
Python Features
Python is a general purpose,dynamic, high level, free open source and interpreted programming
language. It supports object-oriented programming as well as procedural oriented
programming.

1.Easy to Code
Python is a high-level programming language. Python is very easy to learn the language as
compared to other languages like C, C#, Javascript, Java, etc. It is very easy to code in python
language and anybody can learn python basics in a few hours or days. It is also a developer-
friendly language.

2.Free and Open Source
Python language is freely available at the official website and you can download it from the
given download link below click on the Download Python keyword. Download Python Since it is
open-source, this means that source code is also available to the public. So you can download it
as, use it as well as share it.

3.Object-Oriented Language:
One of the key features of python is Object-Oriented programming. Python supports object-
oriented language and concepts of classes, objects encapsulation, etc.

4.GUI Programming Support:
Graphical User interfaces can be made using a module such as PyQt5, PyQt4, wxPython, or Tk in
python. PyQt5 is the most popular option for creating graphical apps with Python.

5.Python is Portable language:
Python language is also a portable language. For example, if we have python code for windows
and if we want to run this code on other platforms such as Linux, Unix, and Mac then we do not
need to change it, we can run this code on any platform.

6.Large Standard Library
Python has a large standard library which provides a rich set of module and functions so you do
not have to write your own code for every single thing. There are many libraries present in
python for such as regular expressions, unit-testing, web browsers, etc.

7.Dynamically Typed Language:
Python is a dynamically-typed language. That means the type (for example- int, double, long,
etc.) for a variable is decided at run time not in advance because of this feature we don’t need to

specify the type of variable.

Python history
Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch
Centrum (CWI) in the Netherlands as a successor of a language called ABC.

It was mainly developed for emphasis on code readability, and its syntax allows programmers to
express concepts in fewer lines of code.

https://thelead.io/data-science/companies-that-uses-python

Core Python Programming

Add Comments

Printing Basic Data Types

Variables and Inputs

In []: #single line comment -1
#single line comment -2
""" Multiline Comments
Line 1
Line 2
Line 3 """
print("Hello World!")

In []: print("Hello")
print("Welcome "+ "to Data Science training") # string data type

In []: print(1900+69) # integer data type

In []: print(55/34.0) # float data type

In []: print(True or False) # boolean data type
print(True and False)

In []: school = "MIT"
print(school)
print(type(school)) # school variable belongs to string data type
print(id(school)) # unique id for the variable

In []: another_school="Stanford"
print(another_school)
print(id(another_school))

In []: print("I studied at " +school)

In []: my_age=44
print(type(my_age))

In []: my_salary= 10500.50

https://thelead.io/data-science/companies-that-uses-python

Data Type Conversion

Operators

Arithemetic Operators

Assignment Operators

Unary minus Operator

print(type(my_salary))

In []: is_manager= True # boolean Variable
print(type(is_manager))
print(is_manager)

In []: myname = input("enter your name ")

In []: print(myname+" is my name and i am studying at " + school)

In []: #hours_per_day = input("How many hours do you study per day?")
hours_per_day = int(input("How many hours do you study per day?"))

print(hours_per_day)
print(type(hours_per_day))

In []: hours_per_week = hours_per_day * 7
print(hours_per_week)

In []: #print("i am studying at " + school + "and i study" + hours_per_week + "every week")
print("i am studying at " + school + " and i study " + str(hours_per_week) + " hours

In []: a=13
b=5
print("a=",a,"b=",b)

In []: print("Addition: a+b = ", a+b)
print("Subraction: a-b = ", a-b)
print("Multiplication: a*b = ", a*b)
print("Division: a/b = ", a/b)
print("Integer Division: a//b = ", a//b)
print("Modulus: a%b = ", a%b)
print("Exponent: a**b = ", a**b)

In []: # Write a program to get 2 numbers from the user and divide them to find the quotien

In []: x,y,z=20,10,5
print("x=",x,"y=",y,"z=",z)

In []: x,y,z=20,10,5
z=z*2
z*=2
print(z)

In []: a=-1
print("a=",a)

Relational Operators

Logical Operators

Boolean Operators

Membership Operators

In []: a=13
b=5

print("a>b = ",a>b)
print("a>=b = ",a>=b)

print("a<b = ",a<b)
print("a<=b = ",a<=b)

print("a==b = ",a==b)
print("a!=b = ",a!=b)

#Relational Operators can be chained
print("0<a<=20 = ",0<a<=20)
print("0<b<1 = ",0<b<1)

In []: ### Logical Operators are useful to construct the compound conditions. A compound co
is a combination of more than one simple condition

x=100
y=100
print("x>100 and y>100 =" , x>99 and y>200)
print("x>100 and y>100 =" , x>99 or y>200)
print("not(x>100 and y>100) =" , not(x>99 or y>200))

In []: science_mark=int(input("Enter your science mark : "))
maths_mark=int(input("Enter your maths mark : "))

if science_mark > 35 : # relational Operator
 science_pass = True
else:
 science_pass = False

if maths_mark > 35 :
 maths_pass = True
else:
 maths_pass = False

if(science_pass and maths_pass):# Logical Operators
 print("Passed")
else:
 print("failed")

if(science_pass or maths_pass):# Logical Operators
 print("Passed")
else:
 print("failed")

In []: science_pass= True
maths_pass= False

Boolean operators acts on boolean type literals(True , False) and returns Boole
print("science_pass and maths_pass =", science_pass and maths_pass)
print("science_pass or maths_pass =", science_pass or maths_pass)

p p

Identity Operators

Other Mathematic Functions

Operator Precedence and Associativity
https://www.programiz.com/python-programming/precedence-associativity

Exercise#1

In []: ### The membership operators are useful to test for membership in a sequence like st
membership operators are
in
not in

names=["Mark","Bill","Thomas","Edison"]

myname="Mark"

yourname = "Bill"

print(myname in names)

print(yourname not in names)

In []: ### These operators compare the memory location of two objects
it is possible to find out whether 2 variables pointing to the same object or no

Identity Operators are
is ---> both objects are the same
is not --> if both objects are different

a=25
b=25

print(a is b)

print("ID of a =", id(a))
print("ID of b =", id(b))

In []: b=26

print(a is b)

print("ID of a =", id(a))
print("ID of b =", id(b))

In []: ### Operators are very handy when we do the fundamental operations.
but we can use built in functions given in python for various advanced operation

import math
print("the square root of 16 =", math.sqrt(16))

import math as m
print("the square root of 25 =", m.sqrt(25))

from math import sqrt # only sqrt function will be imported from that library
print("the square root of 36 =", sqrt(36))

https://www.programiz.com/python-programming/precedence-associativity

Write a program to get ENGLISH,GERMAN,MATHS,SCIENCE,HISTORY marks from a student and
print the total Marks and Percentage.

Input and Output Statements
To provide input to a computer, python provides some statements which are called input
statements similarly to display the output it provides some output statements

print()

input()

In []: ### Output statements are

print()
print("Python")

In []: firstname,lastname="Nikola","Tesla"
print(firstname,lastname)
print(firstname,lastname,sep="~")
print()

In []: ### to print the above in the same line
print("Welcome")
print("to")
print("Core Python")

In []: #print object
myLst=["Edison","Einstein","Newton"]
print(myLst)
print()

In []: #print formatted statement
print("formatted string" %(variable list))
%i or %d - integer
%s - String
$f - floatVa
fname = "Thomas"
lname = 'Edison'
print("Name = %s %s:" %(fname,lname))
print()

In []: x=10

print(x,fname)

we can display single character from the string
print("my x value = %s and my fname = %s " %(x,fname))

In []: salary = 156999.8344556
print("Salary=%f:" %(salary))

In []: # formatted string with replacement field
print("formatted string {0} with replacement".format(values))

fname = "Thomas"
lname = 'Edison'
print("Scientist Name : {0} Alva {1}".format(fname,lname))

Command Line Arguments

Control Statements

In []: # Input Statements
use input() to accepts the value from the keyboard and returns it as string

salary = float(input("Enter your Salary : "))
print("Salary = %14.2f" %(salary))

In []: # use the below syntax to accept more than one input values from the user

fname,lname = [str(name) for name in input("Enter Full Name :").split(',')]
print("fname =",fname)
print("lname =",lname)

In []: x,y = [int(x) for x in input("Enter 2 Numbers :").split(',')]
print("x+y=",x+y)

In []: Total = sum([int(x) for x in input("Enter 2 Numbers :").split(',')])
print(Total)

In []: mylist = list([int(x) for x in input("Enter 2 Numbers :").split(',')])
print(mylist)

In []: mylist = list([str(x) for x in input("Enter multiple names :").split(',')])
mylist.reverse()
print(mylist)

In []: # use the eval() along with input function to accept string from the user and execut
x = eval(input("Enter an expression : "))
print("Result = ", x)

In []: # command line arguments are passed to the program from outside. All the arguments a
a list with the name "argv" which is available in the sys module.
argv[0] - name of the program
argv[1] - first argument
argv[2] - second argument...

len(argv)-1 -> number of arguments passed by the user

parsing command line arguments using argparse module
python args.py 2 3
'''
import argparse

parser = argparse.ArgumentParser()

parser.add_argument('nums',nargs=2)

args=parser.parse_args()

print("Number=",args.nums[0])
print("Its Power", args.nums[1])

result= float(args.nums[0])**float(args.nums[1])

print("Results =",result)
'''

In python, usually the statements in the program are normally executed one by one from top to
bottow. this type of execution is called as "Sequential execution". it may be suitable for simple
programs But for complex program we should be able to change the flow of execution as we
needed.i.e we should be able to repeat the group of statements multiple times or we may want
to directly jump from one statement to another. for this purpose we have control statements

if

if...else

if...elif...else

while
it is useful to execute set of statements multiple times

1. while loop - it will gets executed unless the condition become false

In []: science_mark=int(input("Enter your science mark : "))

if science_mark > 35 : # relational Operator
 print("You passed in Science")
 print("Congrats !!!")

print("*************Program Ends************")

In []: science_mark=int(input("Enter your science mark : "))

if science_mark > 35 : # relational Operator
 print("You passed in Science")
 print("Congrats !!!")
else:
 print("You Failed in Science")
 print("Better Luck next time")

print("*************Program Ends************")

In []: science_mark=int(input("Enter your science mark : "))

if science_mark > 80 :
 print("You passed in Science with GRADE A")
 if science_mark > 90:
 print("super")
 else:
 print("Excellent")
elif science_mark > 60:
 print("You passed in Science with GRADE B")
 print("Very Good Marks")
elif science_mark > 36:
 print("You passed in Science with GRADE C")
 print("Try to score more")
else:
 print("You failed")
 print("Better Luck next time")

print("*************Program Ends************88")

2. for loop - it will execute the statements repeatedly depending upon the number of
elements in the sequence

for

break

for...else with break

In []: #while loop example
to display all numbers between 2 numbers

start_num= int(input("Enter the start number : "))
end_num= int(input("Enter the end number : "))

while start_num < end_num :
 print(start_num)
 start_num= start_num + 1

print("*************Program Ends************")

#Note: Beware of INFINITE loop while using WHILE Loops

In []: #for loop example
program to display and find the sume of a list of numbers
mystring= input("Enter the string : ")
print_num= int(input("how many time you want to print ? : "))
for x in range(print_num):
 print(mystring)
print("outside")
print("*************Program Ends************")

In []: #while loop example
to display all numbers between 2 numbers

start_num= int(input("Enter the start number : "))
end_num= int(input("Enter the end number : "))

while True :
 print(start_num)
 start_num= start_num + 1
 if start_num > end_num :
 break

print("*************Program Ends************")

#Note: Beware of INFINITE loop while using WHILE Loops

In []: myLst=[1,2,3,4,5,21,23]
num1=211
for x in myLst:
 if x==num1:
 print("Number found in the list")
 break;
else:
 print("Number not found in the list")
print("program ends")

continue

Functions
Function is similar to program consist of group of statements to perform a specific tasks.

built-in functions --> print()

user-defined functions -- you can write your functions

Functions can be resused across the main program. it avoids code redundancy, easy to modify
and improve maintenance.

"return" values from the function. in java we can return only one value from the function but in
python we can return multiple values

Topics

Multiple parameters
Nested Functions
Formal Parameters/Actual arguments
pass by value/pass by reference
Actual arguments - 4 types

positional args
keyword args

In []: # CONTINUE - this statement is used in a loop to go back to beginning of the LOOP.
PASS - this statement does not do anything. it is used with the if statement or
for statement inside a loop to do NO operation

#CONTINUE example

mystring= input("Enter the string : ")
print_num= int(input("how many time you want to print ? : "))

myList = [1,2,-4,5,-8,2]
for num in myList:
 if num <= 0 :
 continue # moves to next iteration
 print(str(num)+" : " + mystring)

print("*************Program Ends************")

In []: # CONTINUE - this statement is used in a loop to go back to beginning of the LOOP.
PASS - this statement does not do anything. it is used with the if statement or
for statement inside a loop to do NO operation

#CONTINUE example

mystring= input("Enter the string : ")
print_num= int(input("how many time you want to print ? : "))

for num in range(print_num):
 if num % 2 == 0 :
 continue # moves to next iteration
 print(str(num+1)+" : " + mystring)

print("*************Program Ends************")

default args
variable length args

function local and global variables-
Anonymous function - Lambdas

with filter function
with Map function
with reduce function

Modules

Define function

Functions are first class objects
in python, functions are considered as objects. infact when we define a function, python will
create an object. so we can pass function to another function as we pass object. and also we can
return a function from another function

Return statement
The return statement is used to exit a function and go back to the place from where it was
called.

In []: def findMax(n1,n2):# formal args
 if n1 > n2 :
 return n1;
 else:
 return n2

#Main Program

input_num1 = int(input("Enter the First Number "))
input_num2 = int(input("Enter the Second Number "))

calling the function from Main
print("Maximum Number is : ",findMax(input_num1,input_num2))

In []: def welcomeMsg(studentName): # fu
 WelcomeStr ='Hi '+studentName + ', Welcome to our School'
 return WelcomeStr

#Main Program Starts
student = input("Your Name : ")
print(welcomeMsg(student)) # calling the function

In []: def greet(name):
 """
 This function greets to
 the person passed in as
 a parameter
 """
 print("Hello, " + name + ". Good morning!")

main program starts
ip_name = input("Enter your name : ")
greet(ip_name)

Return Multiple Values
"return" values from the function. in java we can return only one value from the function but in
python we can return multiple values

Scope and Lifetime of variables
Scope of a variable is the portion of a program where the variable is recognized. Parameters and
variables defined inside a function are not visible from outside the function. Hence, they have a
local scope. The lifetime of variables inside a function is as long as the function executes. They
are destroyed once we return from the function. Hence, a function does not remember the value
of a variable from its previous calls.

Here is an example to illustrate the scope of a variable inside a function.

Recursive and Nested Functions

In []: def odd_even(num):
 """This function returns the absolute
 value of the entered number"""

 if num %2 == 0:
 return "Even"
 else:
 return "Odd"

print(odd_even(2))
print(odd_even(3))

In []: # example for returning multiple values
def division(dividend,divisor):# formal args
 quotient = dividend//divisor
 remainder= dividend%divisor
 return quotient,remainder

#Main Program

i_dividend = int(input("Please enter the dividend : "))

i_divisor = int(input("Please enter the divisor : "))

o_quotient,o_remainder = division(i_dividend,i_divisor)

print("Quotient ={0} and Remainder = {1} ".format(o_quotient,o_remainder))

In []: def print_number():
 first_num = 1
 # Print statement 1
 print("The first number defined is: ", first_num)

print_number()
Print statement 2
#print("The first number defined is: ", first_num)

In []: def factorial(number):

 def inner_factorial(number):
 if number <= 1:

Pass by Value and References

 return 1
 return number*inner_factorial(number-1)
 return inner_factorial(number)

Call the outer function.
print(factorial(4))

In []: # you can define function inside another function. this is called nested function
from datetime import *

def Welcome(f_name):
 def greetMsg():

 tdm = datetime.today()

 print("Time Now is : ",tdm)

 if tdm.strftime("%p")== "AM":
 return ". Good Morning"
 else:
 return ". Good Evening"

 return "Hello, " + f_name + greetMsg()

In []: #Formal and Actual arguments
when we define function, we mention some parameter to receive data from outside. t
when we CALL function, we pass some parameters to the function and these are calle

def sum(a,b): # a and b are formal arguments
 c=a+b
 print(c)
#main
x,y=10,15
sum(x,y) # x and y are actual arguments

In []: # pass object by reference
#in java and c we can pass variables to a function either Pass by Value or Pass by r
#But in python, everything is objects like integer, string, float..they are immutabl
#mutable so object can be modified.

Integer Class is IMMUTABLE
when we try to modify the integer object inside the function, new object will get
samething will happen to float, string and tuple

def update_Age(age):

 age=16
 print("Inside age=",age,"ID=",id(age))

#Main Program Starts
age= 40
print("Outside Before Age=",age,"ID=",id(age))

calling function
update_Age(age)

print("Outside After x=",age,"ID=",id(age))
print()

In []: # Since list is mutable object. passed object can be modified.
def modifyList(ageL):

Function Arguments

Actual arguments are of 4 types

1. positional --attach('New','york') - order is important
2. keyword -- grocery (item='sugar',price=50.75)--use the formal arguments name, order is

not important
3. default arguments -- def grocery (item,,price=50.75)--when we define use some default

value,if actual arguments is not there then default value will be used
4. variable length arguments--def add(farg,*args)---it can accept any number of arguments

 print("Inside age=",ageL,"ID=",id(ageL))
 ageL[0]=16
 print("After update Inside age=",ageL,"ID=",id(ageL))

ageL=[40]
print("Outside Before age =",ageL,"ID=",id(ageL))

calling function
modifyList(ageL)

print("Outside After age=",ageL,"ID=",id(ageL))
print()

In []: #Formal and Actual arguments
when we define function, we mention some parameter to receive data from outside. t
when we CALL function, we pass some parameters to the function and these are calle

def sum(a,b): # a and b are formal arguments
 c=a+b
 print(c)

#main
x,y=10,15
sum(x,y) # x and y are actual arguments

In []: # for Positional Arguments
def grocery(itemParam,priceParam):
 print(str(itemParam) + " price is " + str(priceParam))

#Main
item = "Sugar"
price = 100
grocery(item,price)
grocery(price,item)

In []: #example for keyword arguments

def grocery(itemParam,priceParam):
 print(str(itemParam) + " price is " + str(priceParam))
#Main Program

item='Sugar'
price=100.45
grocery(itemParam=item,priceParam=price)
grocery(priceParam=price,itemParam=item)

In []: #example for Default arguments
def grocery(itemParam,priceParam=150.50):
 print(str(itemParam) + " price is " + str(priceParam))

Local and Global Variables
when we declare a variable inside a function it becomes local variable. scope is limited to that
function only. when we declare a variable outside a function it becomes GLOBAL variable. it can
be accessed from entire program written below. if the Same variable name given inside a
function, then GLOBAL keyword can be prefixed to access global varible from inside a function

Anonymous Functions or Lamdas
A function without name is called Lambda functions. functions are defined using Lambda (not
using def)

-Python code to illustrate cube of a number -showing difference between def() and lambda().

def cube(y): return yyy;

g = lambda x: xxx print(g(7)) print(cube(5))

normal function returns values. but Lamda function returns "FUnction" so it should be assigned
to function variable

Without using Lambda : Here, both of them returns the cube of a given number. But, while
using def, we needed to define a function with a name cube and needed to pass a value to it.
After execution, we also needed to return the result from where the function was called using
the return keyword.

item='Sugar'
grocery(item)# passing only one argument

In []: # example for variable length arguments

def add(farg,*args):
 print("First Argument : ",farg,"\nremaining arguments in Tuple : ",args)
 sum=farg
 for i in args:
 sum+=i
 print("Total =",sum)

#main program
add(4,3)
print("----------")
add(4,3,5)
print("----------")
add(1,2,4,3,5)

In []: # example for local variable
def displayStudentDetails():

 global studentAge
 studentAge=20
 print("Student Age inside Function = " + str(studentAge))

#main program starts
displayStudentDetails()
print(studentAge)

Using Lambda : Lambda definition does not include a “return” statement, it always contains an
expression which is returned. We can also put a lambda definition anywhere a function is
expected, and we don’t have to assign it to a variable at all. This is the simplicity of lambda
functions.

In []: sqr= lambda x: x**2 # step#1 defining the function which returns the function ptr
print(sqr(5)) # call the function

In []: # max of 2 numbers
max=lambda x,y :x if x>y else y # step#1 defining the function which returns the fun
print(max(8,7))# call the function

In []: # use lambda function with filter function
syntax for filter function is filter(function_name,sequence)
it applies functions to all the elements inthe sequence

#filter the even numbers

mylist=[2,3,4,5,6,7,8] # mylist is a sequence

for i in mylist:
 if i%2==0:
 print(i)

In []: #print(list(filter(lambda x:(x%2==0),mylist))) # only divisible by 2 is filtered

print(list(filter(lambda x:(x%2==0),mylist)))

In []: # lamda with filter - example #2
Take a list of numbers.
my_list = [12, 65, 54, 39, 102, 339, 221, 50, 70,]

use anonymous function to filter and comparing
if divisible by 13 or not
result = list(filter(lambda x: (x % 13 == 0), my_list))

printing the result
print(result)

In []: # using lambda with Map function
the map function is similar to filter function but it acts on each element of the

map(function,sequence)'

lambda to return the squares
map(lamdafunction, list)

#map(lambda x:x**2,lst1)

lst1=[10,2,3,4,5]
lst2= list(map(lambda x:x**2,lst1))
print(lst2)
#the difference between map and filter. map applies to all elements of the sequence
#filter applies a condition to all elements and return only element which satisified

In []: # using lambda to reduce function
the reduce function reduces a sequences to single value by processing the elements
#reduce(function,sequence)

import functools

Modules and Packages
Modules in Python are simply Python files with the .py extension, which implement a set of
functions. Modules are imported from other modules using the import command. Before you go
ahead and import modules, check out the full list of built-in modules in the Python Standard
library.

When a module is loaded into a running script for the first time, it is initialized by executing the
code in the module once. If another module in your code imports the same module again, it will
not be loaded twice but once only - so local variables inside the module act as a "singleton" -
they are initialized only once.

If we want to import module math, we simply import the module:

Exploring built-in modules While exploring modules in Python, two important functions come in
handy - the dir and help functions. dir functions show which functions are implemented in each
module. Let us see the below example and understand better.

When we find the function in the module we want to use, we can read about it more using the

lst=[1,2,3,4,5,6,7,8,9]
i=functools.reduce(lambda x,y: x*y,lst)
print(i)

In []: # Tag Function Name into another variable

def printMsg(msg):
 print(msg)

main program starts
printMsg("From PrintMsg")

duplicate = printMsg

duplicate("From duplicate")

In []: # function as parameter
def inc(x):
 return x + 1

def dec(x):
 return x - 1

def operate(func, x):
 result = func(x)
 return result

#Main Program Starts
print(operate(inc,5))

print(operate(dec,5))

In []: # import the library
import math
#use it (ceiling rounding)
math.ceil(2.4)

In []: print(dir(math))

help function, inside the Python interpreter:

Sequences Data Types
Arrays

Strings
String represents group of characters str represents String datatype.

"Apple",'Ball' or """Cat""" can be used to string assignment.

In []: help(math.ceil)

In []: import sys
print(sys.path)

In []: '''
import mymodule as my
my.greeting("Tesla")
'''

In []: '''
from mymodule import *
greeting("Tesla")
'''

In []: # creating an integer array

import array
a = array.array('i',[4,6,2,9])

print(a[0])

In []: # creating array from another array
import array as ar

arr1=ar.array('d',[1.5,2.5,3.5])

arr2=ar.array(arr1.typecode,(a*3 for a in arr1))

for i in arr2:
 print(i)

In []: # slicing operation

import array as ar
x=ar.array('i',[10,20,30,40,50,60,70,80,90,100])
print(x[1:4])
print(x[:4])
print(x[1:])
print(x[-3:-2])
print(x[1:5:2])

In []: mystr = "Python"
print(mystr)

mystr = "Python"

In []: for i in mystr:
 print(i)

In []: #length of the string
n= len(mystr)
print("length of the string", n)

In []: mystr = '1234567890'
print(mystr[0:5:2])

In []: # slicing the string

stringname[start:stop:stepsize]

mystr = 'core python'

print("output is ", mystr[0:10:2])
print("output is ", mystr[0:])
print("output is ", mystr[0:11:2])
print("output is ", mystr[::-1])
print("output is ", mystr[-6::])

In []: mystr = 'Edison'
print("output of mystr[::-1]is ", mystr[::-1])

In []: mystr = 'Edison'
print("output of mystr[::-1] is ", mystr[-1:-3:-1])

In []: # String Concatenation

mystr1 = 'core'
mystr2 = 'Python'
mystr = mystr1 + mystr2

print(mystr)

In []: # Repeating the string

mystr = 'corepython'
print(mystr*5)

In []: # comparing string

s1 = "Thomas"
s2 = "Thomas"

if s1==s2:
 print("Both Strings are same")
else:
 print("Both are different")

In []: # Removing spaces from string .lstrip(), .rstrip() and strip()

s1 = " Thomas "
s2 = "Thomas"

if s1.strip()==s2:
 print("Both Strings are same")
else:
 print("Both are different")

In []: # Finding substring using find(),rfind(),index(),rindex()
mystr = " welcome to the core programming core"
n=mystr.find("core",20,40)
print("substring found in the location",n)

In []: # using count method
mystr=" welcome to core python core"
n= mystr.count("core")
print(n)

n= mystr.count("core",0,22)
print(n)

In []: # using index
try:
 n=mystr.index("cores",0,len(mystr))
 print("substring found in the location",n)
except ValueError:
 print("Substring not found")

In []: # strings are immutable
the content of the string character by character cannot be changes after it got as

mystr= "Welcome to core python programming"
#mystr[11]="J" #this is not supported..you cannot modify the content by character

mystr = "python" #you can reassign with new string.
mystr = "java"

In []: # Splitting and Joining Strings

mystr = "Welcome,to, core,python,programming"
mylist = mystr.split(",")

print(mylist)

In []: #using join method of string
newstr = ":".join(mylist)
print(newstr)

In []: # changing the case of a string .upper(), .lower(), .swapcase

mystr="python is the future"

print(mystr.upper())
print(mystr.lower())
print(mystr.swapcase())
print(mystr.title())

In []: # startswith and endswith

print(mystr.startswith("python"))

print(mystr.endswith("future")) # case sensitive

In []: ## String testing methods

#isalnum(),#isalpha(),#isdigit(),#islower(),#isupper(),#istitle(),#isspace()

mystr=input("enter your number : ")

if mystr.isdigit() and len(mystr)==10:

List
Lists is very similar to array but with one main difference list can store different types of
elements.

 print("valid number")
else:
 print("invalid number")

In []: #Creating a list
using square brackets
mylist=[]
print(type(mylist))

In []: mylist=[10,20,10.5,2.55,"Tom","Bill"]
print("List created using square brackets",mylist)

In []: # list function
mylist=list(range(4,9,2))
print("List created using range function",mylist)

In []: #Accessing one by one
mylist=[10,20,10.5,2.55,"Tom","Bill"]
for element in mylist:
 print(element)

In []: #retrieve the elements in the reverse order
mylist=[10,20,10.5,2.55,"Tom","Bill"]
print(mylist)
mylist.reverse()
print(mylist)

In []: # updating the elements of a list

lists are Mutable i.e you can insert, update and delete the elements of a list
mylist=[10,20,10.5,2.55,"Tom","Bill"]

In []: mylist.append(35)
print("Appended 35", mylist)

In []: #update 1st element
mylist[0]=15
print("updated the first element ",mylist)

In []: #deleting an element using del statement
del mylist[1:4]
print("deleted 2nd element using del command")

In []: #deleting elements using remove method. for remove method you have to pass value and
if there is duplicate values in the list then it removes only the first occurence
try:
 mylist.remove(35)
 print("deleted element which contains 35 in first occurence",mylist)
except:
 print("not exists")

In []: mylist.insert(1,45)
print("Appended 35", mylist)

In []: # Concatenation of two list
x=[10,20,30,40,50]
y=[110,120,130]
print("concatenated two list x + y" , x+y)

In []: # Repetition of list using *
print("repetition of list x*2 = ", x*2)

In []: # membership in list
mylist=[10,20,30,40,50]

num=20

if num in mylist:
 print(" Num found in the list")
else:
 print(" Num not found in the list")

In []: #ALiasing and cloning list
mylist_alias=mylist

if mylist is mylist_alias:
 print("both mylist and mylist_alias are same")
else:
 print("both are not same")

mylist[1]=22

print(mylist)
print(mylist_alias)

In []: #ALiasing and cloning list
mylist_alias=mylist.copy()

if mylist is mylist_alias:
 print("both mylist and mylist_alias are same")
else:
 print("both are not same")

mylist[1]=32

print(mylist)
print(mylist_alias)

In []: ### List Methods with examples

x=[10,20,30,40,50]

n = len(x)
print("using command len(x) is ",n)

In []: #### index()- returns the index of the element which has given value x
print("using x.index(30) is ", x.index(30))

In []: #### insert(i,x)- add one element with value x in the given index(i)
x.insert(3,35)
print("using x.insert(3,35) is ",x)

In []: #### extend(list1)- append the list1 to the list
y=[70,80,85]

Tuples
tuples is similar to lists but they are immutable. after its creation we cannot modify its elements.
so we cannot perform the insert, append, delete, remove, pop, clear on the tuples.

x.extend(y)
print("using x.extend(y) is ",x)

In []: #### count() - number of times the given value in the list
print("using x.count(30) is ",x.count(30))

In []: #### remove(x)- remove the first element which has x value
try:
 x.remove(30)
 print("using x.remove(30) is ",x)
except:
 print("already removed")

In []: #### pop()- remove the last element
x.pop()
print("using x.pop() is ",x)

In []: #### reverse() - reverse the sequences of the elements
x.reverse()
print("after x.reverse() is ",x)

In []: #### sort()- sort the elements of list in ascending order
x.sort()
print("after x.sort() is ",x)

x.sort(reverse=True)
print("after x.sort(reverse=True) is ",x)

In []: #### clear()- delete all the elements from the list
x.clear()
print("after x.clear() is ",x)

In []: # Tuples Creation
mytuple=(10,20.-30.2,40.5,"India","China")
print(mytuple)
print(type(mytuple))

In []: # it is also possible to create tuple from the list
mylist=[10,20,30,"Mark"]
mytuple = tuple(mystr)
print(mytuple)

In []: another_tuple=(mytuple,11)
print(another_tuple)
print(another_tuple[0][0])

In []: #if we dont mention any brackets, by default it will take it as tuple
tup5=10,20,30,"Sara"
print(tup5)

In []: ##### Accessing Tuple elements- very similar to string, array and list slicing.

mytuple=(50,60,70,80,90,100)

Mapping DataTypes
Dictionary
A dictionary represents a group of elements arranged in the form of key-value pair. First
element is considered as KEY and immediate next element as VALUE. Key and Vaue is separated
by : All the key-Value pairs are inserted within ex: mydict = { key1:value1,Key2-Value2 }

Sets

print(mytuple[5:0:-1])

In []: # Create Dictionary with employee details and retrieve it

mydict = {'EmpName':'Edison','EmpId':200,'EmpSalary':9502.50}
mydict["Age"] = 50

mydict["Age"] = 45

mydict["mylist"] = mylist

print(mydict)
#Access value by dictionary key
print("Name of the Employee:",mydict['EmpName'])
print("ID of the Employee:",mydict['EmpId'])
print("Salary of the Employee:",mydict['EmpSalary'])

In []: mydict = {'EmpName':'Edison','EmpId':200,'EmpSalary':9502.50}
len function
print("Using Len function" , len(mydict))

In []: # Insert a new key value
mydict["Dept"]="IT"
print("After inserting the dept value", mydict)

In []: # Deleting a key value pair

del mydict["EmpSalary"]

print("After the deleting the Salary value",mydict)

In []: # items()
print(mydict.items())

In []: ### keys and values
print(mydict.keys())
print(mydict.values())

In []: # A python function accepts dictionary and display its elements

def fun(dict):
 for i,j in dict.items():
 print(i,"---",j)

fun(mydict)

Set is an unordered collection of elements much like a set in mathematics. The order of
elements is not in the sets.Sets does not accept duplicates

1. set datatype : can be modified

Object Oriented Programming
C,Pascal,Fortran are called procedure oriented programming languages the main task in the
program is divided in to several subtasks and each sub tasks is represented as procedure or
function

C++, Java and python uses classes and objects the main tasks is divided in to multiple sub tasks
and these are represented as Classes. Each class can perform several interrelated tasks for which
several methods are written in a class

when program becomes bigger, then more task need to be achieved for that more code will be
written and less reusabllity.

Another Approach Object Oriented approach is very closer to human being point of view. this
approach will be reuse the code and manage them easily.

Class and Objects

In []: s={10,20,30,40,50,20}
print(s)

ch= set("Hello")
print(ch)

Set is Mutable
ch.remove("H")
print(ch)

In []: ch.add('H')
print(ch)

In []: class Employee:
 def __init__(self):
 self.name = "sara"
 self.age = 34
 self.salary = 10000

main program starts
emp1 = Employee()
print(emp1.name,emp1.age,emp1.salary)

In []: class Employee_new:
 def __init__(self,name,age,salary):
 self.name = name
 self.age = age
 self.salary = salary

main program starts
emp1 = Employee_new("vignesh",24,14000)
emp2 = Employee_new("Ravi",35,15000)
emp3 = Employee_new("Bala",36,16000)

Encapsulation

print(emp1.name,emp1.age,emp1.salary)
print(emp2.name,emp2.age,emp2.salary)
print(emp3.name,emp3.age,emp3.salary)

emp2.salary = 25000

print(emp2.name,emp2.age,emp2.salary)

In []: class Employee:
 # class variables
 #but these variable carried over to objects and you can access object variable u

 def __init__(self,name,age,sal): # constructor method
 self.name=name
 self.age=age
 self.sal=sal

 def talk(self):
 print(self.name,self.age,self.sal)

#main program starts

emp1 = Employee("Tom",50,12000) # instanstiation emp1 is object
emp2 = Employee("Bill",52,15000) # instanstiation emp2 is object
emp3 = Employee("Mark",52,25000) # instanstiation emp3 is object

print(emp1.talk)
print(emp2.talk)

In []: class Employee:
 #but these variable carried over to objects and you can access object variable u
 objCount=0

 def __init__(self,name,age,sal):
 self.name=name
 self.age=age
 self.sal=sal
 self.bonus = 0.0
 Employee.objCount+=1

 def calculateBonus(self):
 self.bonus = self.sal*.5 + self.sal
 print(self.bonus)

In []: emp1 = Employee("Tom",50,12000) # instanstiation emp1 is object
emp2 = Employee("Bill",52,15000) # instanstiation emp2 is object
emp3 = Employee("Mark",52,25000) # instanstiation emp3 is object

In []: print("EMP1.NAME =",emp1.name)
print("EMP2.NAME =",emp2.name)
print("EMP3.NAME =",emp3.name)
print("Object Created=",Employee.objCount)

In []: # calling object methods
emp1.calculateBonus()

Encapsulation is a mechanism where the data(variables) and the code (method) that act on the
data are bind together All the member variables and functions are Public by default.(Uniform
Access Principle in python)

Abstraction
Class may contain many data.but the user may not need all the data. so programmer can hide
some unnecessary data from the user. this is called an abstraction

example: car, dashboard and engine. user wants to view the dashboard but not the engine
details

example. bank clerk wants to view the customer account details. but he should not see some
other details like credit card number or any other account holder critical info.

In []: class Student:
 # class variables
 #but these variable carried over to objects and you can access object variable u

 def __init__(self,name,age,rollno):
 self.name=name
 self.age=age
 self.rollno = rollno

 def displayInfo(self):
 print(self.name,self.age,self.rollno)

In []: stud1 = Student("Tom",50,"87BL38") # instanstiation student1 is object
stud2 = Student("Bill",52,"87BL33") # instanstiation student2 is object
stud3 = Student("Mark",52,"87BL39") # instanstiation student3 is object

In []: # All the member variables and functions are Public by default.(Uniform Access Princ
stud1.name

In []: # Public methodss can be accessed from outside
stud1.displayInfo()

In []: class BankAccount:
 def __init__(self,accno,name,balance):
 self.accno=10
 self.name= name
 self.__balance=10000.00
 def displaytoClerk(self):
 print(self.accno,self.name,self.__balance)

In []: account1 = BankAccount("ACC12345","Tom",10000.00)
account2 = BankAccount("ACC56789","Bill",20000.00)

In []: # public variable can be accessed from outside
account1.name

In []: # private variable cannot be accessed from outside
try:
 account1.__balance
except:
 print("cannot can access private variable")

Inheritance

In []: # private variables can be accessed through methods
account1.displaytoClerk()

In []: ## Inheritance

class Employee: # Parent Class or Super Class
 name="Alice" # ist variable
 age=50 # 2nd variable

 def display(self):
 print(self.name,self.age)

class Salesman(Employee):
 target=100000 #age=50 # 3rd variable

 def disptarget(self):
 print(self.target)

s1=Salesman()

#print(s1.name,s1.age,s1.target)

s1.display() ## it displays 3 values name, age and Target

s1.disptarget() ## it displays 3 values name, age and Target

In []: class Student:
 def __init__(self,id,name,city): # Constructor
 print("entering base class constructor")
 self.id = id
 self.name = name
 self.city = city
 def display(self): # instance method
 print("ID = {} , NAME is = {} , CITY = {} ".format(self.id, self.name, self

In []: # main program
creating/instantiation an object (Student1)
student1 = Student(1,"Edison","Paris")
student1.display()

In []: # EngineeringStudent class derived from Student class
Student class is called as BASE CLass or SUPER class
EngineeringStudent class is called as derived class or SUB class

Note: if we there is NO constructor in the derived class then base class construct
automatically. but if we defined derived class constructor then we need to call ba

class EngineeringStudent(Student):
 def __init__(self,id,name,city,marks):
 print("entering Derived class constructor")
 super().__init__(id,name,city) # calling the base class constructor
 print("entering back to Derived class constructor")
 self.marks=marks
 def display(self):
 super().display()
 print(" Marks = {}".format(self.marks))

In []: # main program

Polymorphism

Abstract method and Abstract Class
Abstract method is a method which not defined. it is method written without body and that
body will be redefined in the subclass

Abstract class is a class which contains some abstract methods

use decorator @abstractmethod

PVM cannot create objects for the abstract class

EngineeringStudent1 = EngineeringStudent(1,"Edison","Paris",450)
EngineeringStudent1.display()

In []: class Animal:
 def speak(self):
 print("speaking")

class Dog(Animal):
 def speak(self):
 print("barking")

class Cat(Animal):
 def speak(self):
 print("Meowing")

mydog = Dog()
mycat= Cat()

animals=[mycat,mydog]

for i in animals:
 i.speak()

In []: from abc import ABC, abstractmethod

defining Abstract class by defining Abstract Method
class Shape(ABC):
 @abstractmethod
 def draw(self):
 pass
 @abstractmethod
 def paint(self):
 pass

class circle(Shape):
 def draw(self):
 print("drawing the circle")
 def paint(self):
 print("painting Circle")

class Square(Shape):
 def draw(self):
 print("drawing a Square")
 def paint(self):

Interfaces

Exceptions

 print("painting Square")

circleObj= circle()
circleObj.draw()
circleObj.paint()

squareObj= Square()
squareObj.draw()
squareObj.paint()

In []: # Python program showing
abstract base class work
Abstract Base classes(ABC)

from abc import ABC, abstractmethod

class Polygon(ABC):

 # abstract method
 def noofsides(self):
 pass

class Triangle(Polygon):

 # overriding abstract method
 def noofsides(self):
 print("I have 3 sides")

class Pentagon(Polygon):

 # overriding abstract method
 def noofsides(self):
 print("I have 5 sides")

class Hexagon(Polygon):

 # overriding abstract method
 def noofsides(self):
 print("I have 6 sides")

class Quadrilateral(Polygon):

 # overriding abstract method
 def noofsides(self):
 print("I have 4 sides")

myPolygon = []

Driver code
myPolygon.append(Triangle())
myPolygon.append(Quadrilateral())
myPolygon.append(Pentagon())
myPolygon.append(Hexagon())

for shape in myPolygon:
 shape.noofsides()

Generally we classify the error in the program

1. Compile time errors
2. Runtime errors
3. Logical errors

CompileTime errors

Syntax errors if you forget the ":" after the conditional statements then during compilation,
compiler would throw this error with line number and error message.

Compile Time Errors

Run Time Error
When PVM cannot execute the byte code then it flags the runtime error. Note: Runtime errors
are not detected by compiler.

logical errors

flaw in the logic of the program ex. programmer used the wrong formula. both compiler and
pVM cannot detects this error

Exception Handling

In []: # Compile time errors example
for x in range(10):# colon missing
 print(x) # indendation missing

In []: # Runtime error example -1 --> invalid literal for int() with base 10: 's'
x = int(input("Enter first value : "))
y = int(input("Enter the second value : "))

In []: # Runtime error example -2 --> IndexError: list index out of range

animal=["dog","cat","elephant","horse"]

print(animal)
print(animal[4])

In []: # logical error example
incrment the employee salary by 15% and display the new salary
current_salary= float(input("Enter the employee salary:"))

new_salary = current_salary*.5
correct logic
new_salary = current_salary + current_salary*.15

print("the new salary with 15% increase is :", new_salary)

In []: try:
 x=-1
 y= x/0

except ZeroDivisionError:
 print("Dont enter Zero")

compile time errors and logical errors can be corrected by modifying the code.but runtime error
bound to happen, so programmer should know which type of error might occur and handle
them using exception handling.

All exceptions are represented as classes in python. The exception which are already available
are called as "built in" exceptions

File Handling
There are 2 types of files

1. Text files- stores in ASCII characters
2. Binary Files - in bytes ex. it can be used to store images, audio and video

File Handler = open("file name", "open mode","buffering")

r - read mode - file pointer at the beginning of the file

w - write mode - creates file or delete the content of the existing file.

a - append mode - adding to the end of the file. if file does not exist then it creates it.

w+ - write and read mode; previous file content will be deleted

r+ - read and write : previous content will not be deleted: pointer will be at the beginning

a+ - append and read: file pointer will be at the end of file if the file exist. else create new file.

default buffering is 4096 bytes.

Mounting Google Drive

In []: try:
 x = int(input("Enter first value : "))
 y = int(input("Enter the second v2alue : "))
except ValueError :
 print("you cannot enter characters ")
except:
 print("some other error")

In []: f=open("myfile.txt","w")
a,b=[int(x) for x in input("enter 2 numbers : ").split(',')]
c=a/b
f.write("writing %d into myfile" %c)
f.close()
print("file closed")

In []: try:
 x=int(input("Enter a number between 1 and 150 : "))
 assert x>=1 and x<=150
except AssertionError :
 print("the number should be within 1 and 150")
except:
 print("Some error. contact Administrator")
finally:
 print("closing files")

In []: from google.colab import drive

Reading Text Files

Reading XML File

Reading PDF files

drive.mount('/content/drive', force_remount=True)

In []: with open('/content/drive/My Drive/fromcolab.txt','w') as f:
 f.write('Hello Google Drive!\n')
 f.write('Hello Python!\n')
 f.write('Hello Machine Learning!\n')

In []: f = open('/content/drive/My Drive/fromcolab.txt', 'r')
print(f.read())

In []: f = open('/content/drive/My Drive/fromcolab.txt', 'r')
print(f.readline())
print(f.readline())
print(f.readline())

In []: #Python code to illustrate parsing of XML files
import xml.etree.ElementTree as ET
tree = ET.parse('/content/drive/My Drive/00-MASTER/DATA/Sample-XML-Files.xml')
root = tree.getroot()
for child in root:
 print("entering")
 for country in root.findall('country'):
 print("next level")
 rank = country.find('rank').text
 year = country.find('year').text
 name = country.get('name')
 print(name,rank,year)

In []: ! pip install PyPDF2

In []: # importing required modules
import PyPDF2

creating a pdf file object
pdfFileObj = open('/content/drive/My Drive/00-MASTER/DATA/Blog.pdf', 'rb')

creating a pdf reader object
pdfReader = PyPDF2.PdfFileReader(pdfFileObj)

printing number of pages in pdf file
print(pdfReader.numPages)

creating a page object
pageObj = pdfReader.getPage(0)

pageObj.extractText()

extracting text from page
print(pageObj.extractText())

closing the pdf file object
pdfFileObj.close()

Reading json files

OS Library

In []: # Python program to read
json file

import json
returns JSON object as
a dictionary

data = json.load(open('/content/drive/My Drive/00-MASTER/DATA/Emp.json', encoding='u

Iterating through the json
list
print(type(data))

for i,j in data.items():
 print(i,j)

In []: import os
os.listdir(os.getcwd())

