Cardiopulmonary Anatomy@Physiology

Essentials of Respiratory Care

Fifth Edition
Terry Des Jardins, MEd, RRT

CHAPTER 6

Oxygen Transport

Normal Blood Gas Value Ranges

Blood Gas Value	Arterial	Venous
pH	$7.35-7.4$	$7.30-7.40$
PCO_{2}	$35-45 \mathrm{~mm} \mathrm{Hg}$	$42-48 \mathrm{mmHg}$
HCO_{3}	$22-28 \mathrm{mEq} / \mathrm{L}$	$24-30 \mathrm{mEq} / \mathrm{L}$
PO_{2}	$80-100 \mathrm{mmHg}$	$35-45 \mathrm{~mm} \mathrm{Hg}$

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

OXYGEN TRANSPORT

Oxygen Dissolved in the Blood Plasma

- Dissolve means that the gas maintains its precise molecular structure
- About .003 mL of O_{2} will dissolve in 100 mL of blood for every 1 mm Hg of PO_{2}
- Thus, a PaO_{2} of $100=0.3 \mathrm{~mL}$ $100 \times 0.003=0.3 \mathrm{~mL}$

Oxygen Dissolved in the Blood Plasma

- Written as 0.3 volumes percent (Vol\%)
- Vol\% represents amount of O_{2} (in mL) that is in 100 mL of blood

$$
\text { Vol } \%=\mathrm{mL} \mathrm{O} \mathrm{O}_{2} / 100 \mathrm{~mL} \text { bd }
$$

Oxygen Dissolved in the Blood Plasma

- For example:
- 10 vol\% of O_{2} means that there are 10 mL of O_{2} in 100 mL of blood
- Relatively small percentage of oxygen is transported in the form of dissolved oxygen

Oxygen Bound to Hemoglobin

- Each RBC contains about 280 million hemoglobin (Hb) molecules
- Normal adult Hb (Hb A) consists of:
-4 heme groups (iron portion of the Hb)
-4 amino acid chains: 2 alpha and 2 beta

Hemoglobin Molecule

Fig. 6-1. Schematic
illustration of a hemoglobin molecule.
$\underset{\text { DELMAR LEARNING }}{\text { THOMSON }}$
Copyright © 2008 Thomson Delmar Learning

Oxygen Bound to Hemoglobin

Hb
Reduced hemoglobin (uncombined or deoxygenate hemoglobin)

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Bound to Hemoglobin

- Oxyhemoglobin
- Hemoglobin bound with oxygen
- Reduced hemoglobin or deoxyhemoglobin
- Hemoglobin not bound with oxygen

Oxygen Bound to Hemoglobin

- Normal adult male Hb value:
- 14-16 g/100 mL
- Normal adult female Hb value:
$-12-15 \mathrm{~g} / 100 \mathrm{~mL}$

Oxygen Bound to Hemoglobin

- Clinically, the weight measurement of hemoglobin, in reference to 100 mL of blood, is referred to as either:
- Gram percent of hemoglobin ($\mathrm{g} \% \mathrm{Hb}$), or
- Grams per deciliter (g/dL)

Quantity of Oxygen Bound to Hemoglobin

- Each g\% Hb can carry 1.34 mL of oxygen
- Thus, if Hb level is $15 \mathrm{~g} \%$, and if Hb is fully saturated, about 20.1 vol $\%$ of O_{2} will be bound to the Hb
O_{2} bound to $\mathrm{Hb}=1.34 \mathrm{~mL} \mathrm{O} \times 15 \mathrm{~g} \% \mathrm{Hb}$

$$
=20.1 \mathrm{vol} \% \mathrm{O}_{2}
$$

Quantity of Oxygen Bound to Hemoglobin

- At a normal PaO_{2} of 100 mm Hg , however, the Hb saturation $\left(\mathrm{SaO}_{2}\right)$ is only about 97% due to the following three normal physiologic shunts

Quantity of Oxygen Bound to Hemoglobin

- Thebesian venous drainage into the left atrium
- Bronchial venous drainage into pulmonary veins
- Alveoli that are under ventilateddead space ventilation

Quantity of Oxygen Bound to Hemoglobin

- Thus, the amount of arterial oxygen in the preceding equation must be adjusted to 97 percent:

20.1 vol\% O_{2}
$\times 0.97$
19.5 vol $\% \mathrm{O}_{2}$

Total Oxygen Content

- To determine the total amount of oxygen in 100 mL of blood, the following must be added together:
- Dissolved oxygen
- Oxygen bound to hemoglobin

Total Oxygen Content

- The following case study summarizes the calculations required to compute an individual's total oxygen content

Case Study—Anemic Patient

- 27-year-old woman
- Long history of anemia (decreased hemoglobin concentration)
- Showing signs of respiratory distress
- Respiratory rate 36 breaths/min
- Heart rate 130 beats/min
- Blood pressure 155/90 mm Hg

Case Study—Anemic Patient

- Hemoglobin concentration is $6 \mathrm{~g} \%$
- PaO_{2} is $80 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{SaO}_{2} 90 \%\right)$

Case Study—Anemic Patient

- Based on this information, the patient's total oxygen content is computed as follows:

1. Dissolved O_{2} :
$80 \mathrm{PaO}_{2}$
x 0.003 (dissolved O_{2} factor)
0.24 vol $\% \mathrm{O}_{2}$

Case Study - Anemic Patient

2. Oxygen Bound to Hemoglobin:

$6 \mathrm{~g} \% \mathrm{Hb}$
$\times 1.34\left(\mathrm{O}_{2}\right.$ bound to Hb factor)
$8.04 \mathrm{vol}_{\mathrm{ol}} \mathrm{O}_{2}\left(\right.$ at SaO_{2} of $\left.100 \%\right)$

8.04 vol\% O_{2}
$x 0.90 \mathrm{SaO}_{2}$
7.236 vol\% O_{2}

Case Study—Anemic Patient

3. Total oxygen content:
7.236 vol $\% \mathrm{O}_{2}$ (bound to hemoglobin)
$+0.24 \mathrm{vol} \% \mathrm{O}_{2}$ (dissolved O_{2})
$7.476 \mathrm{vol} \% \mathrm{O}_{2}$ (total amount of $\mathrm{O}_{2} / 100 \mathrm{ml}$ of blood)

Case Study—Anemic Patient

- Note:
- Patient's total arterial oxygen content is less than 50 percent of normal
- Her hemoglobin concentration, which is the primary mechanism for transporting oxygen, is very low
- Once problem is corrected, respiratory distress should no longer be present

Total Oxygen Content

- Calculated for following:
- Arterial Oxygen Content $\left(\mathrm{CaO}_{2}\right)$
- Mixed Venous Oxygen Content $\left(\mathrm{CvO}_{2}\right)$
- Oxygen Content of Pulmonary Capillary Blood $\left(\mathrm{CcO}_{2}\right)$

Total Oxygen Content of Arterial Blood

- $\mathrm{CaO}_{2}=$ Oxygen content of arterial blood
$\left(\mathrm{Hb} \times 1.34 \times \mathrm{SaO}_{2}\right)+\left(\mathrm{PaO}_{2} \times 0.003\right)$

Total Oxygen Content of Mixed Venous Blood

- $\mathrm{CvO}_{2}=$ Oxygen content of mixed venous blood
$\left(\mathrm{Hb} \times 1.34 \times \mathrm{SvO}_{2}\right)+(\mathrm{PvO} \times 0.003)$

Total Oxygen Content of Pulmonary Capillary Blood

- $\mathrm{CcO}_{2}=$ Oxygen content of pulmonary capillary blood

$(\mathrm{Hb} \times 1.34)+\left(\mathrm{PAO}_{2} \times 0.003\right)$

Total Oxygen Content

- It will be shown later how various mathematical manipulations of the $\mathrm{CaO}_{2}, \mathrm{CvO}_{2}$, and CcO_{2} values are used in different oxygen transport studies to reflect important factors concerning the patient's cardiac and ventilatory status.

OXYGEN DISSOCIATION CURVE

Oxygen Dissociation Curve

Normal PO_{2}
Fig. 6-2. Oxygen dissociation curve.
$\xrightarrow[\text { DELMAR LEARNING }]{\text { THOMSON }}$
Copyright © 2008
Thomson Delmar Learning

Clinical Significance of the Flat Portion of the Curve

- PO_{2} can fall from 60 to 100 mm Hg and the hemoglobin will still be 90 percent saturated with oxygen
- Excellent safety zone

Clinical Significance of the Flat Portion of the Curve

- As the Hb moves through the $\mathrm{A}-\mathrm{C}$ system, a significant partial pressure difference continues to exist between the alveolar gas and blood, even after most O_{2} has transferred
- This enhances the diffusion of O_{2}

Clinical Significance of the Flat Portion of the Curve

- Increasing PO_{2} beyond 100 mm Hg adds very little O_{2} to the blood
- Dissolved O_{2} only
$-\left(\mathrm{PO}_{2} \times 0.003=\right.$ dissolved $\left.\mathrm{O}_{2}\right)$

Clinical Significance of the Flat Portion of the Curve

- A reduction of PO_{2} below 60 mm Hg causes a rapid decrease in amount of O_{2} bound to hemoglobin
- However, diffusion of oxygen from hemoglobin to tissue cells is enhanced

The P_{50}

- P_{50} represents the partial pressure at which the hemoglobin is 50 percent saturated with oxygen
- Normally, P_{50} is about 27 mm Hg

The P_{50}

Fig. 6-3. The P_{50} represents the partial pressure at which hemoglobin is 50 percent saturated with oxygen.
$\underbrace{\text { THOMSON }}_{\text {DELMAR LEARNING }}$
Copyright © 2008
Thomson Delmar Learning

Factors that Shift Oxygen Dissociation Curve

- pH
- Temperature
- Carbon Dioxide
-2,3-DPG
- Fetal Hemoglobin
- Carbon Monoxide Hemoglobin

Oxygen Dissociation Curve

FACTORS THAT SHIFT OXYGEN DISSOCIATION CURVE:

To Left
$\downarrow \mathrm{pH}$
$\downarrow \mathrm{P}_{\mathrm{CO}_{2}}$
\downarrow Temperature
\downarrow DPG HbF $\mathrm{CO}_{\mathrm{Hb}}$

Fig. 6-4. Factors that shift the oxygen dissociation curve to the right and left.

THOMSON
 DELMAR LEARNING

Copyright © 2008
Thomson Delmar Learning

CLINICAL SIGNIFICANCE OF SHIFTS IN THE O DISSOCIATION CURVE

Copyright © 2008

The O_{2} Dissociation Curve

- When an individual's blood PaO_{2} is within normal limits ($80-100 \mathrm{~mm} \mathrm{Hg}$):
- Shift of oxygen dissociation curve to the right or left does not significantly affect hemoglobin's ability to transport oxygen to the peripheral tissues.

The O_{2} Dissociation Curve

- However, when an individual's blood PaO_{2} falls below the normal range:
- A shift to the right or left can have a remarkable effect on the hemoglobin's ability to pick up and release oxygen.
- This is because shifts below the normal range occur on the steep portion of the curve.

The O_{2} Dissociation Curve

- For example, consider the loading and unloading of oxygen during the following clinical conditions:

Right Shifts: Loading of Oxygen in Lungs

- Picture the loading of oxygen onto hemoglobin as blood passes through the alveolar-capillary system at a time when the alveolar oxygen tension $\left(\mathrm{PaO}_{2}\right)$ is moderately low, around 60 mm Hg .

Right Shifts: Loading of Oxygen in Lungs

Fig. 6-5. Normally, when the PaO_{2} is 60 mm Hg , the plasma PO_{2} is about 60 mm Hg , and Hb is about 90% saturated.

Copyright © 2008
Thomson Delmar Learning

Right Shifts: Loading of Oxygen in Lungs

- If, however, the oxygen dissociation curve shifts to the right, as indicated in Figure 6-6, the hemoglobin will be only about 75 percent saturated with oxygen as it leaves the alveoli.

Right Shifts: Loading of Oxygen in Lungs

Fig. 6-6. When the PAO_{2} is 60 mm Hg at a time when the curve has shifted to the right because of a pH of 7.1.

THOMSON
 DELMAR LEARNING

Copyright © 2008
Thomson Delmar Learning

Right Shifts: Loading of Oxygen in Lungs

- In view of this gas transport phenomenon, it should be stressed that:
- Total oxygen delivery may be much lower than indicated by a particular PaO_{2} value when a disease process is present that causes the oxygen dissociation curve to shift to the right.

Right Shifts: Loading of Oxygen in Lungs

- Although total oxygen delivery may be decreased in the above situation:
- Plasma PO_{2} at the tissue sites does not have to fall as much to unload oxygen

Right Shifts: Unloading of Oxygen at the Tissues

- For example, if tissue cells metabolize 5 vol\% oxygen at a time when the oxygen dissociation is in the normal position:
- Plasma PO_{2} must fall from 60 mm Hg to about 35 mm Hg to free $5 \mathrm{vol} \%$ oxygen from the hemoglobin
- See Figure 6-7

Right Shifts: Unloading of Oxygen at the Tissues

Fig. 6-7. Normally, when the plasma PO_{2} is 60 mm Hg , the PO_{2} must fall to about 35 mm Hg to free 5 vol\% oxygen for metabolism.

THOMSON

Copyright © 2008
Thomson Delmar Learning

Right Shifts: Unloading of Oxygen at the Tissues

- If, however, the curve shifts to the right in response to a pH of 7.1:
- Plasma PO_{2} at tissue sites would only have to fall from 60 mm Hg to about 40 mm Hg to unload 5 vol\% oxygen from the hemoglobin
- See Figure 6-8

Right Shifts: Unloading of Oxygen at the Tissues

Fig. 6-8. When the plasma PO_{2} is 60 mm Hg at a time when the curve is to the right because of pH of 7.1 , the PO_{2} must fall to about 40 mm Hg to free 5 vol\% oxygen for metabolism.

$\xrightarrow{\text { THOMSON }}$

Copyright © 2008
Thomson Delmar Learning

Left Shifts: Loading of Oxygen in the Lungs

- If the oxygen dissociation curve shifts to left when the PAO_{2} is 60 mm Hg at a time when the curve has shifted to the left because of a pH of 7.6:
- Hemoglobin will be about 95 percent saturated with oxygen
- See Figure 6-9

Left Shifts: Loading of Oxygen in the Lungs

Fig. 6-9. When the PAO_{2} is 60 mm Hg at a time when the curve has shifted to the left because of a pH of 7.6.

THOMSON
 DELMAR LEARNING

Copyright © 2008
Thomson Delmar Learning

Left Shifts: Unloading of Oxygen at the Tissues

- Although total oxygen increases in the previously mentioned situation:
- Plasma PO_{2} at the tissue sites must decrease more than normal in order for oxygen to dissociate from the hemoglobin

Left Shifts: Unloading of Oxygen at the Tissues

- For example, if the tissue cells require 5 vol\% oxygen at a time when the oxygen dissociation curve is normal, the plasma PO_{2} will fall from 60 mm Hg to about 35 mm Hg to free 5 vol\% of oxygen from the hemoglobin
- See Figure 6-7

Oxygen for Metabolism

Fig. 6-7. Normally, when the plasma PO_{2} is 60 mm Hg , the PO_{2} must fall to about 35 mm Hg to free 5 vol\% oxygen for metabolism.

Copyright © 2008
Thomson Delmar Learning

Left Shifts: Unloading of Oxygen at the Tissues

- If, however, the curve shifts to the left because of a pH of 7.6:
- Plasma PO_{2} at tissue sites would have to fall from 60 mm Hg to about 30 mm Hg to unload 5 vol\% oxygen from the hemoglobin
- See Figure 6-10

Left Shifts: Unloading of Oxygen at the Tissues

Fig. 6-10. When the plasma PO_{2} is 60 mm Hg at a time when the curve is to the left because of pH of 7.6 , the PO_{2} must fall to about 30 mm Hg to free 5 vol\% oxygen for metabolism.

THOMSON

Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

- Total Oxygen Delivery
- Arterial-Venous Oxygen Content Difference
- Oxygen Consumption
- Oxygen Extraction Ratio
- Mixed Venous Oxygen Saturation
- Pulmonary Shunting

Total Oxygen Delivery: $\mathrm{DO}_{2}=\mathrm{QT} \times\left(\mathrm{CaO}_{2} \times 10\right)$

- The total amount of oxygen delivered or transported to the peripheral tissues is dependent on

1. The body's ability to oxygenate blood
2. The hemoglobin concentration
3. The cardiac output

Total Oxygen Delivery $\left(\mathrm{DO}_{2}\right)$ is calculated as follows:

$\mathrm{DO}_{2}=\mathrm{QT} \times\left(\mathrm{CaO}_{2} \times 10\right)$

Total Oxygen Delivery

- For example:
- If a patient has a cardiac output of $5 \mathrm{~L} / \mathrm{min}$ and CaO_{2} of $20 \mathrm{vol} \%$
$-\mathrm{DO}_{2}$ will be about 1000 mL of oxygen per minute:

Total Oxygen Delivery

$$
\begin{aligned}
\mathrm{DO}_{2} & =\mathrm{Q}_{\mathrm{T}} \times\left(\mathrm{CaO}_{2} \times 10\right) \\
& =5 \mathrm{~L} / \mathrm{min} \times(20 \mathrm{vol} \% \times 10) \\
& =1000 \mathrm{ml} \mathrm{O}_{2} / \mathrm{min}
\end{aligned}
$$

Note: The normal DO_{2} is about $1000 \mathrm{ml} / \mathrm{min}$

Total Oxygen Delivery

- DO_{2} decreases in response to:
- Low blood oxygenation
- Low PaO_{2}
- Low SaO_{2}
- Low hemoglobin concentration
- Low cardiac output

Total Oxygen Delivery

- DO_{2} increases in response to increased blood oxygenation
- Increased PaO_{2}
- Increased SaO_{2}
- Increased hemoglobin concentration
- Increased cardiac output

Arterial-Venous Oxygen Content Difference

$$
\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}=\mathrm{CaO}_{2}-\mathrm{CvO}_{2}
$$

- The $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$ is the difference between the CaO_{2} and the CvO_{2}

Arterial-Venous Oxygen Content Difference

- Normally, the CaO_{2} is about 20 vol\% and the CvO_{2} is 15 vol\%.
- Thus, the $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$ is about $5 \mathrm{vol} \%$:

Arterial-Venous Oxygen Content Difference

$$
\begin{aligned}
\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2} & =\mathrm{CaO}_{2}-\mathrm{CvO}_{2} \\
& =20 \mathrm{vol} \%-15 \mathrm{vol} \% \\
& =5 \mathrm{vol} \%
\end{aligned}
$$

Normally, 5 vol\%

Oxygen Dissociation Curve

Normal $\mathrm{P}_{\mathrm{O}_{2}}$

Fig. 6-11. Oxygen dissociation curve.
Summary of important values.

Copyright © 2008
Thomson Delmar Learning

Factors that Increase the $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$

- Decreased cardiac output
- Periods of increased oxygen consumption
- Exercise
- Seizures
- Shivering
- Hyperthermia

Factors that Decrease the $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$

- Increased cardiac output
- Skeletal relaxation
- Induced by drugs
- Peripheral shunting
- Sepsis, trauma

Factors that Decrease the $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$

- Certain poisons
- Cyanide
- Hypothermia

Oxygen Consumption

- Amount of oxygen extracted by the peripheral tissues during the period of one minute
- Also called oxygen uptake $\left(\mathrm{VO}_{2}\right)$

Oxygen Consumption

- Calculated as follows:

$$
\mathrm{VO}_{2}=\mathrm{Q}_{\mathrm{T}}\left[\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2} \times 10\right]
$$

- Case: If a patient has a cardiac output of $5 \mathrm{~L} / \mathrm{min}$ and a $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$ of $5 \mathrm{vol} \%$:
- What is the total amount of oxygen consumed by the tissue cells in one minute?

Oxygen Consumption

- For example:
- If an individual has a cardiac output of $5 \mathrm{~L} / \mathrm{min}$ and a $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$ of $5 \mathrm{vol} \%$
- Total amount of oxygen metabolized by the tissue cells in one minute will be 250 mL :

Oxygen Consumption

$$
\begin{aligned}
& \mathrm{VO}_{2}=\mathrm{Q}_{\mathrm{T}}\left[\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2} \times 10\right] \\
& =5 \mathrm{~L} / \mathrm{min} \times 5 \mathrm{vol} \% \times 10 \\
& =250 \mathrm{ml} \mathrm{O} / \mathrm{min}
\end{aligned}
$$

Note: The VO_{2} is normally about $250 \mathrm{ml} \mathrm{O}_{2} / \mathrm{min}$

Factors that Increase VO_{2}

- Exercise
- Seizures
- Shivering
- Hyperthermia
- Body Size

Factors that Decrease VO_{2}

- Skeletal Muscle Relaxation
- Induced by drugs
- Peripheral shunting
- Sepsis, trauma
- Certain poisons
- Cyanide
- Hypothermia

Oxygen Extraction Ratio

- Oxygen extraction ratio $\left(\mathrm{O}_{2} \mathrm{ER}\right)$ is the amount of oxygen extracted by the peripheral tissues divided by the amount of oxygen delivered to the peripheral cells
- Also called:
- Oxygen coefficient ratio
- Oxygen utilization ratio

Oxygen Extraction Ratio Calculated as Follows:

$\mathrm{O}_{2} \mathrm{ER}=\mathrm{CaO}_{2}-\mathrm{CvO}_{2}$
 CaO_{2}

Oxygen Extraction Ratio Calculated as Follows:

- In considering the normal CaO_{2} of 20 vol\% and the normal CvO_{2} of $15 \mathrm{vol} \%$:
- $\mathrm{O}_{2} \mathrm{ER}$ is about 25 percent

$$
\begin{aligned}
\mathrm{O}_{2} \mathrm{ER} & =\frac{\mathrm{CaO}_{2}-\mathrm{CvO}_{2}}{\mathrm{CaO}_{2}} \\
& =\frac{20 \mathrm{vol} \%-15 \mathrm{vol} \%}{20 \mathrm{vol} \%} \\
& =\frac{5 \mathrm{vol} \%}{20 \mathrm{vol} \%} \\
& =0.25
\end{aligned}
$$

Oxygen Extraction Ratio

- $\mathrm{O}_{2} E R$ provides an important view of the oxygen transport status when O_{2} consumption remains the same
- For example, consider the following two cases with the same $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$ ($5 \mathrm{vol} \%$), but with different DO_{2}

Normal CaO_{2} and CvO_{2}

$$
\begin{array}{cc}
\mathrm{CaO}_{2} & 20 \mathrm{vol} \% \\
-\mathrm{CvO}_{2} & 15 \mathrm{vol} \% \\
\hline \mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2} & 5 \mathrm{vol} \%
\end{array}
$$

The $\mathrm{O}_{2} \mathrm{ER}=25 \%$

Decreased CaO_{2} and CvO_{2}

> | CaO_{2} | $10 \mathrm{vol} \%$ |
| :---: | ---: |
| $-\mathrm{CvO}_{2}$ | $5 \mathrm{vol} \%$ |
| $\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$ | $5 \mathrm{vol} \%$ |

The $\mathrm{O}_{2} \mathrm{ER}=50 \%$

Factors that Increase $\mathrm{O}_{2} \mathrm{ER}$

- Decreased cardiac output
- Periods of increased O_{2} consumption
- Exercise
- Seizures
- Shivering
- Hyperthermia
- Anemia

Factors that Decrease $\mathrm{O}_{2} \mathrm{ER}$

- Increased cardiac output
- Skeletal muscle relaxation
- Drug induced
- Peripheral shunting (e.g., sepsis)

Factors that Decrease $\mathrm{O}_{2} \mathrm{ER}$

- Certain poisons
- Cyanide
- Hypothermia
- Increased Hb
- Increased arterial oxygenation $\left(\mathrm{PaO}_{2}\right)$

Mixed Venous Oxygen Saturation $\left(\mathrm{SvO}_{2}\right)$

- Changes in the SvO_{2} can be used to detect changes in the:
$-\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$
$-\mathrm{VO}_{2}$
$-\mathrm{O}_{2} \mathrm{ER}$

Factors that Decrease the SvO_{2}

- Decreased cardiac output
- Exercise
- Seizures
- Shivering
- Hyperthermia

Copyright © 2008

Factors that Increase the SvO_{2}

- Increased cardiac output
- Skeletal muscle relaxation
- Drug induced
- Peripheral shunting
- Sepsis

Factors that Increase the SvO_{2}

- Certain poisons
- Cyanide
- Hypothermia

Oxygen Transport Calculations

Clinical Factors	DO_{2}	VO_{2}	$\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$	$\mathrm{O}_{2} \mathrm{ER}$	SvO_{2}
$\uparrow \mathrm{O}_{2}$ loading	\uparrow	Same	Same	\downarrow	\uparrow
$\uparrow \mathrm{Hb}$					
$\uparrow \mathrm{PaO}_{2}$					
$\downarrow \mathrm{PaCO}_{2}$					
$\uparrow \mathrm{pH}$					
\uparrow Temperature					

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

Clinical Factors	DO_{2}	$\mathbf{V O}_{2}$	$\mathbf{C}(\mathrm{a}-\mathrm{v}) \mathbf{O}_{\mathbf{2}}$	$\mathbf{O}_{\mathbf{2}} \mathbf{E R}$	$\mathbf{S v O}_{\mathbf{2}}$
$\downarrow \mathrm{O}_{2}$ loading	\downarrow	Same	Same	\uparrow	\downarrow
	$\downarrow \mathrm{Hb}$				
	$\downarrow \mathrm{PaCO}_{2}$				
	$\downarrow \mathrm{pH}$				
	$\downarrow \mathrm{PaO}_{2}$				
	Anemia				
	\downarrow Temperature				

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

Clinical Factors	DO_{2}	VO_{2}	$\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$	$\mathrm{O}_{2} \mathrm{ER}$	SvO_{2}
\uparrow Metabolism	Same	\uparrow	\uparrow	\uparrow	\downarrow
Exercise					
Seizures					
Hyperthermia					
Shivering					

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

Clinical Factors	DO_{2}	VO_{2}	$\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$	$\mathrm{O}_{2} \mathrm{ER}$	SvO_{2}
\downarrow Metabolism	Same	\downarrow	\downarrow	\downarrow	\uparrow
Hypothermia Skeletal muscle relaxation					

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

Clinical Factors	DO_{2}	VO_{2}	$\mathbf{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$	$\mathrm{O}_{2} \mathrm{ER}$	$\mathbf{S v O}_{2}$
\downarrow Cardiac Output	\downarrow	Same	\uparrow	\uparrow	\downarrow

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

Clinical Factors	DO_{2}	VO_{2}	$\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$	$\mathrm{O}_{2} \mathrm{ER}$	SvO_{2}
\uparrow Cardiac Output	\uparrow	Same	\downarrow	\downarrow	\uparrow

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

Clinical Factors	DO_{2}	VO_{2}	$\mathbf{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$	$\mathrm{O}_{2} \mathrm{ER}$	SvO_{2}
Peripheral shunting	Same	\downarrow	\downarrow	\downarrow	\uparrow

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Oxygen Transport Calculations

Clinical Factors	DO_{2}	VO_{2}	$\mathrm{C}(\mathrm{a}-\mathrm{v}) \mathrm{O}_{2}$	$\mathrm{O}_{2} \mathrm{ER}$	SvO_{2}
Certain Poisons	Same	\downarrow	\downarrow	\downarrow	\uparrow

Table 6-10

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Pulmonary Shunting

- Portion of cardiac output that moves from the right side to the left side of the heart without being exposed to alveolar oxygen $\left(\mathrm{PAO}_{2}\right)$.

Pulmonary Shunting

- Clinically, pulmonary shunting can be subdivided into:
- Absolute Shunt
- Also called True Shunt
- Relative Shunt
- Also called shunt-like effects

Absolute Shunt

- An anatomic shunt (true shunt)
- When blood flows from the right side of heart to the left side without coming in contact with an alveolus for gas exchange
- See Figure 6-12, A and B

Pulmonary Shunting

Fig. 6-12. Pulmonary shunting.

Copyright © 2008 Thomson Delmar Learning

Common Causes of Absolute Shunting

- Congenital heart disease
- Intrapulmonary fistula
- Vascular lung tumors

Common Causes of Absolute Shunting

- Capillary shunting is commonly caused by:
- Alveolar collapse or atelectasis
- Alveolar fluid accumulation
- Alveolar consolidation
- See Figure 6-12, C

Common Causes of Absolute Shunting

- When pulmonary capillary perfusion is in excess of alveolar ventilation, a relative or shunt-like effect is said to exist
- See Figure 6-12, D

Common Causes of This Form of Shunting

- Hypoventilation
- Ventilation/perfusion mismatches
- Chronic emphysema, bronchitis, asthma
- Alveolar-capillary diffusion defects
- Alveolar fibrosis or alveolar edema

Venous Admixture

- Venous mixture is the mixing of shunted, non-reoxygenated blood with reoxygenated blood distal to the alveoli
- Downstream in the pulmonary venous system
- See Figure 6-13

Venous Admixture

Fig. 6-13. Venous admixture occurs when reoxygenated blood mixes with nonreoxygenated blood.
$\xrightarrow[\text { DELMAR LEARNING }]{\text { THOMSON }}$
Copyright © 2008
Thomson Delmar Learning

Pulmonary Equation

$$
\frac{Q_{\mathrm{s}}}{\mathrm{Q}_{\mathrm{T}}}=\frac{\mathrm{CcO}_{2}-\mathrm{CaO}}{\mathrm{CcO}_{2}-\mathrm{CvO}_{2}}
$$

Copyright © 2008
Thomson Delmar Learning

Shunt Equation Clinical Information Needed

- PB
- PaO_{2}
- PaCO_{2}
- PvO_{2}
- Hb
- PAO_{2}
- FIO_{2}

THOMSON
DELMAR LEARNING
Copyright © 2008

Case Study: Motorcycle Accident Victim

- A 38-year-old man is on a volume-cycled mechanical ventilator on a day when the barometric pressure is 750 mm Hg
- Patient is receiving an FIO_{2} of . 70
- The following clinical data are obtained:

Case Study: Motorcycle Accident Victim

- Hb : $13 \mathrm{~g} \%$
- PaO_{2} : $50 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{SaO}_{2}=85 \%\right)$
- $\mathrm{PaCO}_{2}: 43 \mathrm{~mm} \mathrm{Hg}$
- PvO_{2} : $37 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{SvO}_{2}=65 \%\right)$

Case Study: Motorcycle Accident Victim

- With this information, the patient's $\mathrm{PAO}_{2}, \mathrm{CcO}_{2}, \mathrm{CaO}_{2}$, and CvO_{2} can now be calculated

Case Study: Motorcycle Accident Victim

1. $\mathrm{PAO}_{2}=\left(\mathrm{PB}-\mathrm{PH}_{2} \mathrm{O}\right) \mathrm{FIO}_{2}-\mathrm{PaCO}_{2}(1.25)$
$=(750-47) 0.70-43(1.25)$
$=(703) 0.70-53.75$
= 492.1-53.75
$=438.35 \mathrm{~mm} \mathrm{Hg}$

Copyright © 2008
Thomson Delmar Learning

Case Study: Motorcycle Accident Victim

$$
\text { 2. } \begin{aligned}
\mathrm{CcO}_{2} & =(\mathrm{Hb} \times 1.34)+\left(\mathrm{PAO}_{2} \times 0.003\right) \\
& =(13 \times 1.34)+(438.35 \times 0.003) \\
& =17.42+1.315 \\
& =18.735\left(\mathrm{vol} \% \mathrm{O}_{2}\right)
\end{aligned}
$$

Copyright © 2008

Case Study: Motorcycle Accident Victim

$$
\text { 3. } \begin{aligned}
\mathrm{CaO}_{2} & =\left(\mathrm{Hb} \times 1.34 \times \mathrm{SaO}_{2}\right)+\left(\mathrm{PaO}_{2} \times 0.003\right) \\
& =(13 \times 1.34 \times .85)+(50 \times 0.003) \\
& =14.807+0.15 \\
& =14.95\left(\mathrm{vol} \% \mathrm{O}_{2}\right)
\end{aligned}
$$

Case Study: Motorcycle Accident Victim

$$
\text { 4. } \begin{aligned}
\mathrm{CaO}_{2} & =\left(\mathrm{Hb} \times 1.34 \times \mathrm{SvO}_{2}\right)+\left(\mathrm{PvO}_{2} \times 0.003\right) \\
& =(13 \times 1.34 \times .65)+(37 \times 0.003) \\
& =11.323+0.111 \\
& =11.434\left(\mathrm{vol} \% \mathrm{O}_{2}\right)
\end{aligned}
$$

Copyright © 2008

Case Study: Motorcycle Accident Victim

- Based on the previous calculation the patient's degree of pulmonary shunting can now be calculated:

$$
\begin{aligned}
\frac{Q_{\mathrm{s}}}{\mathrm{Q}_{\mathrm{T}}} & =\frac{\mathrm{CcO}_{2}-\mathrm{CaO}_{2}}{\mathrm{CcO}_{2}-\mathrm{CvO}_{2}} \\
& =\frac{18.735-14.957}{18.375-11.434} \\
& =\frac{3.778}{7.301} \\
& =0.515
\end{aligned}
$$

Clinical Significance of Pulmonary Shunting

- < 10%
- Normal status
- 10 to 20\%
- Indicates intrapulmonary abnormality

Clinical Significance of Pulmonary Shunting

- 20 to 30\%
- Significant intrapulmonary diseases
-> 30\%
- Potentially life-threatening

Appendix V

\qquad
Date \qquad

Copyright © 2008

HYPOXIA

THOMSON
DELMAR LEARNING
Copyright © 2008

HYPOXEMIA VERSUS HYPOXIA

Hypoxemia

- Abnormally low arterial oxygen tension (PaO_{2})
- Frequently associated with hypoxia
- Which is an inadequate level of tissue oxygenation

Hypoxemia Classifications

Classifications	$\mathbf{P a O}_{\mathbf{2}}$ (rule of thumb)
Normal	$80-100 \mathrm{~mm} \mathrm{Hg}$
Mild hypoxemia	$60-80 \mathrm{~mm} \mathrm{Hg}$
Moderate hypoxemia	$40-60 \mathrm{~mm} \mathrm{Hg}$
Severe hypoxemia	$<40 \mathrm{~mm} \mathrm{Hg}$

THOMSON
DELMAR LEARNING
Copyright © 2008
Thomson Delmar Learning

Hypoxia

- Low or inadequate oxygen for cellular metabolism

Hypoxia

- There are four main types of hypoxia:
- Hypoxic
- Anemic
- Circulatory
- Histotoxic

Types of Hypoxia

- Hypoxic hypoxia
- Inadequate oxygen at tissue cells caused by low arterial oxygen tension $\left(\mathrm{PaO}_{2}\right)$
- Common Causes
- Low PaO_{2} caused by
- Hypoventilation
- High altitude

Types of Hypoxia

- Hypoxic hypoxia
- Diffusion defects
- Ventilation-perfusion mismatch
- Pulmonary shunting

Types of Hypoxia

- Anemic hypoxia
$-\mathrm{PaO}_{2}$ is normal, but the oxygen carrying capacity of the hemoglobin is inadequate

Types of Hypoxia

- Anemic hypoxia
- Common Causes
- Decreased hemoglobin
- Anemia
- Hemorrhage
- Abnormal hemoglobin
- Carboxyhemoglobinemia
- Methemoglobinemia

Types of Hypoxia

- Circulatory hypoxia
- Stagnant hypoxia or hypoperfusion
- Blood flow to the tissue cells is inadequate
- Thus, oxygen is not adequate to meet tissue needs

Types of Hypoxia

- Circulatory hypoxia
- Common causes
- Slow or stagnant (pooling) peripheral blood flow
- Arterial-venous shunts

Types of Hypoxia

- Histotoxic hypoxia
- Impaired ability of the tissue cells to metabolize oxygen
- Common cause
- Cyanide poisoning
- Blue-gray or purplish discoloration seen on the mucous membranes, fingertips, and toes
- Blood in these areas contain at least $5 \mathrm{~g} \%$ of reduced hemoglobin

Cyanosis

Fig. 6-14. Cyanosis may appear whenever the blood contains at least $5 \mathrm{~g} \%$ of reduced hemoglobin.

Copyright © 2008
Thomson Delmar Learning

- An increased level of RBCs
- An adaptive mechanism designed to increase the oxygen-carrying capacity of the blood

Clinical Application 1 Discussion

- How did this case illustrate ...
- The importance of hemoglobin in the oxygen transport system

Asthma

Fig. 6-15. Asthma. Pathology includes (1) bronchial smooth muscle constriction, (2) inflammation and excessive production of thick, whitish bronchial secretions, and (3) alveolar hyperinflation.

Copyright © 2008 Thomson Delmar Learning

Clinical Application 2 Discussion

- How did this case illustrate ...
- The loading of oxygen on hemoglobin in the lung?
- The patient's total oxygen delivery $\left(\mathrm{DO}_{2}\right)$?

