

POC Requirements for API Management
Evaluating functional and nonfunctional capabilities of an API management solution

Table of Contents

Introduction
Purpose of the proof of concept

Business need/value alignment
Key technical drivers

PoC timeline
High-level evaluation approach
PoC Prerequisites

High-level architecture of backend services/applications
Infrastructure
API details

Use Cases
API management requirements

API lifecycle
API Runtime
API Backend-as-a-Service
Analytics
Developer portal
Monetization
Operations and architecture

2
©2016 Apigee Corp. All Rights Reserved

1 Introduction

The platform should be able to:

● Create easy to customize and manage, well-designed APIs from existing services
● Enable API consumers and app developers to build innovative, engaging apps, by providing

frictionless self-service onboarding, easy access to API keys and API secrets, and rich interactive
API documentation

● Drive developer adoption and help build a community of internal and external (i.e. partners and
independent third-party) developers

● Extract operational and business insights from our API and app ecosystem
● Provide the ability to monetize APIs using different rate plans

The solution should sit between back-end services and consumers, providing much-needed flexibility to
complement and enhance a variety of business and low-level functionality. This will enable the API
team to focus on creating value from core business functionality via APIs and off-load all
non-functional aspects of exposing and managing the APIs to the API management solution.

2 Purpose of the proof of concept

This section in the document details the key objectives that drive the evaluation, covering both
functional and nonfunctional aspects of the API management product to establish viability and
differentiation.

Business need/value alignment

Outlined below are the business drivers for this POC:

<<Replace the following with your specific business needs/value alignment>>

● Example: Improve agility of our business units in creating omnichannel ecommerce experience
● Example: Reduce amount of time required for partners to start conducting business with us
● Business need #3
● Business need #4
● Business need #5

3
©2016 Apigee Corp. All Rights Reserved

Key technical drivers

While specific use cases will be defined further in this document, at a high-level the following items are
specific technical drivers this proof will validate:
<<Replace the following with your specific key technical drivers>>

● Example: Need the ability to provide user and product data to various internal business units
responsible for our omnichannel ecommerce strategy

● Example: Need to enable our partners to place orders with us in real-time from their mobile
apps

● Technical driver #3
● Technical driver #4
● Technical driver #5

3 PoC timeline

 Item Date Started Date Completed

● Sign NDA & evaluation agreement

● Define and document POC use cases

● Define and document POC success criteria

● Define and document POC timeline

● Provide details about back-end APIs/endpoints

● Validate connectivity with target endpoints

● Conduct hands-on workshop with the solution

● Conduct architecture and security review

●
Confirm logistics (venue, badges, start time, point of
contact)

● Provision API management solution

● Conduct POC kickoff meeting

4
©2016 Apigee Corp. All Rights Reserved

● Implement POC use cases

● Demonstrate use cases

● Conduct POC readout meeting

● Define and document next steps

4 High-level evaluation approach

Perform a cloud or on-premises POC to validate key aspects of API management relevant to our
business, including:

● Enterprise-level API management and the ability to expose a uniform façade

● Security aspects of the platform

● Customizability–quick and easy customization of APIs for different development groups

● Easy developer on-boarding and rich documentation for internal and external APIs

● Out-of-the-box metrics and performance and analytics reports

● Monetization capabilities

● Performance and scalability capabilities

● Multi-tenancy and multi-environment

● Fit within DevOps environment

Mutual NDAs must be signed before the evaluation begins.

5 PoC prerequisites

Outlined below are the necessary prerequisites for completion of the POC.

5.1 High-level architecture of backend services/applications

<<include relevant architecture diagram>>

5.2 Infrastructure

<<include relevant infrastructure information>>

5
©2016 Apigee Corp. All Rights Reserved

5.3 API details

<<include relevant API document and details>>

6
©2016 Apigee Corp. All Rights Reserved

6 Use Cases

6.1 API management requirements

6.1.1 API lifecycle

No. Key Focus Area Description
Priority

(H/M/L)

1 Design-first
Demonstrate the support to create a facade and to
generate API documentation using OpenAPI (formerly
Swagger) specs to support a “design-first” approach

2 Publish

Demonstrate how resources from one or more APIs can
be packaged together and published for easier
consumption to serve different API consumers, restrict
access to certain resources, and support different
quotas

3 Publish
Demonstrate how to publish APIs for different purposes;
sandbox, internal, and production.

6.1.2 API Runtime

No Key Focus Area Description
Priority

(H/M/L)

7
©2016 Apigee Corp. All Rights Reserved

1
Traffic
management/
throttling

Demonstrate out-of-the-box traffic throttling capabilities
to protect the back-end systems from unusual spikes

2
Protect against
unusual spikes

Decide on the spike rate based on factors including
payload size and type of service it is calling

3

Control number
of open
connections from
API tier to
backends (rate
limit)

Demonstrate out-of-the-box traffic throttling capabilities
to control number of active/open connections from API
layer to our back-end systems

4
Control/configure the number of open/active
connections by backend endpoint type

5
Limit the total number of connections to our back-end

systems across distributed runtime instances of the

platform

6

Quota

Demonstrate different kinds of API access limits (by API

key, app, API user, and end user)

7 Demonstrate SLA capabilities based on the consumer.

(partner types, app types, environment, and products)

8

Caching

Explore some out-of-the-box caching from the API tier
covering the scenarios noted below

Caching back-end responses: the API tier should serve
as a caching layer between the apps and the backend on
frequently called services/resources.

E.g. if a response from a certain service is resource
intensive and is not going to change for a relatively long
period of time (hours or a day), the API tier should cache
it and serve it from the cache for the subsequent
responses.

9
Caching for state management: the API tier should be
able to do state management across different APIs.

8
©2016 Apigee Corp. All Rights Reserved

E.g. if API “X” is caching a state about the user
preferences, retrieval of that stored state (cache) from
API “Y” should be enabled.

10

Caching content based on HTTP 1.1 caching header
directives from back-end target (i.e. origin) servers

Caching headers and directives including max-age,
no-cache, s-max age, expires, e-tags, and
accept-encoding.

11

Caching content by consuming apps: the ability to
cache entries(buckets) by app.

E.g. if partner app “A” is calling API “X” since the
response will be unique to that app, the cache should as
well be applied to that app ONLY.

12

Cache content by app user: the ability to cache entries
for different users of the app.

E.g. if User A is using an app, and an attribute in the API
payload can identify the user, the response should be
cached specifically for that user. Each user should have
their specific data returned from the cache upon
subsequent requests.

13

Cache invalidation: the ability to define a clear way of
flushing/clearing out the caches.

E.g. when a user logs out, we should be able to release
all the cache that was captured during that session for a
user. There should also be a clear way of flushing the
caches from the back-end responses (see above) if the
backend updates before the configured cache expiry.

14 Config store
Demonstrate the ability to externalize values that can be
stored, retrieved, and referenced during API call
processing.

9
©2016 Apigee Corp. All Rights Reserved

16

Security

Map internal authentication/authorization mechanisms
to API keys and OAuth. Should be able to perform
Credential Mediation.

E.g. Apigee should only validate keys/tokens before or
after successful authentication from identity providers.

17

Back-end systems need base-64 encoded credentials
(basic auth). The API platform should encode the
credentials coming in plain text from the applications
before sending the request to the back-end system.

18
Authenticate the runtime API calls against existing LDAP
system.

19

SAML is used for SSO across different applications. The
API platform must generate as well as validate a SAML
assertion, providing flexibility to use it as either a service
provider or an identity provider.

20

A unified solution against SQL injection is required, as is
the ability to restrict and control payloads and headers
and ensure malicious code does not make it through to
the backends. The threat model should be extensible
against multiple data types, including XML and JSON.

21

The ability to block or blacklist traffic coming from
certain IPs hitting the API tier is required. Also required:
the ability to allow or whitelist only a certain set of IPs
hitting the API tier.

22

Network or transport-level security between the client
apps and the API tier is needed. This should be achieved
that using standard protocols, including TLS. All the
options of client-server hand shaking should be
explored.

10
©2016 Apigee Corp. All Rights Reserved

23

Network or transport-level security between the API tier
and our backend systems is needed. This should be
demonstrated using standard protocols like TLS. All the
options of client-server hand shaking for this should be
explored.

24

Error handling,
logging

Because the API platform will be integrated with several
distinct back-end systems, we need a unified way to
throw and handle errors such that it appears as such to
our consumers/apps. The API platform should be the
place to map all errors from different backends and give
one standard error format.

25

We want to customize errors by consumers (apps). We
also need to be able to control the granularity of the
error messages by apps. E.g. we want to give out more
detailed error messages to our “trusted”/internal apps
and less detailed errors to external apps.

26

To troubleshoot or debug an end-to-end use case, we
need to log all the responses (success and error) from
the API tier to our logging systems (syslog). We also
want to tie a unique ID to each message so we can map
it pinpoint issues.

27
Sending logs from the API tier to our logging systems
should be done securely.

28
Logging messages from the API should have zero impact
on the performance of an actual API call.

29

We need to be able to create workflows (tie in a
webhook) to certain conditions, including our backend
server erroring beyond certain counts (for example)
such that we would receive a notification.

30 Extension We need to handle business logic in our API tier.
Depending on the use case we might want to handle it

11
©2016 Apigee Corp. All Rights Reserved

either in JavaScript, Java, Python or, for some IO-based
utilities, we might want to handle that with Node.js

31
We need to integrate some non-http endpoints,
adapters, or jars through our API tier.

32 Custom Policies
We want to be able to create our own features that
aren’t covered in the product.

33

Debugging

We want to be able to debug issues in different ways.

Run time: We want some mechanism to debug the API
at runtime and get insights on what’s coming in and
what’s going out, and pinpoint the exact point of
problem.

34
After the fact: for some difficult to reproduce scenarios,
we want the ability to analyze the API traffic for
debugging purposes.

35
We want to plug in our existing monitoring technologies
with the API platform.

36
We want to mask sensitive personally identifiable health
information attributes within the payload during debug
sessions

37 Orchestrations
We want to use multiple target backends in our APIs,
and do load-balancing and build conditional backends.

38 Mashups
We want to build mashups, conditionally calling services
for validation and/or data enrichment.

6.1.3 API Backend-as-a-Service

12
©2016 Apigee Corp. All Rights Reserved

Because APIs are stateless and used to build modern apps, they require a Backend-as-a-Service that
provides the ability to do state management, provide server-side support to manage and authenticate
app users, and the ability to create APIs for sending in-app push notifications or issue geolocation
queries. These capabilities make it easier for API consumers to build robust interactions and
applications.

No. Key Focus Area Description Interest

1 API-driven scalable data
store

The API-driven, highly performant
NoSQL data store should be easily
scalable to our growing needs. This
data should be fetchable in a
performant way through runtime
RESTful APIs.

2 Security

The data should be protected and
secured allowing access to only
authenticated entities (APIs and
apps) by standards like OAuth.

3 Granular data access
controls

We need access control to
configure which users are allowed
to execute the RESTful API
associated with the data.

4 Special data formats

We want the ability to store images,
videos, and audio within the
datastore and provide RESTful APIs
to handle CRUD operations on that
data.

5 Data querying

We want the ability to retrieve data
from the NoSQL datastore using
RESTful APIs that understand
SQL-like queries.

13
©2016 Apigee Corp. All Rights Reserved

6
Device/user specific data
store

We want the ability to store and
create a relationship between users
and their mobile devices and need
the ability to query data for a
specific user and/or device.

7
Geolocation driven
querying

We need a way to store and query
data based on a particular
geolocation.

E.g. we need to be able to fetch all
our users within a certain range of
distance from a particular
geolocation

8 Referenceable data sets

We the ability to create reference
relationships between different
data sets.

E.g. if we have a customer data set
containing each of our customer
entries and a product data set
containing our product information,
we require a way to create some
link between the two in a way that
produces a list of all the customers
who viewed or purchased a
particular product.

9 Pagination support

We need out-of-the-box support for
pagination that would be controlled
by data querying. We need the
ability to control how much data is
returned in a query and iterate
through the data on a per call basis.

10 Push notification support For mobile apps, we want the
ability to send in-app push

14
©2016 Apigee Corp. All Rights Reserved

notifications to users. We want the
ability to leverage Apple, Google,
and Windows push notification
service notifiers.

6.1.4 Analytics

Robust analytics provides complete insight and visibility from the developer apps that are using the APIs, the
APIs themselves—their traffic, performance, success rate—right down to the target endpoints that the APIs hit.
The solution must provide:

● complete activity, performance, and error/alert reporting
● API segmentation by traffic, performance, success rate, and a host of other metrics
● a fine-grained view of how APIs are being used by the consuming apps and usage by API method to

know which APIs to scale
● assistance in troubleshooting anomalies and errors
● the ability to create custom reports on both operational and business-level information; as data passes

through the API management layer, default types of information should be collected, including URLs and
IPs for API call information, and latency and error data

Besides out-of-the-box information that’s collected, the solution must also provide the ability to easily configure
extraction of data from the XML or JSON request or response and make it available for analysis. All data should
be pushed to analytics where it can be aggregated and leveraged by built-in or custom reports. Analytics should
also provide fundamental administration services, including user and role management.

No. Key Focus Area Description Interest

1 Real-time dashboards

The API platform should provide
out-of-the-box, real-time dashboards
with dynamic drill-down and
exploratory visualization features that
highlighting overall traffic trends, error
rates, and API usage. Separate
dashboards should be provided to view
metrics from different deployment

15
©2016 Apigee Corp. All Rights Reserved

environments including test and
production.

2 Drill-down and time range

Dashboards provide the ability to
drill-down based on various
dimensions and time ranges. Users
should be able to zoom into a specific
time period across which they wish to
view metrics.

3 API performance metrics

The API platform should provide
dashboards that measure API
performance including response times,
latency, and error rates. Users should
be able to view metrics across different
dimensions such as API, application,
developer, response status, and client
identifier.

4 API target back-end metrics

The API platform should provide
dashboards that measure trends in the
responses from target back-end
services that the APIs invoke. These
should include metrics such as target
service response time and target
response errors.

5

Usage metrics

The API platform should provide
real-time dashboards that measure API
usage distributed across developers,
apps, and client devices. It should
provide metrics including the volume
of traffic generated for a given API or
by a specific developer app and the
number of successful and failed API
calls.

6 The API platform should provide
real-time dashboards that measure

16
©2016 Apigee Corp. All Rights Reserved

trends in API usage over specific time
periods, as well as API transaction rates
at specific times. The platform should
also provide real-time trends such as
top APIs and top apps, based on API
usage over time, such that business
users can measure the adoption of
APIs.

7 Custom dashboards

The API platform should provide the
ability to create custom dashboards by
customizing any parameter, preferably
through the UI. Users should be able to
create reports that measure different
metrics across various dimensions.
Users should also be able to extract
any custom metric from any part of the
API request or response—URIs, query
parameters, headers, and
payloads—and use them to construct a
real-time custom dashboard.

8 Custom dashboards:
analytics data filtering

While creating custom analytics
dashboards, users should be able to set
filters on the data to be collected for
the dashboard. E.g. a dashboard can be
created to measure a metric only when
a specific value occurs for a given query
parameter.

9 Analytics data export

A user should be able to export data
for external analytics and reporting,
and apply powerful filters to ensure
the export of only relevant
information.

10 Analytics tools
Demonstrate troubleshooting tools
available to debug any anomaly in
traffic.

17
©2016 Apigee Corp. All Rights Reserved

11 Developer analytics
Demonstrate how to support reports
for developers on their own API usage.

18
©2016 Apigee Corp. All Rights Reserved

6.1.5 Developer portal

The API management solution should provide a developer portal, which should have out-of-the-box
community features including blogs, forums, and FAQs that will help build a developer ecosystem for
internal developers or externally exposed to partners and third-party developers. It should be easily
customizable and rebranded, and should include mechanisms for secure self-service registration and
developer onboarding(whether internal, partner, or external).

The portal should also include the ability to create intuitive interactive documentation that can be
annotated by each developer and used to test and view API results in real time. Apart from content
management, the portal should offer features for community management such as manual/automatic
user registration and moderating user comments. It should offer a Role Based Access Control (RBAC)
model that controls access to portal features (for example, it should be able to control whether
registered users can create forum posts or use test consoles).

No. Key Focus Area Description Interest

1

Developer registration

Demonstrate self-service developer account
registration with developer email, username,
and password. On the management side, the
publisher should be able to activate a developer
account easily.

2

Demonstrate how developer registration and
application registration workflows can be
customized according to the API publisher’s
specific processes and policies.

3
Developer account
management

Demonstrate how developers can manage their
accounts. E.g. show how developers can login
and edit their account settings, view and
manage applications, and subscribe to APIs.

4 Application management Demonstrate how developers can register the
applications that they build against their

19
©2016 Apigee Corp. All Rights Reserved

developer account, to access APIs provided on
the portal.

5

Developer roles

Demonstrate the ability to assign different roles
to developers and portal admins.

6

Demonstrate how parts of the portal can be
restricted to specific developer and admin roles.
Make API documentation and API product
access role-dependent.

7
Developer terms and
conditions

Demonstrate how to make sure that all
developers have agreed to terms and conditions
during registration.

8 Developer authentication
Demonstrate how various authentication
mechanisms can be used (local credential store,
social login) for developers to access the portal.

9 App/API authentication

Demonstrate how developers can generate and
manage credentials to access APIs from
applications that they create, to access APIs in
both sandbox and production environments.

10

API documentation

Demonstrate the capability to host and manage
API documentation, provide rich, interactive
model-based documentation that’s easy to edit
and publish.

11
The interactive documentation should have the
ability to test the APIs that are deployed in a
sandbox environment directly from the portal.

12
Provide ability to host the documentation pages
offline.

20
©2016 Apigee Corp. All Rights Reserved

13

Provide the ability to embed code snippets for
each API into the documentation, as references
to invoke the API in different programming
languages and platforms (Java, JavaScript,
Android, and iOS, for example).

14
API productization and
catalogs

Demonstrate how APIs can be offered as
products under different packages in an API
catalog. Also show developers can subscribe to
different API packages under different payment
models.

15 API categorization

Demonstrate how APIs can be categorized and
grouped, based on the different solutions that
the API publisher wishes to offer. Developers
should be able to select different API products
based on the solution offered.

16 Developer community
Demonstrate how a developer community can
be fostered via forums and blogs.

17 Content management

Demonstrate how content can be easily created
and managed by the API publisher and
developers. Also demonstrate the different
types of content that can be hosted (articles and
videos, for example). Also, show content
viewing can be restricted based on the role
based access.

18 API design

Show how API publishers can design and build
APIs using tools following a “design-first”
approach, using well-known standards such as
OpenAPI (formerly called Swagger) or WADL.
Publishers should also be able to auto generate
API documentation based on these designs.

21
©2016 Apigee Corp. All Rights Reserved

19 Extensibility
The platform should be extendable to
accommodate future needs like integration with
a ticketing system, JIRA, SFDC, and SSO.

20 API sandbox
Demonstrate how developers can test APIs in a
sandbox environment.

21 Search

Demonstrate how content on the developer
portal, such as API documentation, forums, and
blogs can be made searchable. Demonstrate
search features for API users non-structured
content.

22 SEO optimization
Demonstrate how we can improve search
engine ranking with the developer portal.

23
Branding and
customization

Demonstrate how the developer portal can be
customized to brand it to be consistent with the
publisher’s other IT assets.

6.1.6 Monetization

The API management solution must provide:

● a flexible out-of-the-box mechanism to monetize APIs
● the means to package groups of APIs for different API consumers
● the ability to apply different ways to meter the usage of those APIs using different rate plans,

which should be easy to configure using a web-based console and enable experimentation with
different rate plans

No. Key Focus Area Description Interest

22
©2016 Apigee Corp. All Rights Reserved

1 Basic use case

We want to be able to create several
different packages out of our APIs, grouping
them by functionalities. Our consumers
(developers and partners) should be able to
subscribe to product offerings and access
those services, which will be mandated by a
count (“X” number of calls per month).

E.g. we have assets (APIs) A,B,C , and D. We
want to create 3 product offerings: Silver,
Gold, and Platinum. Silver will have access
to A and may make 250,000 API calls a
month. Gold will have access to A and B and
may make 500,000 API calls a month.
Similarly, we want to create a premium
product Platinum which will have access to
all assets (A, B, C, D) and will be able to
make a million API calls a month. The
consumers should have the correct access in
terms of features and count according to
the purchased offering.

2 Onboarding, self service

The entire subscription experience for our
consumers and partners should be seamless
and self-service. It should be a one-stop
shop experience for them to review, select,
subscribe, generate billing document, and
reports.

3
Purchase/subscription
options

Our consumers should be able to subscribe
and purchase in either a post pay (bill later)
manner or in a prepaid (charged in advance)
way.

4
Promotions (trial period
before charging)

The platform should enable running a
promotion before charging our consumers.
E.g. we start a new service, and want our
consumers to use it free for the first month,

23
©2016 Apigee Corp. All Rights Reserved

then charge them after the promotion
period.

5 Charging rules

We want to be able to configure different
types of charging rules.

Charge a flat fee for all calls e.g. charge a
flat fee of 2 cents per call.

Charge a flat fee by segments e.g. charge a
flat fee of $5 for the first 1,000 calls, and
$10 for calls 1001-5000.

Charge a fee based on call volume e.g. for
the first 100 calls charge 5 cents per call, for
101-1,000 charge per 3 cents per call, and
1001-100,000 charge 2 cents per call.

6 Other charges
We want to be able to configure some
one-time fees like initial subscription fees,
and recurring fees.

7
Notification when
successfully subscribed

Once consumers have successfully
subscribed or purchase a product they
should get a notification stating a successful
subscription or purchase with the details of
the subscription (allowed counts and end
date, for example).

8
Errors when exhausted,
notifications before limit

Consumers should not be able to access the
services if they have exhausted the account
limit. They should receive an alert if they are
nearing the usage limit.

24
©2016 Apigee Corp. All Rights Reserved

9
Notifications, branding,
logos

The notification should be personalized with
the name and account ID of the recipient,
and company branding.

10
Grouping
consumers/partners into
a single entity

Each of our partner firms has several
consumers within them. We want to design
monetization with this aspect in mind. E.g.
we should be able to have a partner
subscribe to a plan and all the consumers
within that partner firm should get
subscribed to that plan

11 Reporting

The platform should enable comprehensive
reporting on the usage of assets—their
consumption, consumers, charge, and
balance.

12 Bill generation

The platform should generate and publish a
document outlining the bill including factors
like usage, fees, and charges. Marketing
content should be configured on this
document.

13 Credit and refunds
We want the ability to configure and control
other aspects like credit adjustment and
refunds.

6.1.7 Operations and architecture

Alignment with our operations and architectural principles is an important aspect to evaluate as
part of this POC. The volume of API calls in a successful API program requires tremendous
scalability. The solution needs to fit in with existing tools and best practices, and must also be able
to integrate with existing monitoring, CI, and software configuration management (SCM) tools.

25
©2016 Apigee Corp. All Rights Reserved

No. Key Focus Area Description Interest

1

Operations

We should be able to integrate API
development into our internal SDLC without
changing internal processes so that we can:

● continue using our code version control
system

● continue using our existing
infrastructure for CI/CD for build
automation and deployment across our
SDLC

● sync API definitions with the
documentation

2

We should be able to get real time statistics on
traffic and operational metrics including:

● latency

● usage

● throughput

 so that:

● our operation teams can rationalize our
backend infrastructure

● we can anticipate scaling up/down our
API infrastructure

● isolate bottlenecks and fix issues

3
We should be able to pull audit logs into our
central monitoring tool so that we can rapidly
respond to access and RBAC breaches.

26
©2016 Apigee Corp. All Rights Reserved

4

We should be able to integrate with our internal
logging system(like Splunk) so that we can
rationalize the API traffic with back-end traffic
and requests. We would like to integrate API
message logging and operational logging.

5

We should be able to automate setup of
two-way MSSL (TLS) between the API platform
and target machines so that we can automate
loading of certs and determine cert expiry in
real-time and notify (of expiry) the responsible
people within our organization.

6

We should be able to monitor API health to
rapidly respond to API traffic disruption.

The health applications should enable functional
monitoring, including tests for existence of
specific payload information.

We would like to conduct:

● health checks based on response time
SLA

● health checks based on custom payload
information

● health checks based target availability

Failure notifications should be sent through
different channels (email, Slack, and other
channels we support) and to different people in
the organization.

7

The platform should support:

● federated identity through SAML

● two-factor authentication for internal
API developers

27
©2016 Apigee Corp. All Rights Reserved

● internal active directories for API
developers

8
The platform should support identity federation
for app developers and support SAML-based
IDP.

9

Architecture and
scalability

The software should be multi-tenant to ensure
our distributed teams can satisfy their internal
SDLC requirements.

10

The software should be distributed across data
centers so that management console user
information, API consuming developer
information, cache, keys, and quota, are
available in multiple regions without our
operational teams having to waste cycles
deploying these capabilities.

11

For an on-premises deployment, the software
should be able to scale heterogeneously. We
should be able to scale individual components
depending on what is under load at any given
point in time.

Our DevOps team should be able to automate
provisioning of components at will.

12
The software must enable upgrades of runtime
and non runtime components while continuing
to serve APIs to consumers.

13
We should be able to shut down different
platform components to study the impact on
API runtime traffic.

14
Running performance test should not affect
production environments.

28
©2016 Apigee Corp. All Rights Reserved

15
The platform should enable deployment of
components across security zones so as to
comply with our security requirements.

16

For an on-premises deployment, we should be
able to monitor all individual components of the
software, so that we can isolate problems when
they occur.

17

For an on-premises deployment, we would like
to understand how we could reduce the cost of
bringing up new environments in our SDLC.
Would adding a QA environment entail adding
additional hardware to support the
environment, or can we leverage existing
infrastructure?

18

DevOps

We should be able to create different roles for
different teams and different team members.
The platform must support granular RBAC for
the API team

19
We should be able to support audit logs for user
access.

20
All the functions available in the UI should also
be available via APIs, which should be easily
accessible.

21 Multi-tenancy

Demonstrate the platform’s multi-tenant
capabilities by creating multiple tenants within
the same deployment.

Demonstrate the platform’s ability to support
multiple deployment environments for different
tenants.

29
©2016 Apigee Corp. All Rights Reserved

22 Performance

Demonstrate the performance characteristics of
the platform for different concurrency, different
payload sizes, and different policy management
scenarios.

<<Detailed scenarios to be provided>>

30
©2016 Apigee Corp. All Rights Reserved

