```
R E P O R T R E S U M E S
ED 012623
                                    JC 670 351
AVAILABLE TESTS AND THEIR USE IN REEEARCH IN VOCATIONAL
EDUCATION.
BY- Crathrord, mafgumfet l.
IOE AMEELES TRAEE TECHA!!EAL COLL., CALIF.
                                    PUE DATE MAR GG
```



```
DESGRIPTORS- *JUNIOR COLLEGES, *TESTS, TESTING, TEST VALIDITY, ADMISSION CRITERIA, \&PFEDICTIVE ABILITY (TESTING), \#TESTING PROGRAMS, *ƯOCATIONAL EDUCATION, VOCATIONAL COUNSELING, GUILFORD SCHNEIDMAN ZIMMERMAN INTEREST INVENTORY, LOS ANGELES, OCCUPATIONAL INTEREST INVENTORY, STRONG VOCATIONAL INTEREST ELANK, SCHOOL AND CCILEGE AEILITY TEST, CALIFORNIA ACHIEVEMENT TEST
MEASUREMENT OF INDIVIDUAL TRAITS AND SEPARATE FACTORS OF INTELLIGENCE FOLLOWED EY EMPIRICAL COMBINATION OF THESE MEASURES INTO APTITUDE TEST EATTERIES SHOULD EE THE EASIS OF SELECTION OF STUDENTS FOR VOCATIONAL TRAINING. DURING THE PAST 14 YEARS, TKADE-TECHNICAL COLLEGE HAS DEVELOFED AND UALIDATED SLCH TEST EATTERIES FOR SOME 55 TFADE AND TECHNICAL CURRICULUMS, TESTING OVER 8,000 APFLICANTS ANNUALLY. THE STUDENT-SELECTION PROCESS INVOLVES EOTH THE TESTING PROGRAM AND AN APPLICANT-COUNSELOR-INSTRUCTOR INTEFVIEW. VALIDITY studies made on the aptitude test eatteries, and the tests FOUND TO EE PREDICTIVE, ARE FRESENTED IN TAEULAR FORM. SIGNIFICANT CORRELATIONS ON APTITUDE TESTS AND INSTRUCTOR GRADES, MEANS AND STANDARD DEVIATIONS, AND OTHER FSYCHOMETRIC DATA ARE GIVEN. (HS)
```

U.S. DEPARIMEHI OF HEALIH, EDUCAIIOH \& WELFARE OFFICE OF EDUCAIION

THIS DOCUMENT HAS BEEN REPRODUCED EXACILY AS RECEIVED FROM THE

 positioñ ỗ policy.

AVAILABIE TESTS AND THEIR USE IN RESTARCH

IN VOCATIONAL EDUCATION
by

Kiargaret L. Crawiord, Ed.D.
Assistant Dean
Counseling and Guidance
Los Angeies Trade-Technical College

UNIVERSITY OF CALIF. LOS ANGELES

MAY 81967
March 1966
CLEARINGHOUSE FOR
JUHIOR COLLEGE
INFROTATION

AVAILlBBIE TESTS AND THEIR USE IN RESEARCH

IN VOCATIONA ${ }^{T}$ EDUCATION
Margaret L. Crawford, Ed.D.

Introduction

It is a rare privilege to meet with such a distinguished group of edueators and ton parrininate with you in this Seminar on Tests and Measurements at Colorado State University.

The selection of students for vocational training is a matter of great concern and it is most encouraging that you are directing your interests to this problem. As you pursue your research studies and as you prepare tomorrow's leaders in the teaching fields, your point of view, your decisions and your influence in this vital aspect of vocational training can affect decisively the outcome of vocational selection for many years to come.

The materials I am presenting to you today are based upon some fifteen years of testing and research in the selection of students for vocational education at Los Angeles Trade-Technical College. Using a core of standardized $\mathfrak{\text { testis, }}$ we have deveioped aptitude test batteries to assess the potential oi applicants for some fifty-five trade-technical and business curricula. Our experience indicates that the IQ tests so generally used in the elementary and secondary schools and the scholastic achievement tests so generally used in combination with high school grade point average to predict college achievement are not the best predictors for success in vocational classes. They appear to be of limited value in the selection of vocational trainees.

Oup research leads us to the conclusion that measurement of individual traits and separate factors of intelligence followed by empirical combination of these measures into aptitude test batteries specifically designed and weighted to predict success in specific areas of training within a specific
institution is a far better approach to the problem. This is a plea, then, for trait and factor theory as the basis of the selection of students for vocational training.

Industry and educational institutions row using standardized group tests as ân economical and practicai metinod of selecting potential trainees have the test-makers of World War I and IE to tioicin fice the dewainnment of such instrumente. During World War I, these early workers, iaced wivin biac problems of testing thousands of recruits daily, developed the idea of administering standardized tests in a group situation. From this work has stemmed a continuing production of hundreds of standardized group tests of intelligence, aptitude, personaility, interest and special abilities.

It was formerly considered sufficient to know a man's score on one of the "intelligence tescs" in order to predict his success in a trade field. Minimum standards of the time were a Binet mental age of 14 , a score of 26 on the Otis Higher Ability (20 minutes), an Army Alpha score of 63 or an
 84 for the trades of a less demanding nature.

Horkers in the field of testing and counseling have long been concerned with the labeling of adolescents on IQ tests when observation has shown that many of those persons discriminated against by the verbai facility required in these tests, can actually perform at a high level of skill in such nonverbal areas as dexterity, ability to see details, make judgments and visualize objects. Certainly the ability of a great surgeon depends in large part upon some of these same skills. What is intelligonee, than?

Some light was thrown on the subject by the work of Spearman, who hypothesized a central core of knowing and seeing, a General Factor or G Factor of intelligence plus an unknown number of specific factors.

Later, Thorndike postulated three intelligences - not just one differentiating among abstract, mechanical and social intelligences. This work still hypothesized a group factor of mental organization.

Some eighteen years ago a most thought-provoking report was made in the area of defining intelligence. It grew out of the work of an eminent group of psychologists, psychiatrists and psychoanalysts during World War II. I refer, of course, to the report by the Offise of Strategic Services called the "Assessment of Ken". The O.S.S. Starf would correlate the "term intelligence with the effectiveness of any system of mental functions". They would "designate the nature or purpose of each distinguishable system by an appropriate adjective such as aesthetic intelligence, social intelligence, scientific intelligence, administrative intelligence". They would then "designate by a suitable term each separate function that is involved in the operation of each system such as observational ability, evaluative ability, interpretive ability, memory ability, conceptual ability, imaginative ability, logical abiiity, predictive ability, planning ability, et cetera, et cetera".

This is; of course, an extension of the ideas of Thorndike, and this broad concept of the intelligences of man along with the advent of factor analysis techniques, has led to the rationale behind trait and factor theory and the development of uni-factor tests of relatively pure abilities by distinguished workers in the field, notably the Thurstones, Guilford, Flannagan, King, Ruch, those associated with the U. S. Civil Service, the Armed Services and others.

Hahn and MacLean in their book Generai Clinical Counseling have further aralyzed five of these intelligences. They deal with academic, mechanical, social, clerical and aesthetic or artistic intelligences. The clusters of abilities related to these systems appear to be:

Academic - dbility io understand and manage ideas and symbols - varying occupational levels include the professions, executives, technical, clerical and supervisory, skilled trades and lower 3evel clerical workere.

Mechanical - Ability to manipulate concrete objects, to work with tools ard machinexy and materials and to deal mentally with mechanical ncrements - dexterity, spatial visualization, reasoning, visual acuity (in some cases eoior vision) and interest in meciainicar things seem portinent. Varying occupational outlets range from high level technology and engineering through the technical, skilled trades and unskilled levels.

Artistic - The capacity to create in art forms and to recognize the artistic value of created forms. Such abilities as eye-hand coordination, visual acuity and depth perception, spatial visualization, Feaboning anu a bente of proportion oem indicated. Color sensitivity may be involved. Vocational outlets range from creative artist through iilustratur, fashion designex, draftsman, landscape gardener, potter and veaver, among others.

Clerical - The ability to rapidly and accurately check details, measure, classify, record, proofread materials and compute using mechanical devices and data processing equirment. Vocational outlets range from accountants, secretary, bookkeeper,动Enographer, calcuiating mechine operator io inie ciers and general office assistant.

Social - The ability to deal successfully with people, to understand and be sensitive to their needs, and to initiate procedures for managing people which incorporate the principles of good human relations. Levels of vocational outlet include politicians, religious leaders, social service workers, executives, physicians, salesmen and clerical personnel responsible for information services.

The O.S.S. Staff has warned that "if it (intelligence) be confined in its application to a particular kind of mental ability (such as academic, absitract and scholastic) the social consequences of this development may be considerable". The idea that there is only one kind of intelligence and the placing of value alone on the power to handle verbalization and abstraction of the sort that point only to reading books, writing reports, and success in the formal education pattern leads toward an intellectual aristocracy, in the opinion of Dr . Malcolm MacLean in his article in Education on "Intelligences - Not Intelligence - Implications for Counseling". Dr. MacLean sees this philosophy of the Great Books people as leading to the collapse of democracy and control over the masses of men by the scholastics and - for counseling - a return to the old "acadenic minded" and "hand minded" dichotomy.

The same writer states that "if the O.S.S. concept of many kinds of intelligences, each supported by multiform clusters of supporting abilities, interests, attitudes and value systems is accepted, we get a sharply different social eonsequence. Here lies the road to true democracy". The recult of this philosophy is that every man's talent would be developed to its fullest for his personal satisfaction and greatest service; that we would cease to compare the incomparable such as the value of a good surgeon as against the
value of a good mechanic instead of comparing one surgeon with another, or one artist with another artist, and lastly, we would cease, on the basis of the notion of a single intelligence, to credit universal wisdom in all matters to the wearers of the Phi Beta Kappa or Sigma Xi key. Rather, we would give deference to the ideas of these cutstanding men according to their accomplishments and their pronouncements in the fields of their research.

We have a long way to go in our testing for these special abilities. At present, the percentage of these tests to the total tests in Buros is still small. But change is coming an work is going forward in the imaginative or creative thinking field. As Dr. MacLean points out, "We must incessantly work at the idea of intelligences rather than intelligence, going through finer and finer differentiation at the same time that our main job must always be the synthesis and integration of these manifold factors in the main job of assessing and helping human beings."

Aptitude Testing

In 1950 Los Angeíes Trade-Technical Collego began a testing and guidance program based upon the approach that man possesses many different kinds of intelligences and that these intelligences are identifiable and measurable by standardized tests of relatively "pure" abilities. Using job analysis, the necessary intelligence factors for success in specific occupations are determined. Aptitude tests measuring these specific factors are combined then into aptitude test batteries to assess an individual's potential for specific occupa亡ions.

During the last fourteen years Los Angeles Trade-Technical College has developed and validated such aptitude test batteries for some fifty-five trade and technical curricula. Testing over 8,000 applicants annually, norms are now of considerable size. The test batteries are derived from a core of
twenty-one separate tests measuring various factors. Batteries are constantiy subject to check, revision and inprovement.

As an example of the program, let us take the development of the aptitude test battery used for the selection of Electronic Technicians. Job analysis revealed that the techn:cian inspects and fits parts, makes calculations, reads prints and schematics, trouble shoots and works with others on a team.

A check on the psychological factors involved in successful performance rovealcd that measurement of verbal ability, space visualization, numerical facility, reasoning, dexterity and certain personality traits might be indicated. An experiniental battery was administered to incoming irainees. Such a battery will contain more tests than the final battery developed from it.

Upon completion of the training period, instructor ratings of student performance in the course were correlated with aptitude test scores. The factors chosen for the final battery were those showing the greatest relationship with the teacher ratings and the least correlation with each other. Dè̇a weights are deternined by the Doolittle method and a conversion table changing all possible raw scores to standard weighted scores is developed. A percentile table is developed based on the total battery scores of the experimental groups, and ratings of high, middle and low are determined from above the 66 th , between the 66 th and 33 rd , and below the 33 rd percentile respectively. The cutting score is the 33 ri percentile. Using the scores of fifty-five students, the following factors were selected for the final battery:

Science Research Associates, Mechanical Aptitudes Shop Arithmetic.	$r_{\text {bis }}$. 40
Guilford-Zimmerinan Aptitude Survey, Part 6 Spatial Visualization	$x_{\text {bis }}$.43
Progressive Matrices (Non-speeded and non-verbal reasoning)	$r_{\text {bis }}$. 43
Primary Mental Abilities Word Fluency	$r_{\text {bis }}$.38

This aptitude test battery administered to beginning students and requiring one and one-half hours of testing tine, was found to have the correlation Multiple $\tilde{R} .68$ between the total battery scores and performance ratings of class achievement as determined by grades at course completion.

The selection process used involves both the testing program and an applicant-instructor-counselor interview. In the latter such factors as health, age, work experience and training are considered. In general, those applicants are accepted for training who make a total battery seore equivalent to a total baitery score at the 33rd percentile or above based on norms developed on the exorimontol group. Those applicants scoring below this cutting point are referred for further counseling. Such applicants are encouraged to investigate other offerings of the college more consistent with their abilities. Some may be counseled toward adult education classes to improve basic skills and then return for retesting at a later date. Each person tested receives the benefit of an individual review of his test results through the interview with the counselor and an instructor teaching in the curricula for which the applicant has tested.

The testing and guiclance program at Los Angeles Trade-Technical College has been successful. Teachers feel that they are getting "better" students; they know more about the potentials of their students (the files are open to them while working with a counselor); there are fewer class intermptions; dropouts have decreased materially and criticism of discrimination is practically non-existent.

The counseling service is available to those who have chosen an occupation, to those win have not yet discovered their vocational intereste and to those who find it necessary to retrain for another occupation.

Our experience leads us to believe that this method is valid for selecting vocational students. Cross-validation studies reveal that similar
intelligence factors are predictive of success in similar courses offered at other inioidiuitons. fowever, while norms on individual tests are useful from school to school, the weighteci total battery score will be useful only in the institution miture the regrestion aquation data are oitained due to variavility in criteria.

The following validity studies made on the aptitude test batteries and the tests found to be predictive are presented for your consideration.

LOS ANGELES TRADE-TECHNICAL COLLEGE
GUIDANCE DEPARTMENI
January 1964
SIGNIFICANT CORREIATIONS
APTITUDE TESTS AND INSTRUCTOR GRADES

Correlation

(Correlations corrected for restriction of range on $N=957$)
Dexterity - Coordination of both hands
Guilford-Zimmerman Aptitude Survey
Part 4 - Perceptual Speed
Paxt 7 - Mechanical Kinowledge
SRA Mechanical Aptitudes
Shop Arithmetic
Army General Classification Test Biocks

Minnesota Revised Paper Form Board
Validity Check $N=115 \quad r_{\text {bis }} .33 * *$

CHEF TRAINING	$N=113 \quad$ Test		Correlation	
		M	\bigcirc	$\underline{r_{\text {bis }}}$
	Army General Classification Test -			
	Blocks	25.1	8.20	. $57 \% *$
	Guilford-Zimmerman Aptitude Survey Part 4- Perceptual Speed	32.8	14.0	. $37 \times$
	Guilford-Zimmerman Temperament Survey 'F' Factor		5.32	. $21 * *$
	Correlation: Total Battery R . 65			
OFFSET PRESS	$N=80 \quad$ Test $\quad$$\mathrm{r}_{\text {bis }} .55$ Validity Check		Correlation	
		$\underline{r_{\text {bis }}}$		
	Dexterity - Assembly of Small Objects	. $37 *$		
	Guilford-Zimmerman Aptitude Survey Part 4 - Perceptual Speed	. 39		
	Progressive Matrices	. 31		
	Army General Classification Test Blocks	. 52		
	Industrial Psychology - Factored Aptitude Series Memory	. 25		
	Farnsworth-Munsell 100 Hue Test of Color Vision (Error Score)	-. 48		
	Note: Color test is used as a separate cutoff score and is not included in the total battery score.			

Experimental Group

COSMETOLOGY
$N=57 \quad \mathrm{R} .74 \quad$ Test
Progressive Matrices
Graves Design Judgment
Farnsworth-Munsell 100-Hue

Primary Mental Abilities
Verbal
Space
Reasoning
Number
Word Fluency
Guilford-Zimmerman Temperament Survey 'G' Drive
'P' Personal Relations
Dexterity - Preferred Hand
Validity Check $N=163$ r. 45

M

$43.8 \quad 7.7$
52.314 .3
32.224 .8

0
.31
.22
-. 29
Corre1ation

${ }^{r_{\text {bis }}}$

$33.7 \quad 8.0$
.47
$17.8 \quad 10.7$. 27
$14.4 \quad 5.5$. 29
$21.4 \quad 9.4$. 45
$48.0 \quad 14.6$. 34
$17.8 \quad 5.7 \quad .48$
$15.9 \quad 5.9 \quad .33$
$63.5 \quad 5.6$. 36

ELECTRONICS TECHNICIAN $N=55$
Test
Correlation
(Corrected for restriction of range $\mathrm{N}=621$)

Significant Tests:	M
SCAT Quantitative	29.2
Progressive Matrices	43.4
Guilford-Zimmerman Aptitude Survey-Part	
Spatial Visualization	26.1
SRA Shop Arithmetic	10.6
PMA Reasoning	13.8
PMA Word Fluency	43.0
Battery	
Matrices, G-2 6, Shop Arithmetic, Wora Fluency	
Correlation: Total Battery R . 68	

FASHION DESIGN
Guilford-Zimmerman Aptitude Survey
Part 4 - Perceptual Speed
Part 5 - Spatial Orientation
Revised Minnesota Paper Forim Roard
Graves Design Judgment
Farnsworth-Munsell 100-Hue Test of Color Vision
Varnum Selective Art Aptitude
Tone (Color Value Perception)
Proportion
Validity Check $r_{t} .53 \quad N=113$

MACHINE SHOP

MACHINE SHOP

Validity Check
$N=378$
Test
Guilford-Zimmerman Aptitude Survey Part 4 - Perceptual Speed 40.0
Part 7 - Mechanical Knowledge
Dexterity - Preferred Hand

- Assembly of Small Objects

Army General Classification Test
Vocabulary
Arithmetic
Blocks

Validity Check 非2
$N=69$
Guilford-zimmerman Aptitude Survey
Part 4 - Perceptual Speed
Part 7 - Mechanical Knowledge
Dexterity - Preferred Hand
Army General Classification Test Arithmetic Blocks

Guilford-Zimmerman Temperament Survey
"A" Ascendence
"O" Objectivity
"E" Emotional Stability $19.4 \quad 4.91 \quad .42 \%$:

Battery:

Perceptual Speed
Mechanical Knowledge
AGCT Arithmetic
Temperament "E"; Dexterity Preferred Hand
Correlation: Total Battery R. 75

MECHANICAL DRAFTING	NN $=66$	M	σ	${ }^{\text {r bis }}$
	Guilford-Zinmerman Aptitude Suryey Part 6 - Form A	27.8	13.76	.29*
	Progressive Matrices	48.2	5.33	.29*
	Factored Aptitude Series "Memory"	37.9	9.43	.24*
	Cooperative Mathematics 'Skills'			
	Correlation: Total Battery R . 48 \%*			

POWER SEWING
Guilford-Z 1 nmmerman Aptitude Survey
Part 4 - Perceptual Speod
Dexterity . Coordination of both hands
Revised Minnesota Paper Form Board
Industrial Psychology - Factored Aptitude Series- Blocks
Validity Check $r_{t} .53 \quad N=155$
RADIU AND TELEVISION SERVICE
Guilford-Zimmerman Aptitude Survey
Part 4 - Perceptual Speed
Part 6 - Spatial Visualizatior
Part 7 - Mechanical Knowledge
SRA Mechanical Aptitudes - Shop Arithmetic
Industrial Psychology
Factored Aptitude Survey - Memory
Validity Check $r_{\text {bis }} .40 \quad N=62$
TECHNICAL ILLUSTRATION $N=252$

Progressive Matrices
Graves Design Judgment
Revised Minnesota Paper Form Board
Guilford-Zimmerman Aptitude Survey
Part 5 - Spatial Orientation
Part 6 - Spatial Visualization
Guilford-Zinmerman Temperament Survey
'T' Factor
Primary Mental Abilities
Reasoning and Space
Validity Check $\mathrm{r}_{\mathrm{bis}} .46$
VOCATIONAL NURSING
$\mathrm{N}=58$

California Achievement Test
Form 'W' - Total Reading
Progressive Matrices

M	σ	$\underline{r_{\text {bis }}}$
78.1	17.80	$.43 * \%$
36.1	8.50	$.28 \%$

Guilford-Zinmerman Temperament Survey
'G' Factor - General Activity
18.4
3.50
$.48 \% \%$
Correlation: Total Battery R . $58 * *$
Note: Cutoff of 11.5 Grade Placement in Vocabulary used to refer to Remedial English.

We have been doing experimental work in setting up new batteries for selection of trainees in Restaüant Mangernont, Plastics Technician; Metallurgical Technician and seversl Business fields, including Office Machines, File Clerk, Clerk-Typist and Business Data Processing.

The Metailurgical Technieian battery developed by Mrs. Jean Gleis, Research Counselor, L.A. Trade-Tech College, is composet of five variables. Multiple R was . 83 for a sample of 30 students completing training using theory grades as the exiterion. the following experimental battery was used.

MEPATHURGCAL TECHNTCIAN

COMPURATTON OF THE BATTERY

EXPERTMENTAL BATYYRT

Tast	
	Pearson Product-Moment
Correlation Coefficients	

Weighted Standard Scores $M=20$ Converted score	\qquad	Matrix	Minn. Paper Form Board (15 Minute) Bightis Only	PMA Verbal	$\begin{gathered} \text { Coop. Math } \\ \text { Grades 7,8,9 } \\ \hline \end{gathered}$
32			63-64		
31			61-62		
30		60	58-60		
29		58-59	$56-57$		
28		$57-56$	5h-55		
27		$55-54$	51-53		
26		$53-52$	49-50		
25		57	46-48		
24	29-40	$50-49$	$44-4.5$		45
23	$37-38$	$48=-1.7$	$47-43$	44-50	$38-44$
22	22-30	46-45	$39-40$	$37-43$	$37-37$
21	12-21	4 4 - 43	36-38	30-36	$24-30$
20	11-16	42-41	34-35	23-29	17-23
19	0-10	40	$31-33$	15-22	10-16
18	Below 0	39-38	29-30	8-14	$3-2$
17		$37-36$	27-28	$1-7$	$0-2$
16		35-34	$24-26$	0	
15		33-32	$22-23$		
14		31-30	19-21		
13		29	17-18		
12		28-27	14-16		
11		26-25	12-13		
10		$24-23$	$10-11$		
9		22-21	$7-9$		
8		20	$5-6$		
7		18-19	$2-4$		
6		16-17	$0-1$		
5		$14-15$			
4		12-13			
3		10-11			
2		9			
1		7-8			
0		5-6			
-1		$3-4$			
$\square-2$		1-2			
-3		0			

Total Battexy Rating

Additional Testing for Research (Z IV, Perceptual Speed

High Third 104 and above Middle Third 97 - 103 Iow Third $80 \quad 96$ Below Class

A study of the correlations and intercorrelations suggested that the folinwing variables would be the most predictive in cominiation fith egon other. (The Betas were developed using the Wherry-Doolittile method.)

Test Variaile	Mean	Sigma	Beta	r
Progressive Matrices	47.97	6.52	. 3507	.6837\%
Revised Minnesota Paper Form Board (15 minute)	34.60	8.65	. 3541	. $6794 * *$
Guilford-Zimmerman Aptitude Survey, Part 6, Spatial Visualization	18.33	12.88	. 1027	. $5598 \times$
Cooperative Mathematics Grades 7,8,9, "Skills"	20.33	8.90	. 1319	. 5421 **
S.R.A. Primary Mental Abilities - Verbal	25.87	10.34	. 1408	. 5409%
Multiple R was . 83 ($\mathrm{N}=30$)				

The raw scores of the experimental group were converted to standard weighted scores using the conversion chart from the formula $\frac{X-M}{\sigma}(B)(10)+20$ giving an average standard score of 20 for each factor. The total battery score for each student in the experifiental group was found by adding the converted standard score on each factor. Percentiles were developed from these total battery scores. Cutting point for entrance was determined to be a battery score of 97 (the 33rd percentile).

In the Business fields the following batteries have just been completed: Typing, Filing and Office Machines.

Lis: : available data from Metropolitan College, (Metropolitan College will be merged with Los Angeles Trade-Technical College as a Business Department of the college in July, 1966) a study weo ompletad hy Margerot De Nevers, Research Counselor, entitled "Thie Predictive Value of Different Ability Measures for Success in Selected Business Subjects" in August, 1965.

Predictive variables were SCAT Verbal, Quantitative and Total scores, DAT Absiract Reasoning, and twelve scores from the complets GATB (raw scores). Criterion variables were GPA in the following areas: typing, filing, office machines, shorthand, secretarial science, general business, total GPA in all courses, and age. The total number of subjects was l2l. After a study of sample size, three sub-groups of typing ($N=80$), Office Machines ($N=6 I$), and Filing ($N=60$) were chosen for study. A smail group of shorthand students, $N=21$, was also studied.

Results indicated that quantitative skills as measured by the SCAT, appeared to be better predictors than verbal skills for the areas of typing, filing and office machines. Results also indicated that the shorthand group may be more verbal than the other groups studied.

The abstract reasoning factor was found to be an important predictor in the filing area and there were some indications that this factor might be important in other areas as well.

With respect to the GATB raw scores, the best overall predictors seemed to be the computation and arithmetic reasoning tests. There was some indication that the name comparison test might have some general predictive value, while the vocabulary test was an important predictor for the area of filing. The three-dimensional space test had comparatively little predictive value but it seemed possible that a two-dimensional space measure might be more appropriate for the business areas. Tool matching, form matching, mark matching, and the dexterity tests of placing, turning, assembling, and disassembling had comparatively little predictive value for the areas studied. It seemed possible that a different measure of dexterity might be predictive. The relevant data are presented in the following tables.
TABLE I:

	MEANS AND STANDARD DEVIATIONS FOF BUSINESS GROUPS I AND II COMBINED											
	Troing			Filing			Office Machines			Shorthund		
	N	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mefin	SD
Verbal	89	18.20	7.17	60	17.43	6.77	61	17.30	6.60	21	22.43	7.78
Quantitative	80	15.95	8.54	60	16.80	9.75	61	76.20	8.97	21	16.90	8.47
Total	80	34.15	13.16	60	34.23	15.09	61	33.49	13.07	21	39.33	24.05
DAT Abstract Reasoning	80	20.57	10.79	60	21.33	11.25	61	20.84	10.95	21	24.09	9.26
GATB												
Name Comparison	80	50.84	11.36	60	51.73	11.43	61	51.02	13.34	21	56.09	10.46
Computation	80	22.69	4.81	60	23.27	5.33	61	22.95	15.63	21	23.57	5.20
Threemimensjonal space	80	13.06	4.20	60	13.33	4.55	61	13.31	3.98	21	15.43	4.72
Vocabulary	80	14.64	6.68	60	14.02	7.11	61	13.54	5.78	21	17.143	7.38
Tool. Matching	80	29.02	5.54	60	29.56	5.73	61	29.57	5.53	21	32.67	4.18
Axithmetic Reason	80	8.77	2.62	60	8.83	2.91	61	8.54	2.61	21	9.43	2.69
Form Matching	80	26.51	6.02	60	27.32	6.70	61	27.92	4.35	21	25.23	6.22
Gark Matching	80	76.12	8.19	60	76.97	8.50	61	75.85	12.83	21	76.148	8.28
Place	80	87.75	7.27	60	88.83	7.03	61	89.21	7.19	21	87.67	6.48
Turn	80	104.34	8.27	60	103.73	8.36	61	104.21	8.58	21	100.67	7.05
Assemble	80	28.75	5.34	60	28.75	6.17	61	29.06	5.40	21	28.14	6.03
Disassemble	80	29.89	3.33	60	30.07	3.19	61	30.28	3.59	21	29.86	3.63

Test	Pearson Product-Moment Correlation Coefficients					
	r	r	r	r	r	
	Typins	Total	'rotal	Total	Age	
	GPA	$\frac{\text { Sec.Sci. }}{\text { GPA }}$	Business	GPA		
SCAT						
Verbal	. 2807 \%	.2880**	. $3633^{* *}$. $52882^{* * *}$. $3289 * *$	
Quantitative	. $4405^{* *}$. $4865^{* *}$. $5652^{* *}$. $6184^{* *}$. 0395	
Total	. 4388 \% ${ }^{\text {\% }}$. $4724^{\text {\% }}$ -	. $5644^{* *}$. $68887 * *$. 2047	
DAT Abstract Reasoning	. $3462^{* *}$. 3971 朔	. $4182{ }^{\text {\% }}$.4884****	-. 0488	
GATB						
Name Comparison	. 3174 \%	. $24255^{\text {\% }}$. 2397 *	.2996**	. 0953	
Computation	. $5162^{\text {\% }}$. 4923 **	. $5491^{* * *}$. $5472^{\text {̌*) }}$. 0565	
Three-dimensional Space	. 1958	. $2433{ }^{*}$. $2777{ }^{*}$. 2908 *	. 0638	
Vocabulary	. 2285	. 2963 *	. 3370 年	. $4762 \times$. 2047	
Tool Matching	. 2045	. 1929	. 21.53	. 2961 \%	-. 1280	
Arithmetic Reasoning	. 3960 **	. $4.129^{* * *}$. $4405^{* *}$. $5140^{* * *}$. 0422	
Form Matching	. $22221^{* *}$.2611**	. 3048 * ${ }^{\text {\% }}$. 3129 **	. 1211	
Mark Matching	. 2179	. 1927	. 2095	. 1830	-. 0568	
Place	. 0493	. 0812	. 0123	-. 0473	. 0799	
Thurn	. 0354	-.r064	-. 0228	-. 0127	. 0157	
Assemble	. 1203	.083:	. 0358	. 1158	. 0724	
Disassemble	. 24.51 *	. 2304 *	. 2112	. 2127	-. 1208	
						$\mathrm{N}=80$

* Correlations significant at 5% level.
$*$ Correlations significant at 1% level.
TABLE III

CORRISATION COFFFICIENTS FOR FILING GRCUPS I AND II COMBINED						
Test	Pearson Product-Mument Correlation Coefficients					
	r	\underline{r}	r	\underline{r}	\boldsymbol{r}	
	Filing	Total	Total	Total	Age	
	GPA	Sec.Sci.	Business	GPA		
		GPA	GPA			
SCAT -						
Verbal	. $5998 *$. $4564 * *$. $5596 * *$. 6499 \%*	. 3460 *	
Quantitative	. $51.59 \% *$. 5583 **	. 6349 **	.6531**	. 2285	
Total	. $6297^{* *}$. 5861 **	. 6866 **	. 7431 **	. 3186 *	
DAT Abstract Reasoning	. $48884^{* *}$. $5241^{* *}$. $5274^{* *}$.4752**	-. 0132	
GATB						
Name Comparison	. 2216					
Computation	. $4.082^{* *}$	$.5724^{* * *}$	$.6204 * *$	$.6033^{* *}$. 2809 *	
Three-dimensional Space	. 2262	. 2661	. $3136^{* *}$. $3058{ }^{\text {\% }}$. 2179	
Vocabulary	. 4680 \%	.4177 ${ }^{\text {k** }}$. $5322^{* *}$. $6113^{* *}$. 3207 *	
Tool Katching	. 3476 *	. $42544^{* *}$. $3968{ }^{\text {K***** }}$. $3625^{* * *}$	-. 1672	
Arithmetic Reasoning	. 4616 ***	. $5437^{\text {** }}$ -	. $6153^{* * *}$. $6733^{* *}$. $2939{ }^{\text {* }}$	
Form Matching	. 1661	. 3732×2	. $3760^{* * *}$. 3739 **	. 1982	
Mark Matching	. 1522	. 3464 *	. 3780 **	. 3679 ****	. 0367	
Place	-. 0385	. 1735	. 0337	. 0580	. 2074	
Turn	-. 1814	. 0642	-. 0125	. 0292	. 1444	
Assemble	. 0874	. 2912	. 1977	. 2727	. 0653	
Disassemble	. 2658	. $4076 * *$. 3878%	. $3764^{\text {** }}$.2971*	

TABLE IV

TABLE V
CORRELATION COEFFICIENTS FOR SHORTHAND GRIJUPS I AND II COMBINED

CORRELATION COEFFICIENTS FOR SHORTHAND GROUPS I AND II COMBINED					
Test	Pearson Product-Moment Correlation Coefficients				
	r	r	r	r	r
	Shorthand	Total	Total	Total	Age
	GPA	Sec.Sci.	Business	GPA	
		GPA	GPA		
SCAT					
Verbal	. 3399	. 3932	. 4323	. 4323	. 6085^{*-x}
Quantitative	. 3348	. 3482	. 4942 *	. 5731 **	.1276
Total	. 3888	.4264	. $5354{ }^{*}$. 5826 为	.4137
DAT Abstract Reasoning	.4308	. 4702%	.4781*	. 5099%	-. 0156
GATB					
Name Comparison	. 2283	. 2973		. 3956	
Computation	. 4095	. 4456 *	$.4644^{3}$. 5007^{*}	1091
Three-dimensional Space	.1112	. 1592	. 2266	.2364	.2871
Vocabulary	.3616	.3581	. 4236	$.4842^{\text {K }}$. 5315^{*}
Tool Matching	. 1080	-. 0138	-. 0081	. 0939	-. 1088
Arithmetic Reasoning	. 1889	. 2396	.3718	. 44888	. 2340
Form Matching	-. 0157	-. 0125	. 0404	. 0649	. 2078
Mark Matching	. 3609	. 3844	. $44402^{\text {\% }}$. 4087	. 2208
Place	-. 0218	-. 1798	-. 1759	-. 1405	. 0615
Turn	. 0850	.0357	. 0452	. 0284	. 3346
Assemble	-. 0131	-. 0742	-. 0507	.0615	. 1803
Disassemble	. 2348	.2436	. 2803	. 3153	$.0362 \mathrm{~N}=21$

[^0]The preliminary study was used as a guide in setting up experimental batteries for tize selection of trainees for Filing, Typing and Office Machines, to be enrolled for the summer session 1966 and the fall semester of the school year 1966-67. A large number of test factors were administered to boginning slasses in these areas in Septamber, 1965. At the eñ of the semester, test scores were correlated with instructor grades. Following a study of the correlations and intercorrelations, aptitude test batteries were developed for each of the areas according to the procedures previously described. Results validated the results of the earlier study.

It was found that quantitative skills as measured by the SCAT were more predictive than verbal skills, although both correlated with grades in Filing. The abstract reasoning test was found to be prediciive for filing and ofifice Machines. The DAT Language Usage, Part I, Spelling, suggested by the earlier study, was found to be predictive in the areas of Typing and Filing. Perceptual Speed and Visual Speed and Accuracy were also indicated in Typing and Office Machines respectively. The dexterity of the Preferred Hand was found to correlate highly with typing skills.

The following batteries were developed with their conversion charts and battery ratings according to the procedures previously described:

Typing $\quad \mathrm{N}=49$		
Test	r	Variance
Dexterity (LATT test, both hands)	. $59 * *$	24\%
DAT Language Usage Part I - Spelling	.48*	12\%
SCAT Quantitative	. 44^{*}	9\%
Guilford-Zimmerman Aptitude Survey Part IV--Perceptual Speed		
Multiple $R=.70$.36*	3\%

$\frac{\text { Filing }}{\text { Test }} \quad N=26$
SCAT Quantitative
SCAT Verbal
DAT Part 5
(Abstract Reasoning)
DAT Part I
Language Usage (Spelling)

Yultiple R . 61

Office Hachines $\quad N=46$		
Test	r	Variance
SCAT Quantitative	. $46 \times *$	17\%
DAT Part 6 (Abstract Reasoning)	. 40×0	7%
Employee Aptitude Survey, Farit 4 (Visual Speed and Accuracy)	. 21	3伟

Multiple R. 52

Present computer hardware makes the statistical work in setting up or validating the batteries comparatively easy. In our original studies, where all work was done with the desk calculator, the work was considerable. We have used a program for the IBri 1620 which provides us with the $\Sigma X, \leq X^{2}$, and the correlations with the criterion and intercorrelations between independent variables for 25 test factors. From these we have computed Mieans, standard deviations, set up our intercorrelation matrix, chosen our trial batteries, developed our Beta weights using the Wherry-Doolittle method, and computed R and developed the conversion charts and percentiles for locating our battery ratings and cutting scores.

Later work using programs available for the Burroughs 5500 gave us a multiple correlation program and a step-wise multiple regression equation program providing the best possit"e combination of variables and the solving of the Beta weights concermed. We also have a program for handing the data relative to setting up the conversion chart using the formula; C score $=$ $\frac{X-M}{\sigma^{-}}(B)(10)+20$ (previously described). In actual practice, j.t would seem more economical to develop a program specifically tailored to the needs related to setting up the batteries. We would suggest inspection of the intercorrelation matrix and the pertinent correlations with the criteria followed by a tentative selection of variables for the battery and a program for the Wherry-Dcolittle method which would develop the needed Betas and reproduce R. This should be followed by a program for the converied standara weighted scores used in the conversion chart. Conceivably the work of cutting cards and carrying out the computations could be easily accomplished in the same day.

This formalized method has been used to develop aptitude test batteries for some fifty-five different trade and technical curricula offered at the college. Some of these are more successful than others. We have been particularly successful in predicting in the mechanical fields and in some art fields.

Those areas where personality factors are critical, cause difficulty due to problems with criteria. A further problem is the subjective nature of the personality tests combined and high weightings of these variables in a battery caused by the low intercorrelation between personality test scores and ability scores. We need to use caution in these areas. Vocational nursing is a good example of this problem. liany studies of nursing aptitude show strong correlations with the theoretical part of the occupation
but little cormelation with work in the wards. Nursing examinations are highly verbal and tenc. to stress reading comprehension and academic abilities. Work is being done in the area of vocational nursing. We are sorely in need of such studies.

We have done cross-validity studies in the fields of aircraft mechanics and cosmetology. In general, the same test factors are predictive. We found that, the weightings of the factors will vary, due to differences in the criteria. We would hold with Cronbach, who states that "group factors hold only when regression equations are constructed about the criterion in a single institution'. Super has said that "a battery of tests measuring relatively pure factors can be normed and validated for a great variety of occupations and for a great variety of curricula, and a given student's promise for a large nunber of fieids can be appraised in a relatively brief testing session, at least in the institution in which the validity (regression) data are obtained," and further, "the tools (which the multifactor test batteries make availabie) are potentially the most useful but also the most complex we have had." We would agree.

I would like to present to you some of the tests from the core of some 21 tests in use in the develoment of our batteries. In general, they are standardized group tests. We clo use two individually administered tests one is an adaptation of the perboard for dexterity testing. j, msists of a board $18^{\prime \prime}$ by $24^{\prime \prime}$ scribed in the middle with 5 vertical rows of 20 holes per row on each side. Three small cups are located at the top of the board. The center cup contains small aluminum washers and the two cups at either side contain snall aluninum rivets. The test consists of four par ${ }^{+}$. Timing for each part is 2 minutes. The test measures dexterity of the preferred hand, the other hand, the coordination of both hands, and the assembly of small objects.

We measure separately the number of pins for the right hand, the left hand, and both hands together. Then using both hands, the applicant makes an assembly of the rivets and washers, placing them in the holes on alternate sides of the board. This type of pegboard test allows for more testing time for each part than usual, and measures larger movenent than the conventional pegboard test. The pegboards are made at the college. We would be glad to furnish specifications for making the boards and the standardized procedures upon request.

The other individual standardized test is the Famsworth-Munsell 100-Hue Test; of Color Vision. It is available through the Psychological Corporation. The test is untimed. It consists of four boxes of 82 small plastic discs sovered with tinted paper comprising a color wheel. These are arranged by the applicant in a graduation of color changes according to small differences in the color samples. The test is of exceptional value in such areas as Offset Press (matching inks) and Costume Design (matching fabrics). The following group tests are used:

1. Perceptual Speed - $\begin{aligned} & \text { Guilford-Zimmermar Aptitude Test Survey, } \\ & \text { Part } 4 \\ & \text { Ability to see details quickly and accurately. }\end{aligned}$
2. Spatial Orientation- Guilford-Zinmerman Aptitude Survey, Part 5 Ability to relate oneself to an object spatially. This is of use in aptitude for working on machinery, reading blueprints, visualizing routes for cables-electrical maintenance and dress design.
3. Mechanical Knowledge- Guilford-Zimmerman Aptitude Survey, Part 7 Ability to understard the uses of tools and interest in mechanical things.
4. Spatial Visualization-Guilford-Zimmerman Aptitude Survey, Part 6 Ability to visualize moving objects.
5. ArMy General Classification Test, Civilian Edition Verbal, Arithmetic and Blocks -. separate part scores.
6. Primary Mental Abilities. Verbal, Space, Reasoning, Number and Word Fluency Factors - separate part scores.
7. Design Judgment (Graves). Ability to recognize good design.
ε Revised Minnesota Paner Form Eoard Ahility to visualize objects in two dimensions.
8. Guilford-Zinmerman Temperament Survey. Ten bipolar personality traits - 20 factors.
9. Engineering and Science Aptitude Test - separate part scores
10. Industrial Psychology - Blocks (Space visualization)
11. Progressive Matrices (Raven). Non-verbal reasoning.

You will note from our test scheduling for $a l l$ of the batteries that there is considerable overlanning of tests auminisiered in the aificerent tiade=technical areas.

In general, we find that we are able to do a better job is predicting areas requiring mechanical intelligence. We have had trouble in predicting successful ward performance among vocational nurses. We have had trouble using the speeded PMA with some of our people of limited verbal backgrounds, and in some areas such as Commercial Art, where a certain level of achievement is required, we have been unable to use a standaxdized test of art achievenent and have been forced to develop and standardize our own test. for this purpose.

Our cross-validity studies suggest that the variables in our test batteries may be predictive of success at sther institutions. We have cross-validated our aircraft mechanic battery on 426 students using scores of apprentice trainees from Lockheed and Convair, students from Chaffey College, Mount San Antonio College, O'Connell Trade-Technical Institute, Oakland City College,

Laney Campus, San Jose High School, San Jose Junior Colllege and San Jose State College, Reedley and San Diego Colleges. In general, we have found similar factors to be predictive: namely, reasoning; spatial visualization, mathematics achievement, perceptual speed, et cetera. The weighting of the factors in a battery, of course, wiil vary due to tine variability of the criteria. We have attempted some work in objective performance testing in this area but it is slow and expensive work. Until these data are available, weighted battery scores should be developed within the individual institution or the batteries now in use at least be validated on groups within each institution. I have for your use some profiles developed from our aircraft mechanic cross-validation study and from an auto mechanic trainee study, $N=201$,

We have cross-validated our Cosmetology battery wi.th cosmetology trainees at Riverside College; again, similar factors of intelligence were found to be predictive of success.

We feel uneasy about the inclusion of personality factors in the batteries. Our cross-validities have showm great variability in predictors and in that the low intercorrelations found between ability and personality scores may result in heavy weightings of the personality variables in a battery, a word of caution is ciue.

The need to assist our students to make wise vocational choices has been complicated by the ever-increasing numbers of yourg people knocking on our college doors and the need to train our people for more highly skilled technical fields in the face of automation-caused change. We offe. the thesis that the multifactor approach to the construction of aptitude test batteries designed to predict successful trainability in specific fields is an economical and
justifiable approach and is at least one answer to thai big problem the identification of potentially satisfying life work within the capability limits of the human being we are trying to help.

GROUP	N	G-2 4	${ }_{6}^{6-2}$	${ }_{c}^{\text {G-2 }}$	$\begin{aligned} & \text { SHOP } \\ & \text { ARI:H. } \end{aligned}$	V	PRIMARY	$\frac{\text { MENTAL A }}{2}$	$\frac{\text { ILITIE }}{\mathrm{N}}$	W	MATRICES	G	R	A	S	TEMPI	MENT	$\frac{\mathrm{V}}{\mathrm{~F}}$	T	P	\underline{M}	TOTAL ${ }_{\text {BATTERY SCORE }}{ }^{\text {ror }}$	$\begin{aligned} & \sigma_{r}{ }^{\prime \prime r} \\ & \sigma_{p} \\ & \hline \end{aligned}$
Chaffee College	51	. 6637	. 4088	. 2955 \star	. 0411	.2393 $*$. 0600	-. 0078	. 0692	-. 1187	${ }^{.3437}$	-. 0662	. 0600	. 0873	-. 1127	. 2048	$\begin{array}{r} -.5417 \\ * * \end{array}$. 0283	. 1630	-. 0114	-. 0173	r . 1641	$\sigma_{r} .10$
Convair Supervisor Rating	14	. 3176	-. 1186	. 0604	. 1121	. 3165	5176	. 1220	. 1473	. 4275	. 361.5	. 1890	-. 1363	.6385 $*$.3978	. 4429	. 5363	. 4846	. 1099	. 4560	. 4220	p .4451	$\sigma_{p} .23$
Gonvair Instructor Rating	14	. 2714	-. 1890	. 2011	. 3429	. 3319	5308	. 0890	. 1165	. 4033	.313:	$\cdots .2484$	-. 0549	. 3989	-. 1429	. 1703	. 4386	. 3857	. 0945	. 4626	. 3934	p. 4561	${ }_{p}{ }_{p} .23$
Laney Trade-Tech Institute	26	. 1295	. 3617	[${ }^{4164}$. 2148	. 0304	. 0840	. 2351	. 1145	. 0206	. 3470	.. 1192	. 1678	-. 0022	. 0485	-. 0608	. 4017	. 2801	. 0783	. 3298	. 1690	r ${ }^{4038}$	$\sigma_{\mathbf{r}} .17$
Lockheed Supervisor Rating	16	5772 $*$. 3170	. 2551	$\begin{array}{r} .7632 \\ \star * \\ \hline \end{array}$. 0287	. 7713	. 3934	. 0176	. 0584		. 3257	. 0875	. 1044	. 2022	. 1213	. 4588	. 5863	. 2044	. 2213	. 0030	${ }_{\text {p }} .6875$	$\sigma_{p} .14$
Lockheed Inetructor Rating	16	-. 0830	. 2532	+ ${ }^{.6265}$	$\begin{array}{r} .7111 \\ \star \\ \hline \end{array}$. 0963	. 6625 $* *$. 2905	-. 1416	-. 1691	. 3368	. 1581	. 1405	. 1324	. 0817	. 1658	. 2305	. 3148	. 2971	-. 0252	. 3148	P . 3449	$\sigma_{p} .24$
Los Angeles Trade-Tech Junior College	119	. 1804	$\begin{array}{r} .8775 \\ \quad * * \\ \hline \end{array}$	$\begin{array}{r} .3366 \\ * * \\ \hline \end{array}$	+ ${ }_{\text {2626 }}^{*}$	$\xrightarrow{.1856}$.2933 $* *$	${ }_{* *}^{2887}$. 0660	. ${ }^{2142}$.3751 $* *$. 0005	. 0760	-. 1215	-. 1109	. 0261	. 1689	. 1254	. 0193	. 0518	.2793 $* *$	5.3676 **:	$\sigma_{\bar{\sigma}} .08$
Mt.San Antonio College	34	. 0372	. 3021	.4071 $*$. 1519	. 1626	. 3297	${ }^{.6877}$	-. 1029	. 1807	. 1346	$\underbrace{}_{\substack{-.4897 \\ k}}$	-. 1622	-. 3449	$\xrightarrow{-.37 / 5}$	-. 0308	-. 0189	. 1676	-. 0156	-. 0914	-. 0312	r. 1849	$\sigma_{\mathbf{r}} .17$
San Diego Voc. School and Junior College	12	-. 2919	.6312 $*$.6382 $*$. 4861	$\begin{array}{r} .8410 \\ * * \\ \hline \end{array}$. 2448	. 2186	. 0035	. 6014	$\xrightarrow{.7151}$	-. 3881	. 3340	-. 3776	-. 1889	. 0000	. 5298	. 4406	. 2728	. 4756	. 5455	p . 5927	$\sigma_{p} .20$
John A. O'Connell Trade-Tech Inscitute	25	. 0507	. 3665	$\begin{array}{r} .6309 \\ \hline * \\ \hline \end{array}$. 3681	. 2404	. 0752	$\begin{array}{r} 5302 \\ * * \\ \hline \end{array}$. 3650	. 2930	. 2735	-. 1770	. 0777	-. 3220	-. 3104	-. 1404	. 1610	. 2833	-. 1627	. 2219	. 1232	r . ${ }^{3668}{ }_{\text {* }}$	${ }_{\text {F }} .17$
$\begin{aligned} & \text { Reedley } \\ & \text { College } \end{aligned}$	33	. 0391	. 1467	. 3388	. 2439	$\begin{array}{\|r} .5866 \\ * \\ \hline \end{array}$	-. 0150	. 1689	. 0855	-. 0024	. 0253	. 1267	. 0959	. 2665	. 1635	. 2265	-. 0715	-. 0929	. 0596	-. 2251	.4103 $*$	r. 2664	${ }_{\mathbf{r}} \cdot 16$
San Jose Junior College	19	. 2706	. 2323	. 1851	--	$\begin{array}{r} .6274 \\ * * \\ \hline \end{array}$. 3909	. 3182	. 2951	. 3565	. 2239	. 2207	. 3464	. 2486	. 1311	. 4507	.4722 $*$. 3064	-. 2738	.5103 $*$. 2902	--	--
San Jose State College	16	-. 2544	. 4177	.6132 $*$. 1485	. 1360	-. 0287	-. 1831	. 1405	. 3735	-. 1173	-. 0174	. 4787	. 0596	$\begin{array}{r} -.6927 \\ * * * \\ \hline \end{array}$. 1449	-. 0290	-. 0728	. 1265	-. 3272	. 3941	p 4816	${ }_{p}^{-} .21$
San Jose Technical High School	16	-1240	. 2062	[6619	. 0365	. 1798	-. 0788	-. 4010	. 2738	. 1920	-. 0581	-. 4720	.4373	-. 0786	- $\begin{array}{r}\text {-5741 } \\ \\ \hline\end{array}$	-. 0531	. 0337	. 2148	. 4339	. 4074	-. 1398	r . 3710	$\sigma_{r} .22$

Table XIV

aircraft pumer plant trainees ImTERCORRELATIUNS between apt Trude test factcks lus angeles trade-technical' college (N - 119)																				
Ho. Test	1	2	3	\checkmark	5	6	7	83.	9	10	11	12	13	14	15	16	17	18	19	20
$1 \mathrm{c-z} 7$	-	. 1046	. 3508	. 3593	. 4638	. 2751	. 2138	-. 0012	. 3585	. 3016	-. 0050	. 1388	-. 0788	. 0377	. 0885	. 1357	. 0695	. 2263	. 2164	. 2122
$2 \mathrm{G-2} 4$	-	-	. 4568	. 3731	. 1077	. 4047	. 6063	. 3920	. 2975	. 4410	. 1756	-. 2300	-. 1077	-. 1474	-. 1415	-. 0985	-. 1570	.0117	-. 1699	. 1024
3 Shop Arith	--	-	-	. 5951	. 5685	. 3672	. 6269	. 4991	. 3326	. 4864	. 0178	-.0983	-. 0882	-. 0764	. 0284	. 2934	. 0023	.0247	. 1109	. 1951
$4 \mathrm{G-2} 6$	-	-	-	-	. 3833	. 4113	. 5884	. 2809	.2282	. 5628	. 1015	. 0250	-.0430	-. 0084	. 0359	. 097	. 0973	. 2430	. 0967	. 2653
5 verbal	-	-	-	-	-	. 3227	. 5162	. 4,439	. 4928	. 3416	. 0610	-. 1501	. 0934	. 0031	. 0017	. 1339	-. 2157	.190\%	. 1726	. 3469
6 Space	-	-	-	-	-	-	. 4017	. 2267	. 3090	. 0123	. 2678	-.0218	. 1349	. 1192	-. 0848	-. 1046	-. 1567	. 074	-. 0834	. 1796
7 Reasoning	-	-	--	-.	-	-	-	. 4210	. 3850	. 5561	. 0602	-. 2022	-. 0579	-.c892	-. 0102	-.0062	-. 1384	. 0402	. 0109	. 5082
$8 \text { Iumber }$	-	-	-	-	-	--	-	-	.4555	. 2936	. 0534	-. 2193	-. 0889	-.0221	.. 0399	. 0229	-. 0526	-. 0628	-. 0398	. 0530
9 Fluency	-	-	-	-	-	-	-	--	-	. 0095	. 0827	-. 1331	:1145	. 0397	. 0252	. 1060	. 0838	.2566	. 0175	. 2484
10 Matrix	-	-	-	-	-	-	-					. 2096	-. 1224	-. 1643	-. 0532					. 0980
11 G	-	-	--	-	-	-	-	-	--	-	-	.0897	. 2966	. 3121	. 1018	. 0051	.056;	75	-. 1533	.. 0250
12	-	-	-	-	-	-	-	-	-	-	-	-	. 2659	-. 0368	. 1486	-. 1207	. 4026	.244i	. 1004	. 1393
13 a	-	-	--	-	-	-	-	-	\cdots	--	-		-	. 7097	. 2351	. 2106	-.0436	. 1369	. 1180	. 1073
24 s	-	-	-	-	-	-	-	-	-	--	-	--	-	-	. 4162	. 3308	. 2524	.1737	. 2782	. 0621
15 E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. 6633	. 6007	-.0355	. 3892	. 2006
26 O	-	-	-	-	-	-	-	-	-	--	-	-	-	-	--	-	. 6398	,0479	. 6004	. 3265
17 F	-	-	-	-	-	-	-	--	-	-	-	-	-	-	--	-	-	-.0044	. 4093	. 1542
18 T	-	-	-	-	-	-	-	-	-	-	-	-	-	--	--	-	-	-	. 1176	.1119
19 P	-	-	-	-	-	--	-	-	-	--	-	-	-	-	-	--	\cdots	-	--	. 2556
20 !	-	-	-	-	-	-	-	-	-	-	-	--	-	--	-	-	--	-	--	-

Table XVII
AIRCRAFT POIER PLANT TRAINEES: COIPARISON OF CORRETATIONS BETWEEN CRITERIA AND
TOTAL APTITUDE TES'C BATTERY SCORE, OBTAINSD FROM ORIGINAL AND REVISED BATTERIES-ALL GROUPS

Group	N	Original Battery	Level of Signif:icance	Revised Battery	Level of Significance	Comment
Chaffee	51	r. $16^{\circ} \mathrm{r}$ r . 10	Below 5\%	$\mathrm{r} .28 \mathrm{or}^{\mathrm{r}} .14$	5\%	Gain
Convair (Supervisor)	14	$0.45{ }^{\sim} \mathrm{p}^{\text {p }} .23$	Below 5\%	p. $38{ }^{\circ} \mathrm{p} .25$	Below 5\%	Los:s
Convair (Instructor)	14	$p .46{ }^{\circ} \mathrm{p}$ p. 23	Below 5\%	p. $37{ }^{\circ} \mathrm{p} .25$	Below 5\%	Los:
Laney Trade and Tech.	26	$\mathrm{r} .40{ }^{\circ} \mathrm{r} .17$	5\%	$x .42 \sigma^{\prime} x .20$	5\%	Slight Gain
Lockheed (Supervisor)	16	P. 69 orp.14	1\%	p. 550 p 19	5\%	Loss
Lockheed (Instructor)	16	p. $34{ }^{\circ} \mathrm{p} .24$	Below 5\%	p.81 0 p 0.09	1\%	Gain
L. A. 'rrade-Tech J.C.	119	$r .370^{\sim} r .08$	1\%	r.51 $\sigma^{\prime} \mathrm{r} .09$	1\%	Gain
Mount San Antonio	34	r. $180^{0 \sim} \mathrm{r} .17$	Below 5\%	r. $27{ }^{\prime}$ r r .17	Below 5\%	Slight Gajn
San Diego	12	p. $59{ }^{\circ} \mathrm{p} .20$	Below 5\%	$\mathrm{p} .70 \sim \mathrm{p} .16$	5\%	Gain
O'Connell Trade-Tech	25	r.440~r. 17	5\%	r. $25 \sigma^{\prime \prime} \mathrm{r} .20$	Below 5\%	Loss
Fieedley	33	r. $27{ }^{\circ} \mathrm{r}$ r .16	Below 5\%	r. 2500 r .18	Below 5\%	Slight Loss
San Jose J.C.	19	- Incomple	Data	r. $550^{-5} \mathrm{r} .24$	Above 5\%	-
San Jose State	16	$\mathrm{p} .480^{\circ} \mathrm{p} .2 \mathrm{i}$	Below 5\%	p.008 σ^{\prime} p . 27	None	Loss
San Jose Tech. High	16	s. $37{ }^{\circ} \mathrm{r}$ r .22	Below 5\%	r-.08 or ${ }^{\text {r }}$. 26	None	Los:

LOS ANGELES TRADE－TECHNICAL COLLEGE
 400 West Washington Boulevard
 Los Angeles 15，California

PSYGHOMETRIC INVENTORY

VOCATIONAL INTEREST	NORMS	TOTA TTME	
Lee－Thorpe Ciaiiformia Uccupationai Interest Inventory－Ådvanced	H．S．，AduIt	（40）＊	NT＊＊
Guilford－Schneidman－Zimmerman Interest Inventory	$\begin{aligned} & \text { H.s. ,Coll., } \\ & \text { Adult } \end{aligned}$	（45）	NT
Strong Vocational Interest Blank for Men Strong Vocational Interest Blank for Women	Adult Adult	$\begin{aligned} & (60) \\ & (60) \end{aligned}$	NT
GROUP ABIIITTY			
Cooperative SCAT 15－20－10－25 minutes	$\begin{aligned} & \text { H.S., Cull., } \\ & \text { AduIt } \end{aligned}$	（85）	＊＊＊
Army General Classification Test	AduIt	40	＊＊＊
Califomia Achievement Test，Form W－Ad̀vanced Reading 66，Math 62，Language 38 minutes	H．S．，Coll．	166	\％
Langmuir（ral Lirections	Adult	（30）	
Primary Mental Abilities 4－5－6－6－5 minutes	H．S．gAdult	（45）	关关
Progressive Matrices（naven）	Ȧduit	30	
Engineering and Physical Science Aptitude Test Math 15，Formulatior 10，Comprehension 10，	$\begin{aligned} & \text { H.S. yColl., } \\ & \text { Adult } \end{aligned}$	72	湤菏

SPECIAL AREAS

Design Judgment

Dexterity Fegboard Test（Original	Test）	
Pin Insertion，Preferred Hand	2 minutes	
Pin Insertion，Other Hand	2	$"$
Pin Insertion，Both Hands	2	$" 1$
Assembly of Pins and Wasbrrs	2	$"$

Differential Aptitude Test Coll．，
AdultH．S．，ArtSchool，Coll．sAdult（30）NT
Pin Insertion，Preferred HandH．S．（20）祦Part 6；Abstract Reasoning25
I．U．Part 1，Spelling 10
＊Brackets indicate estimated total time
糈 NT indicates tests not timed ＊＊＊Indicates Part Scores available
SPECIAL AREAS continued
Employee Aptitude SurveyColi., Adult(80)
Part 1 Verbal Comprehension 5 minutes
2 Numerical Ability3 Visual Fursuit10 "
5 i
4 Visual Speed-Accuracy5 Space Visualization
5$i 1$
$"$5 "6 Numerical Reasoning7 Verbal Reasoning
5 "of Wiora Fluency
9 Manual Speed, Accuracy 5 "
10 Symbolic Reasoning 5 "

Factored Aptitude Series

Memory	6 minutes
Blocks	5

Farnsworth-Munsell 100-Hue Test of Analogous Color Vision

Guil ford-Zimmerman Aptitude Survey Part 4 Perceptual Speed
Part 5 Spatial Orientation
Part 6 Spatial Visualization Part 7 Mechanical Knowledge

Progranmers Aptitude Test
Revised Minnesota Paper Form Board
SRA Mechanical Aptitudes

Space relations Shop Arithmetic

10 풒utice
10 : 15 "
H.S., Coll., Adult (12) H.S., Coll., Adult (10)

Coll.
H.S., Coll., Adult

5

$$
\text { Coll., Aduit } 60
$$

H.S., Coll., Adult 15-20

Gr 9-12

Still-Life Drawing Tesi (Original test)
Varnum Art Aptitude
Color Sensitivity Proportion

Numerical
Cosperative Mathematics Grades 7,8,9 Skills (only)
Cooperative Mathematics Pre-Test for College Students
DAT Numerical

Personality

Grades 7-9 H. S. ,Coll.30

Coll., Adult 40

Grades 8-12 Coin., Adult 30

Coll., Adult (45) NT
MMPI (Research purposes only)

[^0]: * Correlations significant at 5\% level.

