
WHITE PAPER

page 1 of 6Netronome Systems, Inc.

INTRODUCTION

Programming Protocol-independent Packet Processors, or P4, is a new high-level program-

ming language for software-defined networks [1, 2]. It is intended to describe the behavior of

the data plane of any system or appliance that forwards, modifies or inspects network traffic.

P4 started as an innovation for the network core [3], but researchers focused on server-based

networking recognized its value to applications in their areas of interest. Smart NICs, now

being deployed into data centers [4] are a potential vehicle to exploit P4 in server-based

networking applications. Researchers are innovating using P4 in server-based networking

systems with novel approaches to offloading servers and realizing new functionality.

This white paper is an introduction to recent research in P4 for server-based networking.

ABOUT P4

The P4 language [5] is based on the match-action flow paradigm used in OpenFlow [6]. In this

approach, actions are used to change packet contents when they match specific keys. The

language’s constructs focus on enabling users to efficiently describe match-action flows.

P4 is meant to describe or specify the behavior of the data plane, but not how the data plane

is actually implemented. Depending on the flexibility and complexity of the system or ap-

pliance, the data plane can run the gamut from fixed-function ASICs (such as those used in

Layer 2 switches) all the way up to fully programmable, general-purpose CPUs found in white

box implementations of routers, web proxies and firewalls.

One of the primary goals of P4 is to keep the language hardware-independent (or target-in-

dependent). When the designers of P4 state that it is a programming language intended for

packet processors, which packet processing device are they referring to? Hardwired ASICs,

FPGAs or CISC CPUs? The answer is: all of the above, provided they can interpret P4.

The job of interpreting P4 behavioral code and generating a lower-level, device-specific im-

plementation falls to manufacturers of the target systems. For example, Netronome’s Agilio®

Smart NICs have programmable data planes. Hardware and software from Netronome make

it possible to conceive, develop and debug P4 code on these Smart NICs [7]. P4 can similarly

be compiled onto architectures ranging from a TCP/IP stack on an x86, through to full-custom

ASICs, using open-source or custom-tools from manufacturers [8-12].

P4: Driving Innovation in Server-Based
Networking

RESEARCHERS ARE

INNOVATING USING

P4 IN SERVER-BASED

NETWORKING SYSTEMS

WITH NOVEL APPROACHES

TO OFFLOADING SERVERS

AND REALIZING NEW

FUNCTIONALITY.

WHITE PAPER: P4: Driving Innovation in Server-Based Networking

page 2 of 6Netronome Systems, Inc.

TCP/IP
Stack

eBPF
Open

vSwitch

NPUs

FPGA

ASICs

Performance

Expressive/Complete
 • Support flow switching and flow termination
 • Compact description of common
 • Unambiguous in expressing networking functionality

Flexible
 • Support the expected evolution of the data plane
 • Orthogonalize the data plane HW and SW

Performant
 • Trade flexibility for performance
 • Support architecture-specific performant features

Portable
 • Span the range of architectures in the data plane

Ea
se

 o
f U

se

FIGURE 1 – P4 goals for hardware independence

P4 — OFFLOAD AND SYSTEM DESIGN

Many networking systems use special-purpose hardware to accelerate networking functions

to meet line-rate and functionality requirements and to offload the host. The P4 language

itself assumes that some actions are better done using externs, treated as black boxes, imple-

mented using accelerators or special-purpose external hardware [5].

Highly programmable accelerators composed of a large number of programmable cores

such as in network processors, or logic gates as in FPGAs, offer the potential to combine

performance with the flexibility required in practical networks. Their use has been hampered

because developers typically find accelerators hard to program. A developer has to manually

manage functions that are automated by the operating system or other services in gener-

al-purpose systems. A developer has to implement two classes of functions when program-

ming accelerators:

■■ Packet physical management: Logic to transport a packet from interface to interface and

give it access to system resources, i.e. operating-system like functions.

■■ Packet function processing: Logic to alter the contents of the packet (protocol headers)

and route it to the appropriate interface, i.e. actual application logic.

Network system developers are generally interested in the second class of functions. In sys-

tems with accelerators, they are required to implement the first type to achieve their objec-

tives.

A language like P4 enables an interesting approach in systems with programmable accelera-

tors. Physical packet management can be decoupled from functional packet management. A

portion of the programmable logic in the accelerator can be set aside as a resource island, a

sandbox. The accelerator vendor can now offer a toolchain to map the P4 code to the sand-

box. The accelerator vendor can write performant software to use the non-sandbox resources

on the accelerator to manage packets. The management software presents packets to the

sandbox through logical interfaces. Network developers can write code in P4 to describe the

logical network functionality required in the accelerator.

WHITE PAPER: P4: Driving Innovation in Server-Based Networking

page 3 of 6Netronome Systems, Inc.

With this approach, network function developers can focus on what is relevant to them, pack-

et function processing. Netronome uses the sandbox approach in its P4 SDK and toolchain.

Additionally, with Netronome’s P4 SDK developers can implement P4 external functions in

C. This allows developers to realize features, especially stateful features, that are not possible

with P4. Figure 3 shows the process with which developers create, compile and download

P4 and C code to the Netronome SmartNIC. Figure 3 shows how P4/C code is inserted into a

resource island.

App.P4

App.IR

Runtime I/FTabledata.JSON

P4 FE Compiler

P4 BE Compiler

Network Flow C compiler (nfcc)

App. Firmware

Sandbox C

Stateful Filtering
Filter packets of fixed IP addresses
Filter the IP address with TCP ports,
 add VLAN tag

Stateful Statistics
Count a flow — with a fixed IP address
IPv4/6 statistics

MAC/IP address filtering
New tunnels processing
Insert new metadata
Match on certain fields
Mirror based on metadata
Truncate mirrored packet
Attach timestamp to packet

Run time API generated
by P4 compiler

Agilio SmartNIC

Netronome’s
back-end compiler

Yml based IR
from OpenSDN.org

Open source P4 compiler integrated in
SDK from P4.org enhanced to supprt the
IR layer from OpenSDN.org

FIGURE 2 – The P4 Compilation Process

C P4P4

Match Fields

Parser
Field Extract

and Metadata
Generate

(Port, IP, DA/SA, MAC,
DA, SA, TCP, SP, TCP,
DP, MPLS Label, ET)

Ingress Process
Packets from
Network Port

or Host via PCIe

Packets to
Network Port or
to Host via PCIe

Config.

Egress
Processing

in P4

Actions

MAC DA/SA Drop

VLAIN Count

SP To Host

DP To Port

COS Egress process

IP DA/SA To Sandbox

Drivers/API for PCIe and
Network Configuration

C Sandbox

User C code P4 code Config.User P4 Code (dathpath)

Process metadata
Packet modification
Stateful operation
 - Count same flow
 - Drop and count flow

Packet Mod. Counter

Label push/pop

Metadata based
processing

FIGURE 3 – Mapping P4/C code to a resource island

WHITE PAPER: P4: Driving Innovation in Server-Based Networking

page 4 of 6Netronome Systems, Inc.

P4 AND SERVER-BASED NETWORKING

P4’s development focus was and continues to be the switching data plane in the network

core. However, P4 has shown surprising growth in server-based networking applications.

Most network data planes perform three basic operations: packet parsing, match/action

operations and packet reassembly. P4 provides coding constructs that make describing these

operations easy to understand. P4 programs have to describe the expected contents of the

packets processed as well as the way in which they are modified. P4 has the ability to define

not just standard packet header structures the parser will extract, but also entirely new proto-

cols as seen in Figure 4.

Headers

Headers

Headers

Payload

Parsers

Match-Action De-Parser

System
Info

abcd

1234

wxyz

6789
wxyz

6789abcd

1234

port

time

FIGURE 4 – Header parsing in P4

Developers in P4 can experiment in software-defined networks (SDN) with entirely new

protocols at any layer of the network stack. This is a contrast with prior SDN efforts such as

OpenFlow, which were built on existing networking standards. Parsing Ethernet, IP or TCP

headers using OpenFlow is not a problem, as OpenFlow supports those protocols. Alterna-

tively, if you need to parse a newer protocol, such as an NVGRE packet, you will have to wait

until OpenFlow adds support for it.

The ability to experiment with new protocols has given data plane researchers the ability

to investigate and prototype an extraordinary range of new network functions on produc-

tion networking hardware. More importantly, with the island approach, they can focus their

energies on the specific idea of interest while producing results in real networks. Secondly,

with code in C, they are able to close functional gaps in P4. Netronome supports research and

development in P4 (and other data plane acceleration technologies) through the community

portal Open-NFP. We briefly discuss some of the projects in P4 proposed by the community

on Open-NFP [13].

An obvious focus area for researchers is using P4 to drive new approaches to realizing net-

working systems on commodity off-the-shelf servers, both in bare-metal applications and in

virtual applications in network functions virtualization(NFV) systems [14-16]. In bare-metal appli-

cations, researchers have proposed using P4 to provide multicast for network media stream-

ing with unicast semantics, using P4 to implement information-centric networking concepts,

using P4 to offload hosts and implement 5G network protocols on SmartNICs, and using P4

THE ABILITY TO

EXPERIMENT WITH

NEW PROTOCOLS HAS

GIVEN DATA PLANE

RESEARCHERS THE

ABILITY TO INVESTIGATE

AND PROTOTYPE AN

EXTRAORDINARY

RANGE OF NEW

NETWORK FUNCTIONS

ON PRODUCTION

NETWORKING

HARDWARE.

WHITE PAPER: P4: Driving Innovation in Server-Based Networking

page 5 of 6Netronome Systems, Inc.

as a mechanism for OpenFlow controllers to push security policies to NICs and switches. In

virtual applications, researchers are using P4 as a mechanism to offload Virtual Network Func-

tions (VNFs) on hosts in NFV systems and/or to enhance VNF functionality.

The second area of interest has been protocols to implement new functionality [17, 18]. One

interesting area is using a NIC to offload the host to better use host resources or improve

application performance. Examples of this include offloading consensus protocol services to

the network from hosts in distributed systems and enabling applications to directly receive

network data by bypassing the network stack in distributed applications. Researchers have

also proposed using P4 to program the data plane in Open Virtual Switch (OVS) [11].

Researchers are also planning to use the ability to define custom protocols on a NIC to investi-

gate new approaches to security and monitoring [19-21]. These include new connection authenti-

cation protocols, new methods to authenticate and isolate flows securely, and protocol-based

approaches to monitoring network performance in real time.

CONCLUSION

Looking forward, more change and growth are likely. Researchers can participate in and

contribute to this effort in several ways. The P4 organization holds developer days twice a

year and a research conference [22] once a year. The organization also drives language and

architecture development through working groups. For example, the next version of P4, P4-16,

is on the horizon. The P4 language repo[23] hosts a lot of example code for applications and

networking functions. Discounted hardware to use with P4, a development SDK and learn-

ing material, including several complete P4 and P4/C projects [24] and labs, are available to

researchers and at Open-NFP.

References
1.	 The P4 Language Consortium, www.p4.org

2.	 P. Bosshart, et al, “P4: Programming Protocol-Independent Packet Processors” ACM Sigcomm
Computer Communications Review (CCR). Volume 44, Issue #3 (July 2014)

3.	 A. Sivaraman. “DC. p4: programming the forwarding plane of a data-center switch.” Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research. ACM, 2015.

4.	 D. Firestone, “SmartNIC: Accelerating Azure’s Network with FPGAs on OCS servers”, Open
Compute Project, http://files.opencompute.org/oc/public.php?service=files&t=5803e581b55e90e-
51669410559b91169&download&path=//SmartNIC%20OCP%202016.pdf

5.	 The P4 language specification, http://p4.org/wp-content/uploads/2016/11/p4-spec-latest.pdf

6.	 The Open Networking Foundation, OpenFlow, https://www.opennetworking.org/sdn-resources/
openflow

7.	 J. Tönsing, “P4/PIF + C Programmable Intelligent NICs: Requirements and Implementation Notes”,
P4 Workshop, 2015, http://schd.ws/hosted_files/2ndp4workshop2015/74/Netronome,%20P4%20
Workshop%20Nov%2018%202015.pdf

8.	 G. Brebner, “P4 for an FPGA Target”, P4 Workshop, 2016, http://sched.co/3ZQA

9.	 J. Fastabend, P4 on the Edge, P4 Workshop, 2016, http://sched.co/6ouC

10.	 P. Li and Y. Luo. 2016. P4GPU: Accelerate Packet Processing of a P4 Program with a CPU-GPU Het-
erogeneous Architecture. In Proceedings of the 2016 Symposium on Architectures for Networking
and Communications Systems (ANCS ‘16). ACM, New York, NY, USA, 125-126.

Netronome Systems, Inc.
2903 Bunker Hill Lane, Suite 150 Santa Clara, CA 95054
Tel: 408.496.0022 | Fax: 408.586.0002
www.netronome.com

©2017 Netronome. All rights reserved. Netronome is a registered trademark and the Netronome Logo is a trademark of Netronome.
All other trademarks are the property of their respective owners.

WP-P4-03/2017

WHITE PAPER: P4: Driving Innovation in Server-Based Networking

page 6 of 6

11.	 M. Shahbaz et al, “PISCES: A Programmable, Protocol-Independent Software Switch”, In Proceed-
ings of the 2016 conference on ACM SIGCOMM 2016 Conference (SIGCOMM ‘16). ACM, New York,
NY, USA, 525-538.

12.	 M. Budiu, “Compiling P4 to EBPF”, https://github.com/iovisor/bcc/tree/master/src/cc/frontends/p4

13.	 Research Projects on Open-NFP, www.open-nfp.org/projects

14.	 A. Azgin, R. Ravindran, G.Q.Wang “pit/LESS: Stateless Forwarding in Content Centric Networks”,
IEEE Globecom, 2016.

15.	 M. Moradi, W. Wu, Li Erran Li. Z. M. Mao, “SoftMoW: Recursive and Reconfigurable Cellular WAN Ar-
chitecture”, In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference (SIGCOMM
‘16). ACM, New York, NY, USA.

16.	 D. Hancock and J. van der Merwe. “HyPer4: Using P4 to Virtualize the Programmable Data Plane.”
Proceedings of the 12th International on Conference on emerging Networking EXperiments and
Technologies. ACM, 2016.

17.	 H-T. Dang,et al., “Network Hardware-Accelerated Consensus”, USI Technical Report 2016-03, May
2016.

18.	 A. Kaufmann et al, “High Performance Packet Processing with FlexNIC”, In 21st International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
Atlanta, GA, USA, April 2016.

19.	 R. van der Pol, et al. “Assessment of SDN technology for an easy-to-use VPN service.” Future Gen-
eration Computer Systems 56 (2016): 295-302.

20.	J. Sonchack et al. “Enabling Practical Software-defined Networking Security Applications with
OFX.” Network and Distributed System Security, 2016

21.	 S. Song and T. Choi, “P4 In-band Network Telemetry Use Cases - Seeing Trees and Leaves to Learn
About Forests”, P4 Workshop, 2016.

22.	P4 Workshop 2016, https://2016p4workshop.sched.com/

23.	The P4 language repo, https://github.com/p4lang

24.	The Open-NFP repo, https://github.com/open-nfpsw

