
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Dynamic Vulnerability
Identification:
Continuous Web Application Assessment

Ryan C. Barnett
Director of Application Security
Breach Security
Ryan.Barnett@breach.com

Apr. 17th 2008

2OWASP

Introduction - Ryan Barnett
Background

Director of Application Security at Breach
Security.

ModSecurity Community Manager.
Background as an IDS/Web Security Admin.
Author of Preventing Web Attacks with Apache

(Addison/Wesley, 2006).

3OWASP

Introduction - Ryan Barnett
Open Source and Community Projects

Board Member, Web Application Security Consortium.
Project Leader, WASC Distributed Open Proxy Honeypots.
Speaker, Open Web Application Security Project
Instructor for the SANS Institute.
Project Leader, Center for Internet Security’s Apache
Benchmark.

4OWASP

Agenda

Web Application Defects
What are they?

How do you find them (Traditional Approaches)?
Source Code Reviews
Vulnerability Scanning

How do you find them (New Approaches)?
Dynamic Vulnerability Identification with Web Application

Firewalls (WAFs)
Scanning + WAFs

Dynamic Vulnerability Identification Examples
 Improper Error Handling - Application Error Messages
 Insufficient Input Validation – SQL Injection
Non-use HTTPOnly Cookie Option – Cross-site Scripting
 Insecure Session Management – Session Hijacking

Conclusion/Questions

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Web Application Defects:
What Are They?

6OWASP

Web Application Defects
Security Defects are Vulnerabilities

New class of application defect – the security
defect

Requires new developer training and testing
procedures
SDLC tests usually only focus on “functionality”

testing

Not related to functionality rather relates to
business risk
What happens when a user enters unexpected data?
How does the application respond?

7OWASP

Desired
Application

Functionality

Actual
Coded

Functionality

Desired
Application

Functionality

Configuration
Mistake

(Security Defect)

Unintended
Functionality

(Security Defect)

Web Application Development
Unintended Coding/Configuration Errors

8OWASP

Web Application Defects
Security Defects are Vulnerabilities

Often considered secondary in priority to
functional requirements
Due to business deadlines, if an app passes functional

testing it goes live.
Try and “find-n-fix” vulnerabilities in production.

Not protected from exploitation by network
security (IDS/IPS)
The devices have a tough time dealing with custom

coded applications.
Their rule sets are derived from publicly disclosed

vulnerabilities and exploits.

9OWASP

Web Application Defects
The Cost

Exposes organizations to significant risk
The financial impact of identity theft breaches are on

the rise with an average cost of $6.3 million per
incident1

Up to 80% of successful attacks against organizations
exploit vulnerabilities in Web applications

These attacks exploit insecure code within applications
to compromise underlying

SQL Injection is the top reason for card data
compromise2

1 – Poneman Institute, 2007 Annual Study: U.S. Cost of a Data Breach
2 - http://www.mastercard.com/us/sdp/assets/pdf/SDP_Presentation.pdf

10OWASP

Web Application Defects
Defect to Attack Mapping

Defects in a Web application relate directly to
vulnerabilities and expose them to various attacks
Lack of User Input Validation => SQL Injection
Lack of User Input Validation => Cross-Site Scripting
Insecure User Session Management => Session
Hijacking/Cookie Poisoning
Insecure Configuration => Malicious Application
Modification/Defacement
Poor Administrative Authentication => Privilege
Escalation

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Web Application Defects:
How Do You Find Them?
Traditional Approaches

12OWASP

Web Application Vulnerability Identification
Traditional Approaches

Source Code Reviews
Send the application code off for analysis by a secure

code review company

Vulnerability Scanning
Bring in experts to test and secure Web applications
Scanning for vulnerabilities
Remediate in development, outsource, or vendor
Maintain with regular scans

13OWASP

Web Application Vulnerability Identification
Source Code Reviews - Benefits

There are some issues that you just won’t be
able to identify unless you look at the code
OWASP Top 10

 Insecure Cryptographic Storage

WASC Threat Classification
 Insufficient Authorization

Code reviews allow you to identify certain
vulnerabilities without the need for live client
interaction
Vulnerability scanners have to send stimulus to the

web app in order to interpret the response and make
a determination on the existence of a vuln

14OWASP

Web Application Vulnerability Identification
Source Code Reviews – Disadvantages (1)

Very expensive
Consultants are paid by the hour

Almost always must be outsourced
Dev staff might not have adequate secure coding

background
Do you really want the same people that coded the

app be the same ones who review it?
Takes a lot of time to find vulns

Even with automated source code security tools, full
code reviews involve manual review components

15OWASP

Web Application Vulnerability Identification
Source Code Reviews – Disadvantages (2)

Takes a lot of time to fix vulns
New projects needed
Extensive regression testing

Only secures the code not the platform and
environment
Code reviews lack an “in-context” view of how it will

actually be run in production
Football Analogy – Scouting Combine vs. Live Games

Must be done for every version of the
application
Every code change may introduce new vulnerabilities

16OWASP

Web Application Vulnerability Identification
Vulnerability Scanning – Benefits

 Scanning/testing applications for vulnerabilities before going to
production is absolutely a recommended best practice

 Scanners probe applications for vulnerabilities by sending requests
to the application then analyzing how the application responds.
 Scanners act differently than real attackers
 Scanners look for indications of a vulnerability rather than actually

exploiting an issue
 Example – SQL Injection single tick

 Works well at identifying specific types of vulnerabilities, such as:
 Identifying user input fields where data is not properly validated
 Detecting default passwords and configurations
 Locating parts of the application that should not be accessible

externally, such as script directories and configuration files
 Identifying when common session management techniques are

implemented insecurely
 Integrated into Dev and QA tools and environments

17OWASP

Provides only a temporary “snapshot” of web
applications and vulnerabilities

 Intelligence degrades in between active scans

Active scanning can be “harmful” to some applications
Most assessment “Rules of Engagement” place extremely

restrictive controls around who, what, where, when and how
web applications may be actively scanned

Scan occurs
Accuracy decay

Time

Q
ua

lit
y

t - Coherence time

t

Web Application Vulnerability Identification
Vulnerability Scanning – Disadvantages (1)

18OWASP

Web Application Vulnerability Identification
Vulnerability Scanning – Disadvantages (2)

Unless the scanning tool has been tuned and
results reviewed by an expert, assessments are
likely to be incomplete

Scanners perform a breadth-first traversal of a
web site for links to map a site and identify
areas of user input
These crawls are usually only a few levels deep and

miss large portions of the application
Credentialed vs. Anonymous access
Unless properly configured, scanners can miss

possible navigation options (pull-down, user fields)

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Web Application Defects:
How Do You Find Them?
New Approaches

20OWASP

Dynamic Vulnerability Identification
Web Application Firewalls

Dynamic means “real-time”, 24x7 visibility
As opposed to the “snap-shots” in time of scanning
Real-time application change discovery

Due to WAF’s network placement they can
monitor all transactions between clients and web
applications for vulnerabilities

Applications reveal a great deal about themselves:
App vendor, version

No disruption of normal operations – as we do not
need to send data to the app

21OWASP

SSL / HTTP - Request

SSL / HTTP - Response

Network Deployment:
 In-line Transparent Bridge

mode
 Bi-directional web traffic

analysis

Dynamic Vulnerability Identification
In-line WAF

22OWASP

Network Deployment:
 Captures data from a SPAN port or TAP
 Bi-directional web traffic analysis

SSL / HTTP - Request

SSL / HTTP - Response

Dynamic Vulnerability Identification
Out-of-line WAF

23OWASP

Dynamic Vulnerability Identification
Scanning + Web Application Firewalls

The concept is combine the vulnerability
identification capabilities of scanning with the
remediation (virtual patching) capabilities of WAFs

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Ryan C. Barnett
Ryan.Barnett@breach.com

The OWASP Foundation
http://www.owasp.org

Dynamic Vulnerability
Identification Examples

25OWASP

All of these example AppDefects can be
identified by WAFs

WASC Distributed Open Proxy Honeypot Project
http://www.webappsec.org/projects/honeypots/
Uses ModSecurity – http://www.modsecurity.org

Findings Reports with real customer data
WebDefend AppDefects Data (sanitized)

Commercial WAF Integration
Responding to ongoing incident

Commercial Web Assessments

Dynamic Vulnerability Identification Examples
Data Sources

26OWASP

Dynamic Vulnerability Identification Examples
Application Errors

Defect:
Improper error handling

Attack Technique:
Attackers are often able to bypass input filtering

(client-side JS) and inject meta-characters
Many times, app generate errors even when the client

does not send malicious data
 Most often associated with connectivity or config changes

made during trouble-shooting

Consequence:
Sensitive information leakage

27OWASP

Dynamic Vulnerability Identification Examples
Application Errors

28OWASP

Dynamic Vulnerability Identification Examples
Reveals Version Information

29OWASP

Dynamic Vulnerability Identification Examples
Insufficient Input Validation - SQL Injection

Defect:
Lack of validation for user input used in a database

query

Vulnerability:
By using special characters, attackers are able to obtain

complete access to an application’s database

Technique:
Attackers are able to append their own commands to

an application’s database queries

Consequence:
Identity Theft

30OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – How It Works

Research Phase:
Attackers probe the application to identify a user data entry field

that is used in a database query
Attackers enter intentional incorrect text values to generate

informative error messages to map out table and field names

Exploitation Phase:
Attackers enter text that includes appended commands to control

the database
Typically these commands will:

 Extract sensitive information in bulk from the database
 Modify the database to corrupt the information
 Encrypt the data to hold it hostage until ransom is paid
 Delete the entire contents of the database

31OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Reconnaissance Probe

32OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Injected String

33OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Targeting DB Varibles

34OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – DB Audit Log Evasion Attempt

35OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – DB Error Message

36OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – 500 Status Code and DB Error Text

37OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Includes Variable Query Results

38OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Complex Query

39OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Targeting Customer Data

40OWASP

Dynamic Vulnerability Identification Examples
SQL Injection – Response Includes DB Table Data

41OWASP

ModSecurity
Inbound Request

 Request Indicates an automated program explored the site
 SQL Injection Attack. Matched signature <or 1=>

Outbound Response
 IIS Information Leakage
 SQL Error Message

Dynamic Vulnerability Identification Examples
SQL Injection – Detection Methods

42OWASP

Defect:
Application does not use the HttpOnly Cookie Option

Vulnerability:
The HttpOnly cooking flag option helps to prevent

client-side code from access the cookie data within the
browser

Technique:
If attackers are able to insert XSS code, they may be

able to steal SessionID credentials

Consequence:
Session Hijacking

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option

43OWASP

How it works:
Research Phase:

Attackers probe the application to identify a user data
entry field that is incorporated into the application (e.g.
review or user forum page)

Exploitation Phase:
Attackers prepare a script for injection into the

application
 Silently send SessionID cookie data to an attacker’s site

Attackers submit text containing the malicious script to
the input field and modify the application

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option - XSS

44OWASP

DEMO
Using BadStore as the buggy app
Show how Cookies that do not have HttpOnly flag

can be stolen by XSS vulnerability in the Guest
Book application

Then use BurpProxy to show how adding the
HttpOnly flag can prevent this attack vector

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option - XSS

45OWASP

WebDefend
Outbound Response

 Monitors all outbound “Set-Cookie” response headers and flags
SessionID cookies that do not include the HttpOnly flag

Dynamic Vulnerability Identification Examples
 Non-Use of HttpOnly Cookie Option – Detection
Methods

46OWASP

Defect:
Insecure method of managing application user sessions

Vulnerability:
By manipulating the session management process,

attackers are able to impersonate legitimate users with
access to their data

Technique:
Attackers modify session identifiers to hijack another

user’s session

Consequence:
Identity Theft

Dynamic Vulnerability Identification Examples
Insecure Session Management – Session Hijacking

47OWASP

How it works:
Research Phase:

Attackers study the application to understand the
underlying mechanism used to manage application user
sessions

Attackers repeatedly create new users and log into the
application to understand the sequencing for user
session identifiers

Review html source code for information leaks

Exploitation Phase:
Attacker modifies the application session identifier to

impersonate a legitimate user

Dynamic Vulnerability Identification Examples
Insecure Session Management – Session Hijacking

48OWASP

Dynamic Vulnerability Identification Examples
Insecure Session Management – Source Code Leaks

49OWASP

GET /login/menu.php HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-shockwave-flash, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Referer: https://www.example.com/login/login.php
Accept-Language: en-us
Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; .NET CLR 1.1.4322)
Host: www.example.com
Cache-Control: no-cache
Cookie: cp_user=222557-1;
id_hash=19d248f567170f6ddfc45495942b58ca

GET /login/menu.php HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-shockwave-flash, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Referer: https://www.example.com/login/login.php
Accept-Language: en-us
Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; .NET CLR 1.1.4322)
Host: www.example.com
Cache-Control: no-cache
Cookie: cp_user=222558;
id_hash=19d248f567170f6ddfc45495942b58ca

• This real example web app provided two cookies to users - cp_user is
the customer ID number and the id_hash is a value that means the
users is “authenticated”

• The defect is that these two cookie values were evaluated independently
from each other which means that an attacker can alter the cp_user
value and access other customer data

Dynamic Vulnerability Identification Examples
Insecure Session Management – Logic Flaw

50OWASP

WebDefend
Inbound Requests

 Identifies Cookie Tampering/Session Hijacking attempts by
correlating which Cookies were provided to which clients

Outbound Response
 Monitors all outbound responses for the existence of source

code leakages

Dynamic Vulnerability Identification Examples
 Insecure Session Management – Detection Methods

51OWASP

Conclusion

Web Application Defects are a serious problem
Traditional approaches to identifying these

vulnerabilities are not adequate
Source Code Reviews
Vulnerability Scanning

Web Application Firewalls offer real-time,
continuous vulnerability identification
Non-invasive approach vs. actively probing the

application

52OWASP

Questions?

Thank you!

Ryan C. Barnett

Business: Ryan.Barnett@breach.com

Personal: RCBarnett@gmail.com

