
1 

1A.1 Estimation of dense-gas viscosity 
 Table D.1 gives   Tc  126.2 K ,   pc  33.5 atm , and 

6180 10 g cm sc
    for  N2 . The reduced conditions for the 

viscosity estimate are then 
 

 
  

2

2

1000 14.7 lb in.
2.06

33.5 atm 14.7 lb in. atm
f

r
c f

p
p

p


  


 (A) 

 
  273 K 68 32 F 1.8 K F

2.32
126.2 Kr

c

T
T

T
   

    (B) 

 
 At this reduced state, Fig. 1.5-1 gives   r  1.15 . Hence the 

predicted viscosity is r c     6180 10 g cm s 1.15    
42.07 10 g cm s   . This result is then converted into the requested 

units by use of Table E.3-4: 
 

 
2

4 56.7197 10 lb ft s
2.07 10 g cm s 1.4 10 lb ft s

g cm s
m

m


   
       

 

  (C) 
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1A.2  Estimation of the viscosity of methyl fluoride 
  CH3F  has molecular weight 16.04 1.008 19.00M     

34.03 g g-mol , 4.55 273.15 277.70 KcT    ,   pc  58.0 atm , and 

   334.03 g g-mol 0.300 g cmcV    113.4 cm3 g-mol . The critical 

viscosity is then estimated as 
 

   1 2 2 361.6 34.03 277.70 113.4 255.6 micropoisec
    (A) 

 
using Eq. 1.5-1(a), and 
 

     1 2 2 3 1 67.70 34.03 58.0 277.70 263.5 micropoisec
   (B) 

 
using Eq. 1.5-1(b).  The reduced conditions for the viscosity estimate 
are    370 273.15 K 277.70 KrT     2.32 ,    120 atm 58.0 atmrp   

2.07 , and the predicted valued of r  from Fig. 1.5-1 is 1.1. The 
resulting predicted value of the viscosity is 
 

  6 41.1 255.6 10 poise 2.8 10 g cm sr c           (C) 

 
using Eq. 1.5-1(a), and 
 

  6 41.1 263.5 10 poise 2.9 10 g cm sr c           (D) 

 
using Eq. 1.5-1(b). 
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1A.3 Computation of the viscosities of gases at low density 
 Equation 1.6-14, with molecular parameters from Table D.1 and 
collision integrals from Table D.2, gives the following results: 
 For O2: 32.00 g g-molM  , 3.433 Å  , and K 113 K  . Then 
at 20ºC,    K 293.15 K 113 KT   2.594  and 1.086  . Equation 
1.6-14 then gives 
 

  
   

5
2

32 00 293 15
2 6693 10

3 433 1 086

. .
.

. .
    

    
 
 

 
 

1 3
4

10 Pa s 10 mPa s
2 02 10 g cm s

g cm s Pa s
.




 
  

 
 

       2.02  102 mPa s  (A) 
 
The reported value in Table 1.4-2 is   2.04  102 mPa  s . 

For N2: 28.01 g g-molM  ,    3.667 Å , and K 99.8 K  . Then 
at 20ºC,    K 293.15 K 99.8 KT     2.594  and    1.0447 . Equation 
1.6-14 then gives 
 

  
   

5
2

28 01 293 15
2 6693 10

3 667 1 0447

. .
.

. .
    

    
 
 

 
 

1 3
4

10 Pa s 10 mPa s
1 72 10 g cm s

g cm s Pa s
.




 
  

 
 

       1.72  102 mPa s (B) 
 
The reported value in Table 1.4-2 is 21 75 10 mPa s.   . 

For CH4:   M  16.04 g g-mol ,    3.780 Å , and   K  154 K . 
Then at 20ºC,    K 293.15 K 154 KT   1.904  and    1.197 . 
Equation 1.6-14 then gives 
 

  
   

5
2

16 04 293 15
2 6693 10

3 780 1 197

. .
.

. .
    
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 
 

 
 

1 3
4

10 Pa s 10 mPa s
1 07 10 g cm s

g cm s Pa s
.




 
  

 
 

       1.07  102 mPa  s  (B) 
 
The reported value in Table 1.4-2 is 21 09 10 mPa s.   . 
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1A.4 Estimation of liquid viscosity 
 For Eq. 1.7-1, we need the following quantities at  0C and 100C : 
  

T (K) 273.15 373.15 
  g cm sNh V      2.22  104  42 12 10.   

 exp 3 8 b. T T  179.7 44.70 

 
The predicted liquid viscosity is then 
    g cm s    0.0398 0.0095 
 
The corresponding experimental values from Table 1.4-1 are 
    g cm s    0.01787 0.002821 
 
The values predicted by Eq. 1.7-1 are in poor agreement with the 
experimental values. This is not surprising, since the empirical 
formula in Eq. 1.7-1 is inaccurate for water and other associated 
liquids. 
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1A.5 Molecular velocity and mean free path 
      From Eq. 1.7-1, the mean molecular velocity in 2O is 
 

  
 

7 2 28 8 31451 10  g cm s g-mol K 273 2 K8
32 00 g g-mol

. .RT
u

M . 

   
   

                  4.25  104  cm s                                                             (A) 
 
From Eq. 1.7-3, the mean free path in 2O  at 1 atm and   273.2 K  is 
 

  

    

3

22 8 23 -1

82 0578 cm atm g-mol K 273 2 K

2 2 3 10  cm 1 atm 6 02214 10  g-mol

. .RT
d pN .


  


 

   

                      =  9.3  106  cm                                                           (B) 
 
Hence the ratio of the mean free path to the molecular diameter is  
 

  

9.3  104  cm
3  108  cm

 3.1  104                                                                   (C) 

 
at these conditions. In the liquid state, on the other hand, the 
corresponding ratio would be of the order of unity or even less. 
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1B.1 Velocity profiles and stress components 
(a)  xy yx b     , and all other 

 
 ij  are zero. 

 2 2
x xv v b y  , and all other i jv v  are zero. 

(b)  2xy yx b     , and all other ij  are zero. 

 2 2
x xv v b y  , 2

x y y xv v v v b xy    , 2 2
y yv v b x  , and all 

other i jv v  are zero. 

(c)  All 
 
 ij  are zero. 

   vxvx  b2 y2 , 2
x y y xv v v v b xy     , 

  
vyvy  b2x2  and all 

other 
 
vivj  are zero. 

(d)  
 
 xx   yy  b , 2zz b   , and all others are zero. The  

components of vv  may be given in the matrix: 
2 2 2 21 1 1

4 4 2
2 2 2 21 1 1

4 4 2
2 2 2 21 1

2 2

x x x y x z

y x y y y z

z x z y z z

v v b x v v b xy v v b xz

v v b xy v v b y v v b yz

v v b xz v v b yz v v b z

     

      

     

    
 

     
       

vv  
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1B.2  A fluid in a state of rigid rotation 
(a)  A particle within a rigid body rotating with an angular velocity 
vector w has a velocity given by   v w r . If the angular velocity 
vector is in the +z direction, then there are two nonzero velocity 
components given by  vx  wz y  and y zv w x  . Hence the 
magnitude of the angular velocity vector is b in Problem 1B.1(c). 
(b)  For the velocity components of Problem 1B.1(c),  
 

  

vy

x

vx

y
 0     and    2y x

v v
b

x y

 
 

 
 (A) 

 
(c)  In Eqs. 1.2-7 through 12, we employ only the linear symmetric 
combinations of derivatives of the velocity, so that in pure rotation 
there would be no viscous forces present. In (b) we see that the 
antisymmetric combination is nonzero in a purely rotational motion.  
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2A.1 Thickness of a falling film 
(a) The volume flow rate  w   per unit wall width W is obtained from 
Eq. 2.2-26 thus 
 

  2 2
2 2

1 0037 10  cm s 10Re
2 509 10  cm s

4 4

.w
.

W








     (A) 

 
Here the kinematic viscosity   for liquid water at 20 C  was obtained 
fom Table 1.4-1. Since 1 ft = 2.54 cm, 1 hr = 3600 s, and 1 gal = (231.00 

 in3 )  3 32 54 cm in 3785 4 cm. .   (see Appendix E), the result in the 

requested units is  
 

  

w
W

 0.02509
cm2

s







1

3785.3
gal

cm3







30.48 
cm
ft







3600
s

hr






      

         
  
 0.727

gal
hr  ft

 (B) 

 
(b) The film thickness is calculated from Eq. 2.2-27 and Eq. A as 
 

1 3 1 3
3 3 Re

 cos  cos  4
w

g W g
  
  

   
    
   

 

 
 

  
 

1 32
2

2

3 0 010037 cm s
2 509 cm s

980 665 cm s 1 0

.
.

. .

 
 
  

 

                 0.009167 cm  0.00361 in  (C) 
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2A.2 Determination of capillary radius by flow measurement 
 Assuming the flow to be laminar, we solve Eq. 2.3-23 for the 
capillary radius to get 
 

   

1 4 1 4

0 0

8 8

L L

Lw Lw
R

 
 
   

    
    c c c c

 

    
   

  

1 45 2 3

5 2

8 4 03 10  m s 0 5002 m 2 997 10  kg s

3.1416 4 829 10  kg m s

. . .

.

   
 

   
 

     1 413 4 23 186 10 7 51 10  m 7 51 10  cm. . .         (A) 

 
We must next get the Reynolds number in order to establish the fact 
that the flow is laminar.  
 

  
Re 

D vz 



4w
D


2w

R
 

     
 

   
3

4 5 2 3 3

2 997 10  kg s2
7 51 10  m 4 03 10  m s 0 9552 10  kg m

.

. . .



 




  
 

        66.0 (B) 
 
Thus our assumption of laminar flow has been validated. Since the 
entrance length   Le  0.035DRe  0.35 cm is less than L, the entrance-

effect correction to R is at most of the order of   1 4
1 1eL L    , or 

0.2 percent of R in the present example. 
 Difficulties in this method of determination of the capillary 
radius include: (1) inability to account for departures from a straight, 
circular cylindrical wall geometry, and (2) inability to account for 
inadvertent spatial and temporal variations of temperature, hence of 
the fluid density and viscosity. 
 A simpler method of measuring the capillary radius is to 
measure the length and mass m of a small slug of liquid mercury (or 
another liquid of known density) injected into the tube, and to 
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calculate the mean radius R of the slug from  1 2
m L , on the 

assumption that the slug is a right circular cylinder. This method 
allows for comparisons of the mean R values for various intervals of 
the tube length. 
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2A.3 Volume rate of flow through an annulus 
 Assuming the flow to be laminar, we use Eq. 2.4-18 to 
calculate the volume flow rate  Q  w   for the following data 
 

0 495 1 1 0 45. . .    

   1 1 in 1 1 in 12 in ft 1 1 12  ftR . . .    

   2136 8 lb ft hr 1 hr 3600 s 3 80 10  lb ft sm m. .       

L = 27 ft 

    3 2
0 5 39 psi 4 330 10  poundals ft psiL . .  c c  

 24 2 497 10  lb ft sm.    
 
Here Appendix E has been used for the conversion of units. With the 
above information, Eq. 2.4-18 gives 
 

  
  

 
 
 

224
4

2

1 0 452 497 10 1 1 12
1 0 45

ln 1 0 458 3 80 10 27

.. .w
Q .

..



 

              

 

                
 

21 0 2025
0 6748 1 0 04101

ln 1 0 495
.

. .
.

 
   

  
 

               30 6748 0 1625 0 110 ft s. . .   (A) 
 
 To verify that the flow is indeed laminar, we next calculate 
the Reynolds number and get 
 

 
 

2 1 2
Re

1
zR v w

R
 
   


 


 

      
  

   

3 3

2

2 0 110 ft s 80 3 lb ft
1110

1 1 12 ft 3 80 10  lb ft s 1 4
m

m

. .

. , . 
 

 
 (B) 

 
Since this value is well within the laminar range, our assumption of 
laminar flow is confirmed. 
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2A.4 Loss of catalyst particles in stack gas 
(a) Rearrangement of Eq. 2.7-17 gives the terminal velocity as 
 

 2

18
s

t
D g

v
 




  (A) 

 
in which D is the sphere diameter. Particles settling at  vt  greater than 
the centerline gas velocity will not go up the stack. Hence, the value 
of D that corresponds to 1 0 ft stv .  will be the maximum diameter 
of particles that can be lost in the stack gas of the system under 
consideration. 
 Conversion of the data to cgs units gives 
 

  1 ft s 12 2 54 cm ft 30 48 cm stv . .    

     330 045 lb ft 453 59 g lb 12 2 54 cm ftm m. . .    

 4 37 2 10  g cm.    
 
Hence, the maximum allowable diameter is 
 

 
  

  max 4 3 2

18 0 000026 g cm s 30 48 cm s18
1 2 7 2 10  g cm 980 7 cm s

t

s

. .v
D

g . . .


  


 

  
 

            0.011 cm= 110 microns (A) 
 
(b) Equation 2.7-17 was derived for Re <<1, but holds approximately 
up to Re = 1. For the problem discussed here 
 

   40 011 30 48 7 2 10
Re 0 93

0 00026
t

. . .Dv
.

.





            (B) 

 
Therefore, the result in (a) is approximately correct. Methods are 
given in Chapter 6 for solving problems of this type outside the 
creeping-flow region.  
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2B.1 Simple shear flow between parallel plates 
(a) For plates of length L and width W, a momentum balance is 
 

0yx yxy y y
LW LW 


   (A) 

 
Division by  y  and then letting  y  approach zero gives 
 

0yxd

dy


  (B) 

 
Integration with respect to y gives 
 

1yx C   (C) 

 
Insertion of Newton's law of viscosity then leads to 
 

1
xdv

C
dy

   (D) 

 
Integration of this equation gives 
 

1
2x

C
v y C


    (E) 

 
Application of the boundary condition at y = 0, that   vx  0 , tells us 
that   C2  0 . Then the boundary condition at y = b, that   vx  v0 , tells 
us that   C1   v0 b . Therefore the velocity and shear stress 
distributions are 
 

0
x

v
v y

b
             and            0

yx
v
b

    (F) 

 
(b) The volume rate flow through the slit is obtained by integrating 
the velocity over the cross section 
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    0 1
020 0 0 0

W b b b
x x

v
Q v y dydz W v y dy W ydy Wbv

b
        (G) 

 
This seems like a reasonable result, inasmuch as it is the cross 
sectional area Wb multiplied by the average velocity through the 
cross section 1

02 v . 
(c) Equations A through E still apply, but now the boundary 
conditions are different: the boundary condition at y = 0, that 0xv v , 
tells us that 2 0C v ; and the boundary condition at y = b, that 0xv  , 
tells us that 1 0C v b . Therefore the velocity and shear stress 
distributions are: 
 

0 1x
y

v v
b

   
 

            and            0
yx

v
b

    (H) 

 
The volumetric flow rate is the same as that given by Eq. G. 
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2B.2 Different choice of coordinates for the falling film problem 
 Set up a momentum balance as before, and obtain the 
differential equation 
 

cosxzd
g

dx
    (A) 

 
Integration gives 
 

  1cosxz x gx C     (B) 
 
Since no momentum is transferred at x  , at that plane    xz  0 . This 
boundary condition enables us to find that 1 cosC g    , and the 
momentum flux distribution is 
 

  cos 1xz
x

x g   


    
 

 (C) 

 
Note that the momentum flux is in the negative  x -direction.  
 Insertion of Newton's law of viscosity  xz zdv dx    into 

the foregoing equation gives the differential equation for the velocity 
distribution: 
 

cos
1z gdv x

dx
  

 
       

 (D) 

 
This first-order differential equation can be integrated to give 
 

 
22 2

2 22

cos cos1 1
2 2z

g gx x x
v x x C C

     
    

     
          
     

 (E) 

 
The constant   C2  is zero, because 0zv   at 0x  .  Therefore 
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 
22cos 1

2z
g x x

v x
  

  
         

     
 (F) 

 
We note that  x  and x are related by  1x x   . When this is 

substituted into the velocity distribution above, we get 
 

 
22cos 1

1 1 2
2z

g x x x
v x

  
   

                           
 (G) 

 
which can be rearranged to give Eq. 2.2-22. 
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2B.3 Alternate procedure for solving flow problems 
 Substituting Eq. 2.2-18 into Eq. 2.2-14 gives 
 

coszd dv
g

dx dx
     

 
          or          

2

2

cosz gd v
dx

 


   (A) 

 
Integrate twice with respect to x  (see Eq. C.1-10) and get 
 

2
1 2

cos
2z

g
v x C x C

 


     (B) 

 
Then use the no-slip boundary condition that 0zv   at x  , and the 
zero momentum flux boundary condition that 0zdv dx   at 0x  . 

The second gives   C1  0 , and the first gives   2
2 cos 2C g    . 

Substitution of these constants into Eq. B gives 
 

2 2cos cos
2 2z

g g
v x

    
 

    (C) 

 
This may be rearranged to give Eq. 2.2-22. 
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2B.4 Laminar flow in a narrow slit 
(a) The momentum balance in §2.2 leads to  
 

 0 L
xz

d
dx L





c c
 (A) 

 
Integration gives  
 

   0
1

L
xz x x C

L



 

c c
 (B) 

 
Substitution of Newton's law ,  xz zdv dx   , into the above gives 

 
 0 1Lzdv C

x
dx L 


  

c c
 (C) 

 
Integration then gives  
 

    2
0 1

22
L

z
x C

v x x C
L 


   

c c
 (D) 

 
Use of the no-slip boundary conditions at x B   gives   C1  = 0 and 

  2
2 0 2LC B L c c . Substitution of these constants into Eqs. B and 

D gives the stress and velocity distributions as 
 

   0 L
xz x x

L





c c
 (E) 

 

    22
0 1

2
L

z
B x

v x
L B

      
   

c c
 (F) 

 
(b) The maximum velocity is at the middle of the slit and is 
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  2
0

max 2
L

z,
B

v
L




c c
 (G) 

 
and hence  
 

  2

max

1z

z,

v x x
v B

    
 

 (H) 

 
The ratio of the average to the maximum velocity is then 
 

   2 1 2
0 0

1
max

0 0

1 1
W B

Bz
W B

z,
B

x B dxdy dv
v dxdy d

 






    
  

  
 1 2

3 31    (I) 

 
(c) The mass rate of flow is  
 

       2
02

32 2
2

L
z

B
w BW v BW

L
 




 
c c   3

02
3

L B W
L






c c

 (J) 

 
The volume rate of flow is 
 

  3
02

3
L B Ww

Q
L 


 

c c
 (K) 

 
(e)  This problem is equivalent to that described in §2.5 if we set both 
viscosities equal to  , and set b equal to B. Then the maximum 
velocity is given by the prefactor (e.g., the term outside of the square 
brackets) in either Eq. 2.5-18 or Eq. 2.5-19, which is equivalent to that 
given by Eq. G above. The average velocity is then given by Eq. 2.5-20 
or Eq. 2.5-21, and the resulting ratio of the average and maximum 
velocity is equivalent to Eq. I above. 
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2B.5  Laminar slit flow with a moving wall ("plane Couette flow") 
(a) Start with the velocity distribution from part (a) of Problem 2B.4 
(in terms of the integration constants).  
 

    2
0 1

22
L

z
x C

v x x C
L 


   

c c
 (A) 

 
Determine 1C  and 2C  from the boundary conditions that 0zv   at 
x B  , and 0zv v  at x B  . This leads to 
 

  2
0 1

20
2

L B C
B C

L 


   
c c

            (for x B  ) (B) 

  2
0 1

0 22
L B C

v B C
L 


   

c c
          (for x B  ) (C) 

 
We now have two simultaneous equations that have to be solved for 
the integration constants, 1C  and 2C . Addition of Eqs. B and C and 
rearranging gives 
 

  2
00

2 2 2
L Bv

C
L


 

c c
 (D) 

 
Then subtracting Eq. B from Eq. C and rearranging gives 
 

0
1 2

v
C

B


  (E) 

 
Putting these values for   C1  and   C2  into Eq. A gives finally 
 

    22
0 01 1

2 2z
B x v x

v x
L B B

            
     

c c
 (F) 

 
Notice that the velocity distribution is no longer symmetric about the 
midplane, so that   C1  0 . 
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Eq. F can be differentiated with respect to x, and then Newton's law 
of viscosity,  xz zdv dx   , can be used to get  

 

    2
0 0 0 0

2
2

2 2 2
L L

xz
B x v v

x x
L B L BB

 


                       

c c c c
 (G) 

 
for the shear stress distribution. 
(b) The velocity distribution is given by Eq. F above. 
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2B.6 Interrelation of slit and annulus formulas 
 From the annular flow result in Eq. 2.4-18 we get, by 
replacing   by 1   
 

 
     

 

224
0 4

1 1
1 18 ln 1

L R
w

L
  

 

                

c c
 (A) 

 
Now we are mainly concerned with the expansion of the expression 
in the bracket on the right side of Eq. A, which we abbreviate as [   ]. 

   2 3 41 1 4 6 4        
 22

2 3 41 1 1
2 3 4

1 1 2 

   

  

    

 

        2 3 4
2 3 4

2 3 41 1 1
2 3 4

4 4
4 6 4

  
   

   

 
    

   
 

        2 3 4 2 3 48 1
3 34 6 4 4 6                 

          3 4 3 4 38 1 4 1
3 3 3 24 1              for small   (B) 

 
Hence for small  , Eq. A becomes 
 

       
4 4 3

30 01 1
2 2

4
1 1

8 3 6
L LR R

w
L L

    
  

 
  

     
 

c c c c
 (C) 

 
This gives, finally, a result in agreement with Eq. 2B.6-1, which was 
obtained by modifying the slit formula. 
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2B.7 Flow of a film on the outside of a circular tube 
(a) The momentum balance is the same as that in §2.3, leading to Eq. 
2.3-12. When the pressure-difference term is omitted, because the film 
is moving solely to the force of gravity, we get 
 

  0rz
d

r gr
dr

     (A) 

 
When Newton's law of viscosity is inserted, the equation becomes 
 

0rd dv
r gr

dr dr
     

 
 (B) 

 
Integration then gives 
 

 
2

1 2ln
4z
gr

v r C r C



     (C) 

 
The constants of integration are determined from the boundary 
conditions that at r = R, 0zv   (zero slip at the solid surface) and that 
at r = aR, 0zdv dr   (no radial momentum transport at the free 

surface). The constants of integration are  2
1 2C g aR   and 

    22
2 4 2C gR g aR     . When these constants are put into 

Eq. C, we get finally  
 

 
22

21 2 ln
4z
gR r r

v r a
R R




          
     

 (D) 

 
(b) The mass rate of flow is  zv r  integrated over the cross-section 
of the flow 
 

 2

0

aR
zR

w v r rdrd
       2

aR
zR

v r rdr   (E) 
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In the second expression, we have taken the density outside of the 
integral, assuming that the fluid is incompressible. We have also 
performed the integration over the angular variable. It is a little easier 
to continue if we use the dimensionless variable r R  . Then Eq. E 
becomes 
 

 2
1

2
a

zR v d     (F) 

 
We next insert the expression for the velocity from Eq. D, but written 
in terms of the dimensionless variable of integration. 
 

 
2

2 2 2
1

2 1 2 ln
4

a gR
w R a d

   


    (G) 

 
When the integration is performed, we get 
 

 
2 2

2 4 2 2 21 1 1 1
2 4 4 2

1
2 ln

2

agR
w a

     


        

     
2 2

2 4 41 4 3 4 ln
8

gR
a a a a




      (H) 

 
(c) If we set 1a    (where   is small), and expand in powers of  , 
we get 
 

   
  

2 2 3 42 4

2 3 4 2 3 41 1 1
2 3 4

1 4 1 2 3 1 4 6 4

8 4 1 4 6 4

gR
w

     
        

         
 
          

 (I) 

 
Here we have use the Taylor series expansion for  ln 1   in Eq. C.2-
3.  We find that the terms without   sum to zero, as do the terms in   
and 2 . Thus we get 
 

 
2 4 2 4 3

3 416
3

2
O

8 3
gR gR

w
   

 
      (J) 
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Now, does this simplify to the result in Eq. 2.2-26? If we make the 
identification 2W R  for the width of the film, and R   for the 
film thickness, then Eq. J is indeed equivalent to Eq. 2.2-26 (provided 
that  cos  1, that is, the film is on a vertical surface). 
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2B.8 Annular flow with inner cylinder moving axially 
(a) The momentum balance is the same as that in Eq. 2.4-2, but with 
the pressure-difference term omitted. We can substitute Newton's 
law of viscosity into this equation to get 
 

1zdv C
dr r

   (A) 

 
whence  
 

  1
2lnz

C
v r r C


           or         

 
1 2

0

lnzv r r
D D

v R
    (B) 

 
That is, we rewrite Eq. B in such a way that only dimensionless 
quantities appear, including the new integration constants 1D  and 

2D . These integration constants are determined from the no-slip 
conditions at the cylindrical surfaces:   0zv R v   and   0zv R  . The 
constants of integration are 2 0D   and 1 1 lnD    and the velocity 
distribution 
 

 
0

ln
ln

z r Rv
v 

  (C) 

  
(b) The mass rate of flow w is obtained by integrating the mass flux 

 vz  over the cross section of flow 
 

 
2

2 10
0

2 ln
ln

R
zR

v R
w v rdrd d



 
     


     

2 12 20 1 1
2 42 ln

v R
ln 

   


 
 

       
 

22
2 2 2 20 1 1

02 4

1
2 ln 1

ln 2ln 1
v R

R v


      
 

 
            

 (D) 

 
(c) The force on a length L of the rod is 
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 2 2

0 0 0 0

L L z
z rz r R

r R

dv
F Rd dz Rd dz

dr
 




     




     
    

 

    
 

 
0

0
1 2

2
ln ln 1

R L v
RL v

   
 

    (E) 

 
which is a force in the direction opposite to the direction of flow. 

(d) When we replace   by  1    and expand  ln 1  in a Taylor 
series, we get 
 

 
02

ln1 ln 1  z
L v

F
 




 
 

 
     

 0 2 3 41 1 1
2 3 4

1
2 L v 

   
 

    
 

     
 

0
2 31 1 1

2 3 4

2 1
1

L v 
   




   
 

      20 1 1
2 12

2
1

L v   


      (F) 

 
To get this last result, one can expand the fraction  1 1  , where 

2 31 1 1
2 3 4      , in a Taylor series about 0   using Eq. C.2-1.   
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2B.9 Analysis of a capillary flowmeter 
 Designate the water by fluid "I" and the carbon tetrachloride 
by "II". Label the distance from B to C as "J". The mass rate of flow in 
the tube section "AB" is given by 
 

  4
I

8
A B R

w
L

 





c c   4
I I

8
A Bp p gh R

L

  


     (A) 

 
Since the fluid in the manometer is not moving, the pressures at D 
and E must be equal; hence 
 

 I I I IIA Bp gh g J H p gJ gH          (B) 
 
from which we get 
 

 I II IA Bp p gh gH       (C) 
 
Insertion of this into the first equation above gives the expression for 
the mass rate of flow in terms of the difference in the densities of the 
two fluids, the acceleration of gravity, and the height H  
 

  4
II I I

8

gH R
w

L

   


    (D) 

 
This verifies that   need not be measured. 
 Using the values of 31.0019 10 Pa s     and 3

I 0.998 g cm   
from Table 1.4-1, along with the other parameter values in the 
problem statement, the mass flow rate is 
 

       
  

43 2 3

3

1 594 0 998 g cm 9 8 m s 1 in. 0 01 in. 0 998 g cm

8 1 0019 10 Pa s 120 in.

. . . . .
w

.




  
 

 

       
24 6 2 20.0254 m 100 cm 1 kg 1 Pa m 1 N s

in. m 1000 g 1 N 1 kg m
                        
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    8 2.2046 lb 3600 s
7.925 10 kg s

kg hr
m       

  
 

    46.29 10 lb hrm
   (E) 
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