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P Values: What They Are and What They Are Not 
Mark J. SCHERVISH 

P values (or significance probabilities) have been used in 
place of hypothesis tests as a means of giving more in- 
formation about the relationship between the data and the 
hypothesis than does a simple reject/do not reject decision. 
Virtually all elementary statistics texts cover the calcula- 
tion of P values for one-sided and point-null hypotheses 
concerning the mean of a sample from a normal distribu- 
tion. There is, however, a third case that is intermediate to 
the one-sided and point-null cases, namely the interval hy- 
pothesis, that receives no coverage in elementary texts. We 
show that P values are continuous functions of the hypoth- 
esis for fixed data. This allows a unified treatment of all 
three types of hypothesis testing problems. It also leads to 
the discovery that a common informal use of P values as 
measures of support or evidence for hypotheses has serious 
logical flaws. 

KEY WORDS: Evidence; Interval hypothesis; Measure 
of support; One-sided hypothesis; Point-null hypothesis; 
Significance probability. 

1. INTRODUCTION 

Consider an observation X that is thought to have a 
normal distribution with mean ,u and variance 1, denoted 
N(,u, 1), conditional on a parameter M = ,. The usual 
types of hypotheses concerning M in which one is interested 
include H1: M = po versus A1: M & pto (called point- 
null hypotheses), H2: M < pto versus A2: M > pto, and 
H3: M > pto versus A3: M < pto (called one-sided hypothe- 
ses). Other types of hypotheses include interval hypotheses 
of the form H4: M E [Atl, t2] versus A4: M 0 [A1, A2]. 

Both point-null and one-sided hypotheses are limits of in- 
terval hypotheses either as the endpoints move together or 
as one endpoint becomes infinite. In Section 2 we show 
how the P value (or significance probability) is continuous 
as a function of the hypothesis on the class of all point- 
null, one-sided, and interval hypotheses. This observation 
allows us to treat all of the above types of hypotheses as 
versions of the same kind of hypothesis. In particular, any 
interpretation that one chooses to give to P values ought to 
be consistent across the different types of hypotheses be- 

cause they really are not as different as they might have 
seemed. 

One common interpretation of a P value is that it mea- 
sures the degree to which the observation X = x supports 
H or the amount of evidence in favor of H in the data. 
(See, for example, Lehmann 1975, p. 11. Berkson (1942) 
and Blyth and Staudte (1995, sec. 4) argue against this in- 
terpretation for very different reasons, both of which are 
different from those given in this article.) In Section 3 we 
introduce a simple logical condition that should be satisfied 
by a measure of support, namely that if hypothesis H im- 
plies hypothesis H', then there should be at least as much 
support for H' as there is for H. We then show that the P 
value fails to meet this condition. In Section 4 we explore 
ways to modify the interpretation of P values as measures 
of support. 

2. P VALUES ARE CONTINUOUS 

Assuming that all tests under consideration are uniformly 
most powerful unbiased (UMPU), then for each hypothe- 
sis H and observed data X = x there is associated a sig- 
nificance probability or P value PH(x). There are several 
equivalent ways to define P values in well-behaved exam- 
ples. One way is to define PH (x) as the probability, in an 
independent replication of the experiment with data X', that 
X' is at least as extreme as x given that H is true. Alterna- 
tively, one could define PH(x) as the greatest lower bound 
on the set of all significance levels a, such that we would 
reject H at level c,. For fixed data X = x we can imagine 
how the P value PH(X) chafiges as we focus attention on 
different hypotheses H. An example is given in Section 3 
of a court case in which it was important to consider two 
different hypotheses concerning the same parameter. 

For the remainder of the paper we need to use a slightly 
more informative notation for P values because we will be 
considering many different hypotheses of the same form. 
For a E [-oc, oc) and b E [a, oc] let Pa,b(x) denote the P 
value; a b yields H1,a = -oc yields H2,b = oc yields 
H3, and a < b both finite yields H4. Let b be the standard 
normal distribution function, and let f-1 be the standard 
normal quantile function. Then 

PLo0,JLo(x) = 2T(-Ix-po ), PJLo,oo(x) = N(x-AO), 

P-_OOWpo (x) = 4D(, -4x) . 

For interval hypotheses the UMPU level a, test is given 
by Lehmann (1986, sec. 4.2) as rejecting H4: M E [Al, /2] 

if IX - .5(,ui? +12)1 > c, where c is chosen so that 

4D(-5[pl - 12] - c) + (-5[A2 - l1] - C) . (1) 

Equation (1) is equal to both PI, (reject H4) and P/L2 (reject 
H4), where PI, means conditional probability given that M 
= ,. Notice that (1) is a differentiable strictly decreasing 
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function of c that equals 1 when c = 0 and goes to 0 as 
c -_ oo, so (1) has a unique solution, call it c(cv; u2 - Al) 
Clearly, c(c; ,u2 - l) is a continuous strictly decreasing 
function of a, for a, e (0, 1] with c(1; ,2 - 1) 0 and 
Iim,,0 c(c; ,2 - 11) cx). Using the UMPU test the P 
value for H4 and data X = x is 

PA141 (x) = c-1(lx - .5[pl+ A2 1;A2 - l) 

(X - .l) + ?2(X]- 2) if x < .5[pl+ 12) 

t(81i- X) +? (112 - X) if x > .5[1l ?/2], 

(2) 

where c- 1(y; z) means that number d such that c(d; z) = y. 
Equation (2) can be verified by setting c = |x - .5[l + ?2]1 

in (1) and noting that the resulting a/ is PI 1412(x). 
It is a simple matter to notice that (-o,100] = 

Ua<?,o [a, 10]. Because the collection of sets [a, 10] is mono- 
tone increasing as a --oc for a < 10, one often writes 
(-oo,,11] = lima_-. [a, 1o]. We can now show that the P 
values obey the same limit. That is, lima_-O Pa,po (x) = 
p_OO,t (x). This is easily verified by setting 12 = 10 in (2) 
and letting ,11 -- -oo. Eventually, the bottom row is in ef- 
fect, and limap-ooPa,/to(x) = 4(po- x) = p_oo,1L0(x) for 
all x. Similarly, limbO p,o0,b(x) = plo,0,(x) for all x. 

At the other extreme consider lim(l ,!L2)+(,tO,/,!O) P/,142 (x) 
If x < 110, then the top row of (2) eventually takes ef- 
fect and the limit is 21(x - 10) = p1,0,,0(x). Similarly, 
if x > 110, then the limit is 21(1o1 x) = p,0,1,0(x). 
For x 110, both the top and bottom rows of (2) go 
to 1 p,0,,0 (110). For intermediate cases, because (2) 
is continuous as a function of (111,112), it is easy to see 
that lim(Li,,L2)>-(a,b) P,Ll,,L2(X) = Pa,b(X). Finally, if both 
111 -- -oc and 112 -- oo, then both rows of (2) go to 
1 p_0,,O (x) for all x. 

What we have established is that P1,1 2(x) is continu- 
ous as a function of (1,1,112) even as 111 -- -oo and/or 
112 -- oc, or |1 - 1121 -- 0. Just as the point-null and one- 
sided hypotheses are limits of interval hypotheses, so too 
are their P values limits of the P values of the interval hy- 
potheses for every data value. This observation allows us 
to think of point-null hypotheses as approximations to in- 
terval hypotheses. If 112 - 1l > 0 is sufficiently small and 

o = .5(111 ?+ 12), then P,0,1L0 (x) will be close to PIL1,L2 (x). 

Also, one-sided hypotheses can be thought of as approxi- 
mations to very large interval hypotheses. 

The continuity of P values as functions of the hypoth- 
esis is not restricted to normal distributions. For example, 
straightforward but tedious calculation shows that continu- 
ity also holds when X has exponential, binomial, or uniform 
distribution. 

3. P VALUES ARE NOT MEASURES OF SUPPORT 

The P value can be used to test hypotheses in the usual 
fashion. After one calculates and reports PH (X), a person 
with a favorite ce value can reject H at level ce if PH (X) < c. 
Because larger values of PH (X) make it harder to reject 
H,PH (X) has often been suggested as a measure of the sup- 

port that the observed data X = x lend to H, or the amount 
of evidence in favor of H. This suggestion is always infor- 
mal, and no theory is ever put forward for what properties 
a measure of support or evidence should have. The sugges- 
tion has been very successful in simple problems, perhaps 
due to several well-known facts. For example, as a func- 
tion of x,p ,0,, (x) decreases as x moves away from po, 
expressing the desired property that the further the obser- 
vation is from the hypothesis, the less support it lends to the 
hypothesis. We could also say that pl,, (x) decreases as ,uo 
moves away from x, expressing the equally desirable prop- 
erty that the further the hypothesis is from the observation, 
the less support the data lend to the hypothesis. Similarly, 
p_OO,Z (x) is an increasing function of ,uo expressing the de- 
sirable property that as the hypothesis covers more of the 
parameter space, the support for the hypothesis increases. 

Because posterior probabilities are intended for measur- 
ing support for hypotheses when the data are fixed (the true 
state of affairs after the data are observed), many authors 
have considered the extent to which P values can be inter- 
preted as posterior probabilities. Notable among this group 
are DeGroot (1973), Casella and Berger (1987), Berger and 
Sellke (1987), and Hodges (1992). Fisher (1935) introduced 
fiducial distributions as a means of producing probabilities 
on the parameter space without using Bayesian reasoning. 
Our goal in this section is much more modest. We bor- 
row a simple logical condition from the theory of multiple 
comparisons, and show why a measure of support should 
satisfy this condition. We then demonstrate that P values 
do not satisfy the condition. Nevertheless, it is useful to re- 
call one result concerning the connection between P values 
and posterior and fiducial distributions. If one uses the im- 
proper prior distribution for M with constant density, then 
the posterior distribution of M given X = x is N(x, 1) (Box 
and Tiao 1973, sec. 1.31). Similarly, the fiducial distribution 
of M after observing X = x is N(x, 1). It follows, for ex- 
ample, that the posterior and fiducial probabilities that M 
> ,uo equal 1 - D(,to - x) = p,l0,O(x). Similarly, the poste- 
rior and fiducial probabilities that M < ,uo equal p-o,JLo (x). 
That is, the posterior and fiducial probabilities of one-sided 
hypotheses are equal to the corresponding P values. 

These posterior and fiducial probabilities for one-sided 
hypotheses also have desirable properties for a measure of 
support, such as 

* The farther the hypothesis is from the data, the less 
support there is; 

* The farther into the hypothesis the data are, the more 
support there is; 

* The larger the hypothesis is, the more support there is. 

The third property above is an analog to the concept of 
coherence used in multiple comparisons as introduced by 
Gabriel (1969). Suppose that one hypothesis H implies an- 
other H'. Then tests of H and H' are coherent if rejection 
of H' always entails rejection of H. We can say that a mea- 
sure of support for hypotheses is coherent if, whenever H 
implies H', the measure of support for H' is at least as large 
as the measure of support for H. That is, any support for 
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H must a fortiori be support for H'. As an example there 
must be at least as much support for H: M < 3 as there is 
for H': M < 2. For these one-sided hypotheses P values 
behave coherently. 

In general, however, P values are incoherent as measures 
of support in the sense just described. For example, suppose 
that x > ,uo. Then p_,,0O(x) .5p,0,to(x) even though 
H1: M = ,uo implies H2: M < ,uo. There may be several 
reasons why this incoherence has not been very troubling. 
First, people rarely consider point-null and one-sided hy- 
potheses in the same problem. A notable exception appears 
in the case of E.E.O.C. vs. Federal Reserve Bank of Rich- 
mond. (See Russell 1983, para. [15], pp. 652-654.) In this 
lively exchange the plaintiff's statistical expert tries to ex- 
plain to a judge why one should use a one-sided test (with 
P value .037 in this example) rather than a two-sided test 
(with P value .074). The significance of the choice of hy- 
pothesis was quite apparent to the judge. 

Another reason that the incoherence may not be a sore 
point is that some statisticians believe that one-sided and 
point-null hypotheses are of a sufficiently different nature 
that they simply should not be compared. In Section 2 we 
showed how these hypotheses lie at opposite ends of a con- 
tinuum of hypotheses bridged by the interval hypotheses. 
In a sense the interval hypotheses form the missing link 
between the one-sided and point-null cases. The two ex- 
tremes really are not such different objects as one might 
have thought. 

In addition to bridging the gap between one-sided and 
point-null hypotheses, interval hypotheses help to cast even 
more doubt on the ability of P values to measure support 
for hypotheses. For A1,,u2 < x it follows easily from (2) 
that P/,1 2(x) is a strictly increasing function of both p,u 
and ,u2. Pick arbitrary p,u < ,u2 < x. Let ,uI < ,ui. Then 
p< ,L2 (X) < P111,12(x). Because Pl, ,b(x) is continuous in b, 
there exists ,uA E (1'2, x) such that 

P8' ,2z-t (x) - 
p<,,2 (X) <P,1142 (X) - P (X) 

Simplifying this equation yields pl, ,2 (x) < (x), 

which means that the P values are incoherent as mea- 
sures of support because [ui, 112] is a proper subset of 
[/1,,21]. 

As a numerical example let x = 2.18, -.5, and 
12 = .5. From (2) we calculate 

p-.5,.5(2.18) = 1(-2.68) + 1(-1.68) .0502. 

If we let ,u = -.82 and ,u' = .52, then (2) gives 

P-.82,.52(2.18) = N(-3) + 1(-1.66) = .0498. 

If we use the P value as a measure of support for the hy- 
pothesis, we are saying that there is more support for the 
hypothesis H: M E [-.5,.5] than there is for H': M E 
[-.82,.52] even though H implies H'. 

Because hypothesis tests are so closely related to P val- 
ues, it is not surprising to learn that the incoherence of 
P values as measures of support reflects the incoherence of 
level ce tests for multiple hypotheses in the sense of Gabriel 
(1969). Suppose that someone tries to test H and H' both 
at level .05. (Perhaps they are using a Bonferroni multiple 

comparison procedure with a, = .1 split equally between 
the two hypotheses.) This person will reject H', but cannot 
reject H after observing X = 2.18. They are now confident 
that M is outside the interval [-.82,.521, but still must act 
as if M is inside [-.5,.51. 

We have shown that interval P values are incoherent with 
each other as measures of support for their respective hy- 
potheses. It is also possible to show that they are incoher- 
ent when considered simultaneously with one-sided and/or 
point-null P values. For example, p.5,.5(2.18) = .0930, 
which is larger than both p_.5,.5(2.18) and P-.82,.52(2.18) 
calculated earlier. Hence it is wrong to claim that P val- 
ues give a measure of the support that the data lend to the 
hypothesis without further restrictions. Just as the continu- 
ity of P values extends to distributions other than normal, 
so too does the incoherence of P values as measures of 
support. 

4. WHAT CAN P VALUES MEASURE? 

Two (rather loose) definitions of the P value were given 
in Section 2. When made precise these interpretations of 
P values are valid. What we have shown to be invalid is 
the use of P values to measure support or evidence for 
hypotheses. 

However, one could ask if there is a way to modify 
or reinterpret the P value so that it can stand for some- 
thing related to a measure of support. One simple-minded 
answer is to define a measure of support as P',b(x) = 

SUPO[a, b] po,0(X). Such a measure of support would be co- 
herent, although it would give the same support, namely 1, 
to all hypotheses H: M E [a, b] such that a < x < b. This 
would not be particularly useful. 

An approach based on the reasoning behind significance 
tests is to try to interpret the P value for a fixed hypothesis 
as a function of the data (presumably prior to observing the 
data). In this way one can try to think of the P values for 
different values of x as the different degrees to which differ- 
ent data values would support a single hypothesis H. This 
might work as long as we do not acknowledge the possibil- 
ity of other hypotheses. For example, this approach would 
not be available in the case of E.E.O.C. vs. Federal Reserve 
Bank of Richmond because the court was confronted with 
two different hypotheses and only one data set. Another se- 
rious drawback to this approach is that the scale on which 
support is measured is not absolute, but rather depends on 
the hypothesis. (Also see Berry 1990, sec. 4.3.) For exam- 
ple, suppose that one person tries to measure the support 
for H: M = .9, and another person tries to measure the sup- 
port for H': M < 1. After they both observe the same data 
X = 2.7, the first person calculates p.9,.9(2.7) = .0718, and 
the second person calculates p-_,i (2.7) = .0446. Surely 
the data offer more support for H' than for H, so .0718 
must reflect a lower level of support for a point-null hy- 
pothesis than .0446 reflects for a one-sided hypothesis. In 
the numerical example in Section 3 each of the interval hy- 
potheses needs its own scale of support, even though they 
are both of the interval type. In short, the interpretation of a 
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particular value on the scale of support, such as the popular 
.05, must vary with the hypothesis. 

Another interesting approach is suggested by the obser- 
vation that the examples of incoherence cited in this pa- 
per involve situations in which the larger hypothesis con- 
tains parameter values that are farther away (in a sense 
to be made precise momentarily) from the data than the 
smaller hypothesis. For example, let H: M E [-.5,.5] and 
H': M E [-.82,.52] with data x = 2.18. The values in the 
interval [-.82, -.5) contained in H' but not in H are cer- 
tainly farther from the observed data than the values in H. 
One might try to argue that H' should be "penalized" for 
containing extra values that are farther away from the data. 
This idea sounds appealing at first, but one then notices that 
one-sided P values do not penalize larger hypotheses when 
they contain farther away values. For example, p0O, (x) 
increases as a function of ,uo even when ,uo is quite far 
from x. But in this case the added values (near ,u0) are not 
as far away from x as some values (near -oc) already in 
the hypothesis. Suppose that we define "farther away" as 
follows. 

Definition 1. Let H be a hypothesis, and let 0' not be 
part of H. Suppose that for every 0 in H, PO',Oi (x) < P,0 (x). 
Then say that 0' is farther away from x than H is. 

For normal distributions, when H implies H' and the 
additional points in H' not in H are farther away from x 
than H is, then PH' (X) < PH (X). Unfortunately, even this 
does not happen in all cases. If X has U(O, 0) distribution, 
then one can easily check that 

x/a if x < a 

Pa,b(X) = (b - x)/(b -a) if a < x < b 

t 0 if x > b, 

even for a = b, a - 0, and/or b = oc. Suppose that H: M E 
[a,b] and H': M E [a,b'] with b < b'. If X = x < a 
is observed (i.e., x has positive density given every 0 in 
both H and H'), then Pa,b(X) = Pa,b' (x) even though every 
0' > b is farther away from x than H is. (Note that for 
0' > b, po,O (x) - x4' < x/0 = po,o (x), if 0 E [a, b].) 

Even if one were able to construct a consistent measure 
of penalized support for hypotheses, one would have to re- 
member that a low measure of penalized support would 
not mean that there is evidence against the hypothesis, but 
rather that the hypothesis contained at least some parame- 
ter values that are not supported by the data. It might still 
contain some parameter values that are highly supported by 
the data. Even so, the P value does not provide a measure 
of penalized support. In summary, we have been unable to 
construct a consistent interpretation of the P value as any- 
thing similar to a measure of support for its hypothesis. 

5. DISCUSSION 

We have shown that one-sided and point-null hypotheses 
are not two different objects that should never be compared, 
but rather they are just different versions of the same object 
of which interval hypotheses are versions as well. For nice 
data distributions the P value is continuous as a function 
of the hypothesis. We have also seen that P values cannot 
be interpreted as measures of support for their respective 
hypotheses. One could try to argue, with normal distribu- 
tions at least, that the P value penalizes hypotheses that 
contain additional parameter values that are far away from 
the data, but even this argument fails in the case of uniform 
distributions. 

The reporting of P values is very common in applied 
statistics, usually in multiparameter problems that were not 
considered in this paper. However, given that P values can- 
not be interpreted as measures of support in the simple 
problems of this article, one would suspect that their in- 
terpretation as measures of support in more complicated 
cases would be suspect as well. 

[Received August 1994. Revised September 1995.] 
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