Cardiopulmonary Anatomy Physiology

Essentials of Respiratory Care

Fifth Edition Terry Des Jardins, MEd, RRT

CHAPTER 6

Oxygen Transport

Table 6-1

Blood Gas Value	Arterial	Venous
рН	7.35-7.4	7.30-7.40
PCO ₂	35-45 mm Hg	42-48 mmHg
HCO ₃	22-28 mEq/L	24-30 mEq/L
PO ₂	80-100 mmHg	35-45 mm Hg

OXYGEN TRANSPORT

- Dissolve means that the gas maintains its precise molecular structure
- About .003 mL of O₂ will dissolve in 100 mL of blood for every 1 mm Hg of PO₂
- Thus, a PaO_2 of 100 = 0.3 mL

100 x 0.003 = 0.3 mL

Oxygen Dissolved in the Blood Plasma

- Written as 0.3 volumes percent (Vol%)
- Vol% represents amount of O₂ (in mL) that is in 100 mL of blood

 $Vol\% = mL O_2/100 mL bd$

- For example:
 - 10 vol% of O_2 means that there are 10 mL of O_2 in 100 mL of blood
 - Relatively small percentage of oxygen is transported in the form of dissolved oxygen

- Each RBC contains about 280 million hemoglobin (Hb) molecules
- Normal adult Hb (Hb A) consists of:
 - 4 heme groups (iron portion of the Hb)
 - 4 amino acid chains: 2 alpha and 2 beta

Hemoglobin Molecule

Fig. 6-1. Schematic illustration of a hemoglobin molecule.

- Oxyhemoglobin
 - Hemoglobin bound with oxygen
- Reduced hemoglobin or deoxyhemoglobin
 - Hemoglobin not bound with oxygen

Oxygen Bound to Hemoglobin

- Normal adult male Hb value:
 - 14-16 g/100 mL
- Normal adult female Hb value:
 - 12-15 g/100 mL

- Clinically, the weight measurement of hemoglobin, in reference to 100 mL of blood, is referred to as either:
 - Gram percent of hemoglobin (g% Hb), or
 - Grams per deciliter (g/dL)

- Each g% Hb can carry 1.34 mL of oxygen
- Thus, if Hb level is 15 g%, and if Hb is fully saturated, about 20.1 vol% of O₂ will be bound to the Hb

 O_2 bound to Hb = 1.34 mL O_2 x 15 g% Hb

= 20.1 vol% O₂

 At a normal PaO₂ of 100 mm Hg, however, the Hb saturation (SaO₂) is only about 97% due to the following three normal physiologic shunts

Quantity of Oxygen Bound to Hemoglobin

- Thebesian venous drainage into the left atrium
- Bronchial venous drainage into pulmonary veins
- Alveoli that are under ventilated dead space ventilation

 Thus, the amount of arterial oxygen in the preceding equation must be adjusted to 97 percent:

> 20.1 vol% O₂ x 0.97

19.5 vol% O₂

Total Oxygen Content

- To determine the total amount of oxygen in 100 mL of blood, the following must be added together:
 - Dissolved oxygen
 - Oxygen bound to hemoglobin

Total Oxygen Content

• The following case study summarizes the calculations required to compute an individual's total oxygen content

Case Study—Anemic Patient

- 27-year-old woman
 - Long history of anemia (decreased hemoglobin concentration)
 - Showing signs of respiratory distress
 - Respiratory rate 36 breaths/min
 - Heart rate 130 beats/min
 - Blood pressure 155/90 mm Hg

Case Study—Anemic Patient

- Hemoglobin concentration is 6 g%
- PaO₂ is 80 mm Hg (SaO₂ 90%)

- Based on this information, the patient's total oxygen content is computed as follows:
 - 1. Dissolved O_2 :

80 PaO_2 x 0.003 (dissolved O_2 factor)

0.24 vol% O₂

Case Study - Anemic Patient

2. Oxygen Bound to Hemoglobin:

6 g% Hb

x 1.34 (O₂ bound to Hb factor)

8.04 vol% O₂ (at SaO₂ of 100%)

8.04 vol% O₂ x 0.90 SaO₂

7.236 vol% O₂

Case Study—Anemic Patient

3. Total oxygen content:

7.236 VOI% O_2 (bound to hemoglobin)

+ 0.24 vol% O_2 (dissolved O_2)

7.476 VOI% O_2 (total amount of $O_2/100$ ml of blood)

- Note:
 - Patient's total arterial oxygen content is less than 50 percent of normal
 - Her hemoglobin concentration, which is the primary mechanism for transporting oxygen, is very low
 - Once problem is corrected, respiratory distress should no longer be present

Total Oxygen Content

- Calculated for following:
 - Arterial Oxygen Content (CaO₂)
 - Mixed Venous Oxygen Content (CvO₂)
 - Oxygen Content of Pulmonary Capillary Blood (CcO₂)

Total Oxygen Content of Arterial Blood

CaO₂ = Oxygen content of arterial blood
(Hb x 1.34 x SaO₂) + (PaO₂ x 0.003)

Total Oxygen Content of Mixed Venous Blood

 CvO₂ = Oxygen content of mixed venous blood

(Hb x 1.34 x SvO₂) + (PvO x 0.003)

Total Oxygen Content of Pulmonary Capillary Blood

 CcO₂ = Oxygen content of pulmonary capillary blood

(Hb x 1.34) + (PAO₂ x 0.003)

Total Oxygen Content

 It will be shown later how various mathematical manipulations of the CaO₂, CvO₂, and CcO₂ values are used in different oxygen transport studies to reflect important factors concerning the patient's cardiac and ventilatory status.

OXYGEN DISSOCIATION CURVE

Oxygen Dissociation Curve

Fig. 6-2. Oxygen dissociation curve.

- PO₂ can fall from 60 to 100 mm Hg and the hemoglobin will still be 90 percent saturated with oxygen
 - Excellent safety zone

 As the Hb moves through the A-C system, a significant partial pressure difference continues to exist between the alveolar gas and blood, even after most O₂ has transferred

- This enhances the diffusion of O_2

Clinical Significance of the Flat Portion of the Curve

- Increasing PO₂ beyond 100 mm Hg adds very little O₂ to the blood
 - Dissolved O₂ only
 - $-(PO_2 \times 0.003 = dissolved O_2)$

- A reduction of PO₂ below 60 mm Hg causes a rapid decrease in amount of O₂ bound to hemoglobin
- However, diffusion of oxygen from hemoglobin to tissue cells is enhanced

- P₅₀ represents the partial pressure at which the hemoglobin is 50 percent saturated with oxygen
- Normally, P₅₀ is about 27 mm Hg

The P₅₀

Fig. 6-3. The P_{50} represents the partial pressure at which hemoglobin is 50 percent saturated with oxygen.

- pH
- Temperature
- Carbon Dioxide
- 2,3-DPG
- Fetal Hemoglobin
- Carbon Monoxide Hemoglobin

Oxygen Dissociation Curve

Fig. 6-4. Factors that shift the oxygen dissociation curve to the right and left.

CLINICAL SIGNIFICANCE OF SHIFTS IN THE O₂ DISSOCIATION CURVE

The O₂ Dissociation Curve

- When an individual's blood PaO₂ is within normal limits (80-100 mm Hg):
 - Shift of oxygen dissociation curve to the right or left does not significantly affect hemoglobin's ability to transport oxygen to the peripheral tissues.

The O₂ Dissociation Curve

- However, when an individual's blood PaO₂ falls below the normal range:
 - A shift to the right or left can have a remarkable effect on the hemoglobin's ability to pick up and release oxygen.
 - This is because shifts below the normal range occur on the steep portion of the curve.

The O₂ Dissociation Curve

 For example, consider the loading and unloading of oxygen during the following clinical conditions:

 Picture the loading of oxygen onto hemoglobin as blood passes through the alveolar-capillary system at a time when the alveolar oxygen tension (PaO₂) is moderately low, around 60 mm Hg.

Right Shifts: Loading of Oxygen in Lungs

Fig. 6-5. Normally, when the PaO_2 is 60 mm Hg, the plasma PO_2 is about 60 mm Hg, and Hb is about 90% saturated.

 If, however, the oxygen dissociation curve shifts to the right, as indicated in Figure 6-6, the hemoglobin will be only about 75 percent saturated with oxygen as it leaves the alveoli.

Right Shifts: Loading of Oxygen in Lungs

Fig. 6-6. When the PAO_2 is 60 mm Hg at a time when the curve has shifted to the right because of a pH of 7.1.

- In view of this gas transport phenomenon, it should be stressed that:
 - Total oxygen delivery may be much lower than indicated by a particular PaO₂ value when a disease process is present that causes the oxygen dissociation curve to shift to the right.

Right Shifts: Loading of Oxygen in Lungs

- Although total oxygen delivery may be decreased in the above situation:
 - Plasma PO₂ at the tissue sites does not have to fall as much to unload oxygen

- For example, if tissue cells metabolize 5 vol% oxygen at a time when the oxygen dissociation is in the normal position:
 - Plasma PO₂ must fall from 60 mm Hg to about 35 mm Hg to free 5 vol% oxygen from the hemoglobin
 - See Figure 6-7

Right Shifts: Unloading of Oxygen at the Tissues

Fig. 6-7. Normally, when the plasma PO_2 is 60 mm Hg, the PO_2 must fall to about 35 mm Hg to free 5 vol% oxygen for metabolism.

- If, however, the curve shifts to the right in response to a pH of 7.1:
 - Plasma PO₂ at tissue sites would only have to fall from 60 mm Hg to about 40 mm Hg to unload 5 vol% oxygen from the hemoglobin
 - See Figure 6-8

Right Shifts: Unloading of Oxygen at the Tissues

Fig. 6-8. When the plasma PO_2 is 60 mm Hg at a time when the curve is to the right because of pH of 7.1, the PO_2 must fall to about 40 mm Hg to free 5 vol% oxygen for metabolism.

- If the oxygen dissociation curve shifts to left when the PAO₂ is 60 mm Hg at a time when the curve has shifted to the left because of a pH of 7.6:
 - Hemoglobin will be about 95 percent saturated with oxygen
 - See Figure 6-9

Left Shifts: Loading of Oxygen in the Lungs

Fig. 6-9. When the PAO_2 is 60 mm Hg at a time when the curve has shifted to the left because of a pH of 7.6.

- Although total oxygen increases in the previously mentioned situation:
 - Plasma PO₂ at the tissue sites must decrease more than normal in order for oxygen to dissociate from the hemoglobin

 For example, if the tissue cells require 5 vol% oxygen at a time when the oxygen dissociation curve is normal, the plasma PO₂ will fall from 60 mm Hg to about 35 mm Hg to free 5 vol% of oxygen from the hemoglobin

– See Figure 6-7

Oxygen for Metabolism

Fig. 6-7. Normally, when the plasma PO_2 is 60 mm Hg, the PO_2 must fall to about 35 mm Hg to free 5 vol% oxygen for metabolism.

- If, however, the curve shifts to the left because of a pH of 7.6:
 - Plasma PO₂ at tissue sites would have to fall from 60 mm Hg to about 30 mm Hg to unload 5 vol% oxygen from the hemoglobin
 - See Figure 6-10

Left Shifts: Unloading of Oxygen at the Tissues

Fig. 6-10. When the plasma PO_2 is 60 mm Hg at a time when the curve is to the left because of pH of 7.6, the PO_2 must fall to about 30 mm Hg to free 5 vol% oxygen for metabolism.

Oxygen Transport Calculations

- Total Oxygen Delivery
- Arterial-Venous Oxygen Content
 Difference
- Oxygen Consumption
- Oxygen Extraction Ratio
- Mixed Venous Oxygen Saturation
- Pulmonary Shunting

Total Oxygen Delivery: $DO_2 = QT \times (CaO_2 \times 10)$

- The total amount of oxygen delivered or transported to the peripheral tissues is dependent on
 - 1. The body's ability to oxygenate blood
 - 2. The hemoglobin concentration
 - 3. The cardiac output

Total Oxygen Delivery (DO_2) is calculated as follows:

$DO_2 = QT x (CaO_2 x 10)$

- For example:
 - If a patient has a cardiac output of 5 L/min and a CaO_2 of 20 vol%
 - DO₂ will be about 1000 mL of oxygen per minute:

$$DO_2 = Q_T x (CaO_2 x 10)$$

= 5 L/min x (20 vol% x 10)

= 1000 ml O₂/min

Note: The normal DO₂ is about 1000 ml/min

- DO₂ decreases in response to:
 - Low blood oxygenation
 - Low PaO₂
 - Low SaO₂
 - Low hemoglobin concentration
 - Low cardiac output

- DO₂ increases in response to increased blood oxygenation
 - Increased PaO₂
 - Increased SaO₂
 - Increased hemoglobin concentration
 - Increased cardiac output

Arterial-Venous Oxygen Content Difference

$$C(a-v)O_2 = CaO_2 - CvO_2$$

 The C(a-v)O₂ is the difference between the CaO₂ and the CvO₂

Arterial-Venous Oxygen Content Difference

- Normally, the CaO_2 is about 20 vol% and the CvO_2 is 15 vol%.
- Thus, the $C(a-v)O_2$ is about 5 vol%:

Arterial-Venous Oxygen Content Difference

$$C(a-v)O_2 = CaO_2 - CvO_2$$

= 20 vol% – 15 vol%

= 5 vol%

Normally, 5 vol%

Oxygen Dissociation Curve

Fig. 6-11. Oxygen dissociation curve. Summary of important values.

Factors that Increase the $C(a-v)O_2$

- Decreased cardiac output
- Periods of increased oxygen consumption
 - Exercise
 - Seizures
 - Shivering
 - Hyperthermia

Factors that Decrease the C(a-v)O₂

- Increased cardiac output
- Skeletal relaxation
 - Induced by drugs
- Peripheral shunting
 - Sepsis, trauma

Factors that Decrease the $C(a-v)O_2$

- Certain poisons
 - Cyanide
- Hypothermia

Oxygen Consumption

- Amount of oxygen extracted by the peripheral tissues during the period of one minute
- Also called oxygen uptake (VO₂)

Calculated as follows:

 $VO_2 = Q_T [C(a-v)O_2 \times 10]$

- Case: If a patient has a cardiac output of 5 L/min and a C(a-v)O₂ of 5 vol%:
 - What is the total amount of oxygen consumed by the tissue cells in one minute?

Oxygen Consumption

- For example:
- If an individual has a cardiac output of 5 L/min and a C(a-v)O₂ of 5 vol%
 - Total amount of oxygen metabolized by the tissue cells in one minute will be 250 mL:

Oxygen Consumption

 $VO_2 = Q_T [C(a-v)O_2 \times 10]$ = 5 L/min x 5 vol% x 10 = 250 ml O₂/min

Note: The VO₂ is normally about 250 ml O₂/min

Factors that Increase VO₂

- Exercise
- Seizures
- Shivering
- Hyperthermia
- Body Size

Factors that Decrease VO₂

- Skeletal Muscle Relaxation
 - Induced by drugs
- Peripheral shunting
 - Sepsis, trauma
- Certain poisons
 - Cyanide
- Hypothermia

- Oxygen extraction ratio (O₂ER) is the amount of oxygen extracted by the peripheral tissues divided by the amount of oxygen delivered to the peripheral cells
- Also called:
 - Oxygen coefficient ratio
 - Oxygen utilization ratio

Oxygen Extraction Ratio Calculated as Follows:

$$O_2 ER = CaO_2 - CvO_2$$

CaO₂

Oxygen Extraction Ratio Calculated as Follows:

- In considering the normal CaO_2 of 20 vol% and the normal CvO_2 of 15 vol%:
- O₂ER is about 25 percent

Oxygen Extraction Ratio

$$D_{2}ER = \frac{CaO_{2} - CvO_{2}}{CaO_{2}}$$
$$= \frac{20 \text{ vol}\% - 15 \text{ vol}\%}{20 \text{ vol}\%}$$
$$= \frac{5 \text{ vol}\%}{20 \text{ vol}\%}$$
$$= 0.25$$

- O₂ER provides an important view of the oxygen transport status when O₂ consumption remains the same
- For example, consider the following two cases with the same C(a-v)O₂ (5 vol%), but with different DO₂

Normal CaO₂ and CvO₂

CaO ₂	20 vol%
– CvO ₂	15 vol%
C(a-v)O ₂	5 vol%

The $O_2 ER = 25\%$

Decreased CaO₂ and CvO₂

CaO ₂	10 vol%
– CvO ₂	5 vol%
C(a-v)O ₂	5 vol%

The $O_2 ER = 50\%$

Factors that Increase O₂ER

- Decreased cardiac output
- Periods of increased O₂ consumption
 - Exercise
 - Seizures
 - Shivering
 - Hyperthermia
 - Anemia

Factors that Decrease O₂ER

- Increased cardiac output
- Skeletal muscle relaxation
 - Drug induced
- Peripheral shunting (e.g., sepsis)

- Certain poisons
 - Cyanide
- Hypothermia
- Increased Hb
- Increased arterial oxygenation (PaO₂)

- Changes in the SvO₂ can be used to detect changes in the:
 - $-C(a-v)O_2$

$$-VO_2$$

 $-O_2ER$

Factors that Decrease the SvO₂

- Decreased cardiac output
- Exercise
- Seizures
- Shivering
- Hyperthermia

Factors that Increase the SvO₂

- Increased cardiac output
- Skeletal muscle relaxation
 - Drug induced
- Peripheral shunting
 - Sepsis

- Certain poisons
 - Cyanide
- Hypothermia

Clinical Factors DO_2 VO₂ $C(a-v)O_2$ O₂ER SvO₂ \uparrow 1 $\uparrow O_2$ loading \downarrow Same Same 1 Hb ↑ PaO₂ \downarrow PaCO₂ ↑pH ↑ Temperature

Table 6-10

Clinical Factors DO_2 VO₂ $C(a-v)O_2$ O₂ER SvO₂ \downarrow ↑ $\downarrow O_2$ loading Same Same \downarrow \downarrow Hb $\downarrow \mathsf{PaCO}_2$ ↓ pH $\downarrow PaO_2$ Anemia ↓ Temperature

Table 6-10

Clinical Factors	DO ₂	VO ₂	C(a-v)O ₂	O ₂ ER	SvO ₂
↑ Metabolism	Same	\uparrow	\uparrow	Ŷ	\downarrow
Exercise					
Seizures					
Hyperthermia					
Shivering					

Oxygen Transport Calculations

Clinical Factors	DO ₂	VO ₂	C(a-v)O ₂	O₂ER	SvO ₂
\downarrow Metabolism	Same	\downarrow	\downarrow	\downarrow	\uparrow
Hypothermia					
Skeletal muscl relaxation	е				

Oxygen Transport Calculations

Table 6-10

Clinical Factors	DO ₂	VO ₂	C(a-v)O ₂	O ₂ ER	SvO ₂
\downarrow Cardiac Output	\downarrow	Same	\uparrow	\uparrow	\downarrow

Table 6-10

Oxygen Transport Calculations

Table 6-10

Clinical Factors	DO ₂	VO ₂	C(a-v)O ₂	O₂ER	SvO ₂
Peripheral shunting	Same	\downarrow	\downarrow	\downarrow	Ŷ

Oxygen Transport Calculations

Table 6-10

Clinical Factors	DO ₂	VO ₂	C(a-v)O ₂	O₂ER	SvO ₂
Certain Poisons	Same	\downarrow	\downarrow	\downarrow	\uparrow

Pulmonary Shunting

 Portion of cardiac output that moves from the right side to the left side of the heart without being exposed to alveolar oxygen (PAO₂).

Pulmonary Shunting

- Clinically, pulmonary shunting can be subdivided into:
 - Absolute Shunt
 - Also called True Shunt
- Relative Shunt
 - Also called shunt-like effects

Absolute Shunt

- An anatomic shunt (true shunt)
 - When blood flows from the right side of heart to the left side without coming in contact with an alveolus for gas exchange
 - See Figure 6-12, A and B

Pulmonary Shunting

Fig. 6-12. Pulmonary shunting.

Common Causes of Absolute Shunting

- Congenital heart disease
- Intrapulmonary fistula
- Vascular lung tumors

Common Causes of Absolute Shunting

- Capillary shunting is commonly caused by:
 - Alveolar collapse or atelectasis
 - Alveolar fluid accumulation
 - Alveolar consolidation
 - See Figure 6-12, C

When pulmonary capillary perfusion is in excess of alveolar ventilation, a relative or shunt-like effect is said to exist

– See Figure 6-12, D

- Hypoventilation
- Ventilation/perfusion mismatches
 - Chronic emphysema, bronchitis, asthma
- Alveolar-capillary diffusion defects
 - Alveolar fibrosis or alveolar edema

- Venous mixture is the mixing of shunted, non-reoxygenated blood with reoxygenated blood distal to the alveoli
 - Downstream in the pulmonary venous system
 - See Figure 6-13

Venous Admixture

Fig. 6-13. Venous admixture occurs when reoxygenated blood mixes with non-reoxygenated blood.

Pulmonary Equation

$$\frac{Q_s}{Q_T} = \frac{CcO_2 - CaO}{CcO_2 - CvO_2}$$

Shunt Equation Clinical Information Needed

- PB
- PaO₂
- PaCO₂
- PvO₂
- Hb
- PAO₂
- FIO₂

- A 38-year-old man is on a volume-cycled mechanical ventilator on a day when the barometric pressure is 750 mm Hg
- Patient is receiving an FIO₂ of .70
 - The following clinical data are obtained:

- Hb: 13 g%
- PaO_2 : 50 mm Hg (SaO₂ = 85%)
- PaCO₂: 43 mm Hg
- PvO_2 : 37 mm Hg ($SvO_2 = 65\%$)

• With this information, the patient's PAO₂, CcO₂, CaO₂, and CvO₂ can now be calculated

- 1. $PAO_2 = (PB PH_2O) FIO_2 PaCO_2 (1.25)$
 - = (750 47) 0.70 43 (1.25)
 - = (703) 0.70 53.75
 - = 492.1 53.75
 - = 438.35 mm Hg

- 2. $CcO_2 = (Hb \times 1.34) + (PAO_2 \times 0.003)$
 - $= (13 \times 1.34) + (438.35 \times 0.003)$
 - = 17.42 + 1.315
 - $= 18.735 (vol\% O_2)$

- 3. $CaO_2 = (Hb \times 1.34 \times SaO_2) + (PaO_2 \times 0.003)$
 - $= (13 \times 1.34 \times .85) + (50 \times 0.003)$
 - = 14.807 + 0.15
 - = 14.95 (vol% O₂)

- 4. $CaO_2 = (Hb \times 1.34 \times SvO_2) + (PvO_2 \times 0.003)$
 - $= (13 \times 1.34 \times .65) + (37 \times 0.003)$
 - = 11.323 + 0.111
 - = 11.434 (vol% O₂)

 Based on the previous calculation the patient's degree of pulmonary shunting can now be calculated:

$$\frac{Q_s}{Q_T} = \frac{CcO_2 - CaO_2}{\overline{CcO_2 - CvO_2}}$$

$$= \frac{18.735 - 14.957}{18.375 - 11.434}$$

$$= \frac{3.778}{7.301}$$

- <10%
 - Normal status
- 10 to 20%
 - Indicates intrapulmonary abnormality

- 20 to 30%
 - Significant intrapulmonary diseases
- > 30%
 - Potentially life-threatening

Appendix V

HYPOXIA

HYPOXEMIA VERSUS HYPOXIA

Hypoxemia

- Abnormally low arterial oxygen tension (PaO₂)
- Frequently associated with hypoxia
 - Which is an inadequate level of tissue oxygenation

Classifications	PaO ₂ (rule of thumb)
Normal	80-100 mm Hg
Mild hypoxemia	60-80 mm Hg
Moderate hypoxemia	40-60 mm Hg
Severe hypoxemia	<40 mm Hg

Hypoxia

 Low or inadequate oxygen for cellular metabolism

Hypoxia

- There are four main types of hypoxia:
 - Hypoxic
 - Anemic
 - Circulatory
 - Histotoxic

- Hypoxic hypoxia
 - Inadequate oxygen at tissue cells caused by low arterial oxygen tension (PaO₂)
 - Common Causes
 - Low PaO₂ caused by
 - Hypoventilation
 - High altitude

- Hypoxic hypoxia
 - Diffusion defects
 - Ventilation-perfusion mismatch
 - Pulmonary shunting

- Anemic hypoxia
 - PaO₂ is normal, but the oxygen carrying capacity of the hemoglobin is inadequate

- Anemic hypoxia
 - Common Causes
 - Decreased hemoglobin
 - Anemia
 - Hemorrhage
 - Abnormal hemoglobin
 - Carboxyhemoglobinemia
 - Methemoglobinemia

- Circulatory hypoxia
 - Stagnant hypoxia or hypoperfusion
 - Blood flow to the tissue cells is inadequate
 - Thus, oxygen is not adequate to meet tissue needs

- Circulatory hypoxia
 - Common causes
 - Slow or stagnant (pooling) peripheral blood flow
 - Arterial-venous shunts

- Histotoxic hypoxia
 - Impaired ability of the tissue cells to metabolize oxygen
 - Common cause
 - Cyanide poisoning

- Blue-gray or purplish discoloration seen on the mucous membranes, fingertips, and toes
 - Blood in these areas contain at least 5 g% of reduced hemoglobin

Fig. 6-14. Cyanosis may appear whenever the blood contains at least 5 g% of reduced hemoglobin.

Polycythemia

- An increased level of RBCs
- An adaptive mechanism designed to increase the oxygen-carrying capacity of the blood

Clinical Application 1 Discussion

- How did this case illustrate ...
 - The importance of hemoglobin in the oxygen transport system

Asthma

Fig. 6-15. Asthma. Pathology includes (1) bronchial smooth muscle constriction, (2) inflammation and excessive production of thick, whitish bronchial secretions, and (3) alveolar hyperinflation.

Clinical Application 2 Discussion

- How did this case illustrate ...
 - The loading of oxygen on hemoglobin in the lung?
 - The patient's total oxygen delivery (DO_2) ?

