
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Dynamic Vulnerability
Identification:
Continuous Web Application Assessment

Ryan C. Barnett
Director of Application Security
Breach Security
Ryan.Barnett@breach.com

Apr. 17th 2008

2OWASP

Introduction - Ryan Barnett
Background

Director of Application Security at Breach
Security.

ModSecurity Community Manager.
Background as an IDS/Web Security Admin.
Author of Preventing Web Attacks with Apache

(Addison/Wesley, 2006).

3OWASP

Introduction - Ryan Barnett
Open Source and Community Projects

Board Member, Web Application Security Consortium.
Project Leader, WASC Distributed Open Proxy Honeypots.
Speaker, Open Web Application Security Project
Instructor for the SANS Institute.
Project Leader, Center for Internet Security’s Apache
Benchmark.

4OWASP

Agenda

Web Application Defects
What are they?

How do you find them (Traditional Approaches)?
Source Code Reviews
Vulnerability Scanning

How do you find them (New Approaches)?
Dynamic Vulnerability Identification with Web Application

Firewalls (WAFs)
Scanning + WAFs

Dynamic Vulnerability Identification Examples
 Improper Error Handling - Application Error Messages
 Insufficient Input Validation – SQL Injection
Non-use HTTPOnly Cookie Option – Cross-site Scripting
 Insecure Session Management – Session Hijacking

Conclusion/Questions

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Web Application Defects:
What Are They?

6OWASP

Web Application Defects
Security Defects are Vulnerabilities

New class of application defect – the security
defect

Requires new developer training and testing
procedures
SDLC tests usually only focus on “functionality”

testing

Not related to functionality rather relates to
business risk
What happens when a user enters unexpected data?
How does the application respond?

7OWASP

Desired
Application

Functionality

Actual
Coded

Functionality

Desired
Application

Functionality

Configuration
Mistake

(Security Defect)

Unintended
Functionality

(Security Defect)

Web Application Development
Unintended Coding/Configuration Errors

8OWASP

Web Application Defects
Security Defects are Vulnerabilities

Often considered secondary in priority to
functional requirements
Due to business deadlines, if an app passes functional

testing it goes live.
Try and “find-n-fix” vulnerabilities in production.

Not protected from exploitation by network
security (IDS/IPS)
The devices have a tough time dealing with custom

coded applications.
Their rule sets are derived from publicly disclosed

vulnerabilities and exploits.

9OWASP

Web Application Defects
The Cost

Exposes organizations to significant risk
The financial impact of identity theft breaches are on

the rise with an average cost of $6.3 million per
incident1

Up to 80% of successful attacks against organizations
exploit vulnerabilities in Web applications

These attacks exploit insecure code within applications
to compromise underlying

SQL Injection is the top reason for card data
compromise2

1 – Poneman Institute, 2007 Annual Study: U.S. Cost of a Data Breach
2 - http://www.mastercard.com/us/sdp/assets/pdf/SDP_Presentation.pdf

10OWASP

Web Application Defects
Defect to Attack Mapping

Defects in a Web application relate directly to
vulnerabilities and expose them to various attacks
Lack of User Input Validation => SQL Injection
Lack of User Input Validation => Cross-Site Scripting
Insecure User Session Management => Session
Hijacking/Cookie Poisoning
Insecure Configuration => Malicious Application
Modification/Defacement
Poor Administrative Authentication => Privilege
Escalation

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Web Application Defects:
How Do You Find Them?
Traditional Approaches

12OWASP

Web Application Vulnerability Identification
Traditional Approaches

Source Code Reviews
Send the application code off for analysis by a secure

code review company

Vulnerability Scanning
Bring in experts to test and secure Web applications
Scanning for vulnerabilities
Remediate in development, outsource, or vendor
Maintain with regular scans

13OWASP

Web Application Vulnerability Identification
Source Code Reviews - Benefits

There are some issues that you just won’t be
able to identify unless you look at the code
OWASP Top 10

 Insecure Cryptographic Storage

WASC Threat Classification
 Insufficient Authorization

Code reviews allow you to identify certain
vulnerabilities without the need for live client
interaction
Vulnerability scanners have to send stimulus to the

web app in order to interpret the response and make
a determination on the existence of a vuln

14OWASP

Web Application Vulnerability Identification
Source Code Reviews – Disadvantages (1)

Very expensive
Consultants are paid by the hour

Almost always must be outsourced
Dev staff might not have adequate secure coding

background
Do you really want the same people that coded the

app be the same ones who review it?
Takes a lot of time to find vulns

Even with automated source code security tools, full
code reviews involve manual review components

15OWASP

Web Application Vulnerability Identification
Source Code Reviews – Disadvantages (2)

Takes a lot of time to fix vulns
New projects needed
Extensive regression testing

Only secures the code not the platform and
environment
Code reviews lack an “in-context” view of how it will

actually be run in production
Football Analogy – Scouting Combine vs. Live Games

Must be done for every version of the
application
Every code change may introduce new vulnerabilities

16OWASP

Web Application Vulnerability Identification
Vulnerability Scanning – Benefits

 Scanning/testing applications for vulnerabilities before going to
production is absolutely a recommended best practice

 Scanners probe applications for vulnerabilities by sending requests
to the application then analyzing how the application responds.
 Scanners act differently than real attackers
 Scanners look for indications of a vulnerability rather than actually

exploiting an issue
 Example – SQL Injection single tick

 Works well at identifying specific types of vulnerabilities, such as:
 Identifying user input fields where data is not properly validated
 Detecting default passwords and configurations
 Locating parts of the application that should not be accessible

externally, such as script directories and configuration files
 Identifying when common session management techniques are

implemented insecurely
 Integrated into Dev and QA tools and environments

17OWASP

Provides only a temporary “snapshot” of web
applications and vulnerabilities

 Intelligence degrades in between active scans

Active scanning can be “harmful” to some applications
Most assessment “Rules of Engagement” place extremely

restrictive controls around who, what, where, when and how
web applications may be actively scanned

Scan occurs
Accuracy decay

Time

Q
ua

lit
y

t - Coherence time

t

Web Application Vulnerability Identification
Vulnerability Scanning – Disadvantages (1)

18OWASP

Web Application Vulnerability Identification
Vulnerability Scanning – Disadvantages (2)

Unless the scanning tool has been tuned and
results reviewed by an expert, assessments are
likely to be incomplete

Scanners perform a breadth-first traversal of a
web site for links to map a site and identify
areas of user input
These crawls are usually only a few levels deep and

miss large portions of the application
Credentialed vs. Anonymous access
Unless properly configured, scanners can miss

possible navigation options (pull-down, user fields)

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Web Application Defects:
How Do You Find Them?
New Approaches

20OWASP

Dynamic Vulnerability Identification
Web Application Firewalls

Dynamic means “real-time”, 24x7 visibility
As opposed to the “snap-shots” in time of scanning
Real-time application change discovery

Due to WAF’s network placement they can
monitor all transactions between clients and web
applications for vulnerabilities

Applications reveal a great deal about themselves:
App vendor, version

No disruption of normal operations – as we do not
need to send data to the app

21OWASP

SSL / HTTP - Request

SSL / HTTP - Response

Network Deployment:
 In-line Transparent Bridge

mode
 Bi-directional web traffic

analysis

Dynamic Vulnerability Identification
In-line WAF

22OWASP

Network Deployment:
 Captures data from a SPAN port or TAP
 Bi-directional web traffic analysis

SSL / HTTP - Request

SSL / HTTP - Response

Dynamic Vulnerability Identification
Out-of-line WAF

23OWASP

Dynamic Vulnerability Identification
Scanning + Web Application Firewalls

The concept is combine the vulnerability
identification capabilities of scanning with the
remediation (virtual patching) capabilities of WAFs

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Dynamic Vulnerability
Identification Examples

25OWASP

All of these example AppDefects can be
identified by WAFs

WASC Distributed Open Proxy Honeypot Project
http://www.webappsec.org/projects/honeypots/
Uses ModSecurity – http://www.modsecurity.org

Findings Reports with real customer data
WebDefend AppDefects Data (sanitized)

Commercial WAF Integration
Responding to ongoing incident

Commercial Web Assessments

Dynamic Vulnerability Identification Examples
Data Sources

26OWASP

Dynamic Vulnerability Identification Examples
Application Errors

Defect:
Improper error handling

Attack Technique:
Attackers are often able to bypass input filtering

(client-side JS) and inject meta-characters
Many times, app generate errors even when the client

does not send malicious data
 Most often associated with connectivity or config changes

made during trouble-shooting

Consequence:
Sensitive information leakage

27OWASP

Dynamic Vulnerability Identification Examples
Application Errors

28OWASP

Dynamic Vulnerability Identification Examples
Reveals Version Information

29OWASP

Dynamic Vulnerability Identification Examples
Insufficient Input Validation - SQL Injection

Defect:
Lack of validation for user input used in a database

query

Vulnerability:
By using special characters, attackers are able to obtain

complete access to an application’s database

Technique:
Attackers are able to append their own commands to

an application’s database queries

Consequence:
Identity Theft

30OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – How It Works

Research Phase:
Attackers probe the application to identify a user data entry field

that is used in a database query
Attackers enter intentional incorrect text values to generate

informative error messages to map out table and field names

Exploitation Phase:
Attackers enter text that includes appended commands to control

the database
Typically these commands will:

 Extract sensitive information in bulk from the database
 Modify the database to corrupt the information
 Encrypt the data to hold it hostage until ransom is paid
 Delete the entire contents of the database

31OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Reconnaissance Probe

32OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Injected String

33OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Targeting DB Varibles

34OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – DB Audit Log Evasion Attempt

35OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – DB Error Message

36OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – 500 Status Code and DB Error Text

37OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Includes Variable Query Results

38OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Complex Query

39OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Targeting Customer Data

40OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Response Includes DB Table Data

41OWASP

ModSecurity
Inbound Request

 Request Indicates an automated program explored the site
 SQL Injection Attack. Matched signature <or 1=>

Outbound Response
 IIS Information Leakage
 SQL Error Message

Dynamic Vulnerability Identification Examples
SQL Injection – Detection Methods

42OWASP

Defect:
Application does not use the HttpOnly Cookie Option

Vulnerability:
The HttpOnly cooking flag option helps to prevent

client-side code from access the cookie data within the
browser

Technique:
If attackers are able to insert XSS code, they may be

able to steal SessionID credentials

Consequence:
Session Hijacking

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option

43OWASP

How it works:
Research Phase:

Attackers probe the application to identify a user data
entry field that is incorporated into the application (e.g.
review or user forum page)

Exploitation Phase:
Attackers prepare a script for injection into the

application
 Silently send SessionID cookie data to an attacker’s site

Attackers submit text containing the malicious script to
the input field and modify the application

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option - XSS

44OWASP

DEMO
Using BadStore as the buggy app
Show how Cookies that do not have HttpOnly flag

can be stolen by XSS vulnerability in the Guest
Book application

Then use BurpProxy to show how adding the
HttpOnly flag can prevent this attack vector

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option - XSS

45OWASP

WebDefend
Outbound Response

 Monitors all outbound “Set-Cookie” response headers and flags
SessionID cookies that do not include the HttpOnly flag

Dynamic Vulnerability Identification Examples
 Non-Use of HttpOnly Cookie Option – Detection
Methods

46OWASP

Defect:
Insecure method of managing application user sessions

Vulnerability:
By manipulating the session management process,

attackers are able to impersonate legitimate users with
access to their data

Technique:
Attackers modify session identifiers to hijack another

user’s session

Consequence:
Identity Theft

Dynamic Vulnerability Identification Examples
Insecure Session Management – Session Hijacking

47OWASP

How it works:
Research Phase:

Attackers study the application to understand the
underlying mechanism used to manage application user
sessions

Attackers repeatedly create new users and log into the
application to understand the sequencing for user
session identifiers

Review html source code for information leaks

Exploitation Phase:
Attacker modifies the application session identifier to

impersonate a legitimate user

Dynamic Vulnerability Identification Examples
Insecure Session Management – Session Hijacking

48OWASP

Dynamic Vulnerability Identification Examples
Insecure Session Management – Source Code Leaks

49OWASP

GET /login/menu.php HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-shockwave-flash, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Referer: https://www.example.com/login/login.php
Accept-Language: en-us
Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; .NET CLR 1.1.4322)
Host: www.example.com
Cache-Control: no-cache
Cookie: cp_user=222557-1;
id_hash=19d248f567170f6ddfc45495942b58ca

GET /login/menu.php HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-shockwave-flash, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Referer: https://www.example.com/login/login.php
Accept-Language: en-us
Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; .NET CLR 1.1.4322)
Host: www.example.com
Cache-Control: no-cache
Cookie: cp_user=222558;
id_hash=19d248f567170f6ddfc45495942b58ca

• This real example web app provided two cookies to users - cp_user is
the customer ID number and the id_hash is a value that means the
users is “authenticated”

• The defect is that these two cookie values were evaluated independently
from each other which means that an attacker can alter the cp_user
value and access other customer data

Dynamic Vulnerability Identification Examples
Insecure Session Management – Logic Flaw

50OWASP

WebDefend
Inbound Requests

 Identifies Cookie Tampering/Session Hijacking attempts by
correlating which Cookies were provided to which clients

Outbound Response
 Monitors all outbound responses for the existence of source

code leakages

Dynamic Vulnerability Identification Examples
 Insecure Session Management – Detection Methods

51OWASP

Conclusion

Web Application Defects are a serious problem
Traditional approaches to identifying these

vulnerabilities are not adequate
Source Code Reviews
Vulnerability Scanning

Web Application Firewalls offer real-time,
continuous vulnerability identification
Non-invasive approach vs. actively probing the

application

52OWASP

Questions?

Thank you!

Ryan C. Barnett

Business: Ryan.Barnett@breach.com

Personal: RCBarnett@gmail.com

