailored for V2I

Experimental validation of the framework using a prototype vehicle and dedicated SW and HW

Contribution to relevant standards

Toolkit to enable (semi-)automated generation of assurance levels for Connected Vehicles

Assurance Framework Toolkit

Higher Level of Assurance (and trust) for Connected Vehicles and services

TRB 2018 - AD Research in EU

Jan 2018

19

CONCLUSIONS (1)

- A common evaluation framework for AD functions (technical, user acceptance, driving & travel behaviour) is necessary
- Assessment of the long-term effects, readiness and reliability of AD functions is needed for proper deployment
- Tools for the effective analysis, evaluation and impact assessment are missing
- Road infrastructure must be upgraded for mixed traffic
- An Infrastructure Classification Scheme is needed
- Simulation and hybrid testing is of high value for future research

 Real implementation of novel traffic monitoring and control strategies for mixed traffic is necessary

Conclusions (2)

 Establishing vehicular connectivity comes with further cyber-security, privacy and safety concerns

- An under-explored area: AutomotiveSecurity Assurance
 - Degree of confidence that the realized automotive (cyber-)security controls will reduce anticipated risks
- EU SAFERtec advances the V2I security assurance research aiming to increase trust in connected vehicles/ITS

Dr. Angelos Amditis

Research Director, ICCS

a.amditis@iccs.gr

()

+30 210 772 2398

9, Iroon Polytechneiou, 15773 Zografou - Athens, Greece

http://i-sense.iccs.gr/

Contact Ust.