
Dave Wichers

Previous OWASP Top 10 Project Lead (2003 thru 2017)

Former OWASP Board Member (2003 thru 2013)

CoFounder and COO, Aspect Security

which is now EY

OWASP Top-10 2017

About the OWASP Top 10

2

OWASP Top Ten (2017 Edition)

3

What Didn’t Change

4

OWASP Top 10 Risk Rating
Methodology

Threat
Agent

Attack
Vector Weakness Prevalence Weakness Detectability Technical Impact Business Impact

?
Easy Widespread Easy Severe

?Average Common Average Moderate

Difficult Uncommon Difficult Minor

3 2 3 3

2.66 * 3

8.00 weighted risk rating

Injection Example

3
2
1

5

What’s Changed?

6

Mapping from 2013
to 2017 Top 10

2017-A1 – Injection

8

SQL Injection – Illustrated

Firew
all

Hardened OS

Web Server

App Server

Firew
all

D
at

ab
as

es

Le
ga

cy
 S

ys
te

m
s

W
eb

 S
er

vi
ce

s

D
ir

ec
to

ri
es

H
u

m
an

 R
es

rc
s

B
ill

in
g

Custom Code

APPLICATION
ATTACK

N
et

w
o

rk
 L

ay
er

A
p

p
lic

at
o

n
 L

ay
er

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
o

n

Tr
an

sa
ct

o
n

s

C
o

m
m

u
n

ic
at

o
n

Kn
o

w
le

d
ge

 M
gm

t

E-
C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
o

n
s

HTTP
request

SQL
query

DB Table

HTTP
response

"SELECT * FROM
accounts WHERE
acct=‘’ OR
1=1--’"

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

Account Summary

Acct:5424-6066-2134-4334
Acct:4128-7574-3921-0192
Acct:5424-9383-2039-4029
Acct:4128-0004-1234-0293

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the
user

Account:

 SKU:

Account:

 SKU:

9

A1 – Avoiding Injection Flaws

10

2017-A2 – Broken
Authentication

11

Broken Authentication
Illustrated

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

ati
o

n

Tr
an

sa
cti

o
n

s

C
o

m
m

u
n

ic
ati

o
n

K
n

o
w

le
d

ge
 M

gm
t

E-
C

o
m

m
er

ce

B
u

s.
 F

u
n

cti
o

n
s1 User sends credentials

2Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to http://www.hacker.com in
a forum

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referrer logs on www.hacker.com

and finds user’s JSESSIONID

5 Hacker uses JSESSIONID and
takes over victim’s account

http://www.hacker.com/
http://www.hacker.com/

A2 – Avoiding Broken
Authentication

13

2017-A3 – Sensitive Data Exposure

Insecure Cryptographic
Storage Illustrated

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

ati
o

n

Tr
an

sa
cti

o
n

s

C
o

m
m

u
n

ic
ati

o
n

K
n

o
w

le
d

ge
M

gm
t

E-
C

o
m

m
e

rc
e

B
u

s.
 F

u
n

cti
o

n
s

1
Victim enters credit card
number in form

2Error handler logs CC
details because merchant

gateway is unavailable

4 Malicious insider
steals 4 million credit
card numbers

Log files

3Logs are accessible to all
members of IT staff for

debugging purposes

Avoiding Insecure
Cryptographic Storage

• Verify your architecture
– Identify all sensitive data

– Identify all the places that data is stored

– Ensure threat model accounts for possible attacks

– Use encryption to counter the threats, don’t just ‘encrypt’ the data

• Protect with appropriate mechanisms
– File encryption, database encryption, data element encryption

– https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

• Use the mechanisms correctly
– Use standard strong algorithms

– Generate, distribute, and protect keys properly

– Be prepared for key change

• Verify the implementation
– A standard strong algorithm is used, and it’s the proper algorithm for this situation

– All keys, certificates, and passwords are properly stored and protected

– Safe key distribution and an effective plan for key change are in place

– Analyze encryption code for common flaws

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Insufficient Transport Layer
Protection Illustrated

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1

External attacker
steals credentials
and data off
network

2

Internal attacker
steals credentials and
data from internal
network

Internal Attacker

Avoiding Insufficient Transport
Layer Protection

• Protect with appropriate mechanisms
– Use TLS on all connections with sensitive data

– Use HSTS (HTTP Strict Transport Security)

– Use key pinning

– Individually encrypt messages before transmission

• E.g., XML-Encryption
– Sign messages before transmission

• E.g., XML-Signature

• Use the mechanisms correctly
– Use standard strong algorithms (disable old SSL algorithms)

– Manage keys/certificates properly

– Verify SSL certificates before using them

– Use proven mechanisms when sufficient

• E.g., SSL vs. XML-Encryption

• https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

• https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

2017-A4 – XML eXternal Entity
(XXE) Attack

19

XXE Attack Examples

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE meh [<!ENTITY xxeFun SYSTEM "file:///etc/passwd">]>>

<someStuff>

 <isHere>

 Hi! &xxeFun;

 </isHere>

</someStuff>

<?xml version="1.0"?>

<!DOCTYPE kaboom [

 <!ENTITY a "aaaaaaaaaaaaaaaaaa...">]>

<kaboom>&a;&a;&a;&a;&a;&a;&a;&a;&a;...</kaboom>

What happens this time?

If This XML document is
• received from an external

provider,
• evaluated, then
• returned to the user
The contents of /etc/passwd are
returned to the attacker

XXE Defense Examples

Defense 1: Disable Entity inclusion. The XML Validator will throw a Fatal Exception if such an entity is included.

Xerces Example:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

try {

 dbf.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true);

 // Use DBF here to parse XML (safely)

} catch (ParserConfigurationException e) { //handle error }

Defense 2: If entities need to be allowed, disable expansion of external entities.

Xerces Example:
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

try {

 dbf.setFeature("http://xml.org/sax/features/external-general-entities", false);

 dbf.setFeature("http://xml.org/sax/features/external-parameter-entities", false);

 // Use DBF here

} catch (ParserConfigurationException e) { //handle error }

A4 – Avoiding XXE

22

2017-A5 – Broken Access
Control

Missing Function Level Access
Control Illustrated

• Attacker notices the URL
indicates his role

 /user/getAccounts

• He modifies it to another
directory (role)

 /admin/getAccounts, or

 /manager/getAccounts

• Attacker views more
accounts than just their
own

https:// www.onlinebank.com/user/getAccountshttps:// www.onlinebank.com/user/getAccounts

Insecure Direct Object
References Illustrated

• Attacker notices his acct
parameter is 6065

 ?acct=6065

• He modifies it to a nearby
number

 ?acct=6066

• Attacker views the victim’s
account information

https://www.onlinebank.com/user?acct=6065

25

Avoiding Broken Access
Control

• For a function, a site needs to do at least these things
– Restrict access to authenticated users (if not public)
– Enforce any user or role based permissions (if private)

• For data, a site needs to verify
– User has required role to see that data, or
– User has been granted access (i.e., is data owner, is in associated group, etc.)
– User has the TYPE of access being used (Read, Write, Delete, etc.)

• Verify your architecture
– Use a simple, positive model at every layer

– Be sure you actually have a mechanism at every layer

• Verify the implementation
– Forget automated analysis approaches

– Verify each URL (plus any parameters) referencing a function or data is protected by
• An external filter, like Java EE web.xml or a commercial product

• Or internal checks in YOUR code – e.g., your isAuthorizedForRESOURCE() method

– Verify the server configuration disallows requests to unauthorized file types

– Use OWASP’s ZAP or your browser to forge unauthorized requests

2017-A6 – Security
Misconfiguration

Hardened OS

Web Server

App Server

Framework

Security Misconfiguration
Illustrated

App Configuraton

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
o

n

Tr
an

sa
ct

o
n

s

C
o

m
m

u
n

ic
at

o
n

Kn
o

w
le

d
ge

 M
gm

t

E-
C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
o

n
s

Test Servers

QA Servers

Source Control

Development

Database

Insider

Avoiding Security
Misconfiguration

• Verify your system’s configuration management

– Secure configuration “hardening” guideline

• Automation is REALLY USEFUL here

– Must cover entire platform and application

– Analyze security effects of changes

• Can you “dump” the application configuration

– Build reporting into your process

– If you can’t verify it, it isn’t secure

• Verify the implementation

– Scanning finds generic configuration and missing patch problems

2017-A7 –
Cross-Site Scripting (XSS)

30

Cross-Site Scripting Illustrated

Application with
stored XSS
vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a
malicious script into a web
page that stores the data
on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside victim’s
browser with full access to
the DOM and cookies

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
o

n

Tr
an

sa
ct

o
n

s

C
o

m
m

u
n

ic
at

o
n

Kn
o

w
le

d
ge

 M
gm

t

E-
C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
o

n
s

31

(AntSamy)

Avoiding XSS Flaws

• Recommendations
– Eliminate Flaw

• Don’t include user supplied input in the output page

– Defend Against the Flaw

• Use Content Security Policy (CSP)

• Primary Recommendation: Output encode all user supplied input (Use
OWASP’s Java Encoders to output encode)

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

• Perform ‘white list’ input validation on all user input to be included in
page

• For large chunks of user supplied HTML, use OWASP’s AntiSamy to
sanitize this HTML to make it safe

 See: https://www.owasp.org/index.php/AntiSamy

• References
– For how to output encode properly, read the

https://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

32

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Safe Escaping Schemes in Various
HTML Execution Contexts

CSS Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script>

someFunction(‘DATA’)</script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href=" http://site.com?search=DATA")

#4: All non-alphanumeric < 256 \HH

ESAPI: encodeForCSS()

#4: All non-alphanumeric < 256 \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256 \xHH

ESAPI: encodeForJavaScript()

#3: All non-alphanumeric < 256 \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") &entity; (', /) &#xHH;

ESAPI: encodeForHTML()

#1: (&, <, >, ") &entity; (', /) &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 &#xHH;

ESAPI: encodeForHTMLAttribute()

#2: All non-alphanumeric < 256 &#xHH;

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256 %HH

ESAPI: encodeForURL()

#5: All non-alphanumeric < 256 %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
 https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet 33

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

2017-A8 – Insecure
Deserialization

34

Deserialization Examples

• CVE-2017-5954 – “serialize-to-js package 0.5.0 for Node.js. Untrusted data
passed into the deserialize() functon can be exploited to achieve arbitrary
code executon by passing a JavaScript Object with an Immediately
Invoked Functon Expression (IIFE).”

• CVE-2017-9424 – “IdeaBlade Breeze Breeze.Server.NET before 1.6.5 allows
remote attackers to execute arbitrary code, related to use of
TypeNameHandling in JSON deserializaton.”

• CVE-2017-9805 – “REST Plugin in Struts 2.1.2 thru 2.3.33 and 2.5.x before
2.5.13 uses an XStreamHandler with an instance of XStream for
deserializaton without any type filtering, which can lead to Remote Code
Executon when deserializing XML payloads.”

• CVE-2017-1000034 – “Akka versions <=2.4.16 and 2.5-M1 are vulnerable
to a java deserializaton attack in its Remotng component resultng in
remote code executon”

Avoiding Deserialization
Vulnerabilities

36

2017-A9 – Using Known
Vulnerable Components

37

What Can You Do
to Avoid This?

38

Automation Example for Java
– Use Maven ‘Versions’ Plugin

Output from the Maven Versions Plugin – Automated Analysis of Libraries’ Status
against Central repository

Most out of Date! Details Developer Needs

This can automatically be run EVERY TIME software is built!! 39

2017-A10 – Insufficient
Logging & Monitoring

Providing Sufficient Logging &
Monitoring

41

Summary: How do you
address these problems?

• Develop Secure Code

– Follow the best practices in OWASP’s Guide to Building Secure Web Applications

• https://www.owasp.org/index.php/Guide

• And the cheat sheets: https://www.owasp.org/index.php/Cheat_Sheets

– Use OWASP’s Application Security Verification Standard as a guide to what an
application needs to be secure

• https://www.owasp.org/index.php/ASVS

– Use standard security components that are a fit for your organization

• Use OWASP’s ESAPI to help identify what standard security components you are likely to need

• https://www.owasp.org/index.php/ESAPI

• Review Your Applications

– Have an expert team review your applications

– Review your applications yourselves following OWASP Guidelines

• OWASP Code Review Guide:
https://www.owasp.org/index.php/Code_Review_Guide

• OWASP Testing Guide:
https://www.owasp.org/index.php/Testing_Guide

https://www.owasp.org/index.php/Guide
https://www.owasp.org/index.php/Cheat_Sheets
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

Thank you
OWASP Top-10 2017

	Slide 1
	About the OWASP Top 10
	OWASP Top Ten (2017 Edition)
	What Didn’t Change
	OWASP Top 10 Risk Rating Methodology
	What’s Changed?
	Mapping from 2013 to 2017 Top 10
	2017-A1 – Injection
	SQL Injection – Illustrated
	A1 – Avoiding Injection Flaws
	2017-A2 – Broken Authentication
	Broken Authentication Illustrated
	A2 – Avoiding Broken Authentication
	2017-A3 – Sensitive Data Exposure
	Insecure Cryptographic Storage Illustrated
	Avoiding Insecure Cryptographic Storage
	Insufficient Transport Layer Protection Illustrated
	Avoiding Insufficient Transport Layer Protection
	2017-A4 – XML eXternal Entity (XXE) Attack
	XXE Attack Examples
	XXE Defense Examples
	A4 – Avoiding XXE
	2017-A5 – Broken Access Control
	Missing Function Level Access Control Illustrated
	Insecure Direct Object References Illustrated
	Avoiding Broken Access Control
	2017-A6 – Security Misconfiguration
	Security Misconfiguration Illustrated
	Avoiding Security Misconfiguration
	2017-A7 – Cross-Site Scripting (XSS)
	Cross-Site Scripting Illustrated
	Avoiding XSS Flaws
	Safe Escaping Schemes in Various HTML Execution Contexts
	2017-A8 – Insecure Deserialization
	Deserialization Examples
	Avoiding Deserialization Vulnerabilities
	2017-A9 – Using Known Vulnerable Components
	What Can You Do to Avoid This?
	Automation Example for Java – Use Maven ‘Versions’ Plugin
	2017-A10 – Insufficient Logging & Monitoring
	Providing Sufficient Logging & Monitoring
	Summary: How do you address these problems?
	Slide 43

