Diodes and Transistors

Diodes

- What do we use diodes for?
protect circuits by limiting the voltage (clipping and clamping)
turn AC into DC (voltage rectifier)
voltage multipliers (e.g. double input voltage)
non-linear mixing of two voltages (e.g. amplitude modulation)
- Symbol for Diode:

- Diodes (and transistors) are non-linear device: $V \neq I R$!

Diode is forward biased when $V_{\text {anode }}>V_{\text {cathode }}$.
Diode conducts current strongly
Voltage drop across diode is (almost) independent of diode current
Effective resistance (impedance) of diode is small
Diode is reverse biased when $V_{\text {anode }}<V_{\text {cathode }}$.
Diode conducts current very weakly (typically $<\square \mathrm{A}$)
Diode current is (almost) independent of voltage, until breakdown
Effective resistance (impedance) of diode is very large
Current-voltage relationship for a diode can be expressed as:

$$
I=I_{s}\left(e^{e V / k T} \square 1\right)
$$

known as: "diode", "rectifier", or "Ebers-Moll" equation
$I_{s}=$ reverse saturation current (typically < $\square \mathrm{A}$)
$k=$ Boltzmann's constant, $e=$ electron charge, $T=$ temperature
At room temperature, $k T / e=25.3 \mathrm{mV}$,

$$
I=I_{s} e^{39 V} \text { if } V>0 \text { and } I=\square I_{s} \text { if } V<0 .
$$

Effective resistance of forward biased diode $(V>0)$ diode: $d V / d I=(k T / e) / I \square 25 \square / I, I$ in mA

- What's a diode made out of? Semiconductors!

The energy levels of a semiconductor can be modified so that a material (e.g. silicon or germanium) that is normally an insulator will conduct electricity. Energy level structure of a semiconductor is quit complicated, requires a quantum mechanical treatment.

Material	Example	Resistivity $(\square$-cm)
Conductor	Copper	1.56×10^{-6}
Semiconductor	Silicon	$10^{3}-10^{6}$
Insulator	Ceramics	$10^{11}-10^{14}$

- How do we turn a semiconductor into a conductor? Dope it!

Doping is a process where impurities are added to the semiconductor to lower its resistivity
Silicon has 4 electrons in its valence level
We add atoms which have a different number of valence shell electrons
3 or 5 to a piece of silicon.
Phosphorous, Arsenic, Antimony have 5 valence electrons
Boron, Aluminum, Indium have 3 valence electrons

- \mathbf{N} type silicon:

Adding atoms which have 5 valence electrons makes the silicon more negative.
The majority carriers are the excess electrons.

- $\quad \mathbf{P}$ type silicon

Adding atoms which have 3 valence electrons makes the silicon more positive.
The majority carriers are "holes". A hole is the lack of an electron in the valence shell.

Normal Silicon

P Type Silicon

N Type Silicon

- How do we make a diode?

Put a piece of N type silicon next to a piece of P type silicon.

- Unbiased diode

- Forward biased diode

barrier due to depletion region very small large current can flow
- Reversed biased diode

barrier due to depletion region very large small leakage current
- diode characteristics
reverse voltage and current
peak current and voltage
capacitance
recovery time
sensitivity to temperature
- types of diodes
junction diode (ordinary type)
light emitting (LED)
photodiodes (absorbs light, gives current)
Schottky (high speed switch, low turn on voltage, Al. on Silicon)
tunnel (I vs. V slightly different than jd's, negative resistance!)
veractor (junction cap. varies with voltage)
zener (special junction diode, use reversed biased)
Examples of Diode Circuits
-Simplest Circuit: What's voltage drop across diode?

In diode circuits we still use Kirchhoff's law:

$$
\begin{aligned}
V_{\mathrm{in}} & =V_{\mathrm{d}}+I_{\mathrm{d}} R \\
I_{\mathrm{d}} & =V_{\mathrm{in}} / R \square V_{\mathrm{d}} / R
\end{aligned}
$$

For this circuit I_{d} vs. V_{d} is a straight line with the following limits:

$$
\begin{array}{lll}
V_{\mathrm{d}}=0 & \square & I_{\mathrm{d}}=V_{\mathrm{in}} / R=10 \mathrm{~mA} \\
V_{\mathrm{d}}=1 \mathrm{~V} & \square & I_{\mathrm{d}}=0
\end{array}
$$

The straight line (load line) is all possible (V_{d}, I) for the circuit. The diode curve is all possible (V_{d}, I) for the diode. The place where these two lines intersect gives us the actual voltage and current for this circuit.

- Diode Protection (clipping and clamping)

The following circuit will get rid of the negative part of the input wave.
When the diode is negative biased, no current can flow in the R, so $V_{\text {out }}=0$.

For more protection consider the following "clipping" circuit: for silicon $V_{\mathrm{d}} \square 0.6-0.7 \mathrm{~V}$

If $V_{\mathrm{a}}>V_{\mathrm{d} 1}+V_{1}$, then diode 1 conducts so $V_{\text {out }} \square V_{\mathrm{a}}$.
If $V_{\mathrm{a}}<\square V_{\mathrm{d} 2} \square V_{2}$, then diode 2 conducts so $V_{\text {out }} \geq V_{\mathrm{a}}$.
If we assume $V_{\mathrm{d} 1}=V_{\mathrm{d} 2} \square 0.7 \mathrm{~V}$ and $V_{1}=0.5, V_{2}=0.25 \mathrm{~V}$, then for $V_{\mathrm{in}}>1.2 \mathrm{~V}$, D1 conducts and $V_{\mathrm{in}}<-0.95 \mathrm{~V}$, D2 conducts.

- Turning AC into DC (rectifier circuits)

Consider the following circuit with 4 diodes: full wave rectifier.

10.00
20.00
30.00

In the positive part of V_{in}, diodes 2 and 3 conduct. In negative part of the cycle, diodes 1 and 4 conduct.
This circuit has lots of ripple. We can reduce ripple by putting a capacitor across the load resistor (see third plot).
Pick $R C$ time constant such that: $R C>1 /(60 \mathrm{~Hz})=16.6 \mathrm{msec}$.
(example has $R=100 \square$ and $C=100 \square \mathrm{~F}$ to show diminished ripple)

Transistors

- Transistors are the heart of modern electronics (replaced vacuum tubes)
voltage and current amplifier circuits
high frequency switching (computers)
impedance matching
low power
small size, can pack thousands of transistors in mm^{2}
- In this class we will only consider bipolar transistors.

Bipolar transistors have 3 leads:
emitter, base, collector
Bipolar transistors are two diodes back to back and come in two forms:

N material has excess negative charge (electrons).
P material has excess positive material (holes).

- Some simple rules for getting transistors to work

1) For NPN (PNP) collector must be more positive (negative) in voltage than emitter.
2) Base-emitter and base-collector are like diodes:

For silicon transistors, $\boldsymbol{V}_{\mathbf{B E}} \square \mathbf{0 . 6 - 0 . 7} \mathbf{V}$ when transistor is on.
3) The currents in the base $\left(I_{\mathrm{B}}\right)$, collector $\left(I_{\mathrm{C}}\right)$ and emitter $\left(I_{\mathrm{E}}\right)$ are related as follows:
always: $\quad I_{\mathrm{B}}+I_{\mathrm{C}}=I_{\mathrm{E}}$
rough rule: $\quad I_{\mathrm{C}} \square I_{\mathrm{E}}$, and the base current is very small ($\square 0.01 I_{\mathrm{C}}$)
Better approximation uses 2 related constants, \square and \square.
$I_{\mathrm{C}}=\square I_{\mathrm{B}} \quad \square$ is called the current gain, typically 20-200
$I_{\mathrm{C}}=\square I_{\mathrm{E}} \quad \square$ typically 0.99
Still better approximation uses 4 (hybrid parameters) numbers to describe transistor performance ($\square=h_{\mathrm{fe}}$) when all else fails, resort to the data sheets!
4) Common sense: must not exceed the power rating, current rating etc. or else the transistor dies.

- Transistor Amplifiers

Transistor has 3 legs, one of them is usually grounded. Classify amplifiers by what is common (grounded).

Common Base

Common Collector
(emitter follower)

Properties of Amplifiers

	C E	C B	C C
Power gain	Y	Y	Y
Voltage gain	Y	Y	N
Current gain	$\square 3.5 \mathrm{k} \square$	N	Y
Input impedance	$\square 30 \square$	$\square 500 \mathrm{k} \square$	
Output impedance	$\square 200 \mathrm{k} \square$	$\square 3 \mathrm{M} \square$	$\square 35 \square$
Output voltage phase change	180^{0}	none	none

- Biasing Transistors

For an amplifier to work properly it must be biased on all the time, not just when a signal is present.
"On" means current is flowing through the transistor (therefore $V_{\mathrm{BE}}[0.6-0.7 \mathrm{~V}$)
We usually use a DC circuit (R_{1} and R_{2} in the circuit below) to achieve the biasing.

- Calculating the operating (DC or quiescent) point of a Common Emitter Amplifier if we have a "working" circuit like the one below.

We want to determine the operating (quiescent) point of the circuit.
This is a fancy way of saying what's $V_{\mathrm{B}}, V_{\mathrm{E}}, V_{\mathrm{C}}, V_{\mathrm{CE}}, I_{\mathrm{C}}, I_{\mathrm{B}}, I_{\mathrm{E}}$ when the transistor is on, but $V_{i n}=0$.
The capacitors C_{1} and C_{2} are decoupling capacitors, they block DC voltages. C_{3} is a bypass capacitor. It provides the AC ground (common).

- Crude Method for determining operating point when no spec sheets are available.
a) Remember $I_{\mathrm{B}}=I_{\mathrm{C}} / \square$ and $\square \square 100$ (typical value). Thus we can neglect the current into the base since its much smaller than I_{C} or I_{E}.
b) If transistor is "working" then $V_{\mathrm{BE}} \square 0.6-0.7 \mathrm{~V}$ (silicon transistor).
c) Determine V_{B} using R_{1} and R_{2} as a voltage divider

$$
V_{\mathrm{B}}=15 \mathrm{~V} \frac{R_{2}}{R_{1}+R_{2}}=3.6 \mathrm{~V}
$$

d) Find V_{E} using $V_{\mathrm{B}}-V_{\mathrm{E}}=0.6 \mathrm{~V}, V_{\mathrm{E}}=3 \mathrm{~V}$ here.
e) Find I_{E} using $I_{E}=V_{E} / R_{4}=3 \mathrm{~V} / 1.2 \mathrm{k} \square=2.5 \mathrm{~mA}$.
f) Use the approximation $I_{\mathrm{C}}=I_{\mathrm{E}}$ so $I_{\mathrm{C}}=2.5 \mathrm{~mA}$ also.
g) Find $V_{\mathrm{C}} . V_{\mathrm{C}}=15 \mathrm{~V} \square I_{\mathrm{C}} R_{3}=15 \square 2.5 \mathrm{~mA} \square 2.5 \mathrm{k} \square=8.75 \mathrm{~V}$.
h) V_{CE} is now determined $V_{\mathrm{CE}}=8.75-3=5.75 \mathrm{~V}$.

The voltages at every point in the circuit are now determined!!!

- Spec Sheet or Load line method

Much more accurate than previous method.
Load line is set of all possible values of I_{C} vs. V_{CE} for the circuit in hand.
Assume same circuit as previous page and we know R_{3} and R_{4}.
If we neglect the base current, then

$$
\begin{aligned}
& 15=I_{\mathrm{C}}\left(R_{3}+R_{4}\right)+V_{\mathrm{CE}} \\
& I_{\mathrm{C}}=15 /\left(R_{3}+R_{4}\right) \square V_{\mathrm{CE}} /\left(R_{3}+R_{4}\right)
\end{aligned}
$$

The above is a straight line in ($I_{\mathrm{C}}, V_{\mathrm{CE}}$) space. This line is the load line.
Plot on it spec sheet (Below is I_{C} vs. V_{CE} for various I_{B} for a 2 N 3904 transistor).
Assume $R_{3}+R_{4}=3.75 \mathrm{k} \square$, then we can plot the load line from the two limits:

$$
I_{\mathrm{C}}=0, V_{\mathrm{CE}}=15 \mathrm{~V} \text { and } V_{\mathrm{CE}}=0, I_{\mathrm{C}}=15 \mathrm{~V} / 3.75 \mathrm{k} \square=4 \mathrm{~mA}
$$

We want the operating point to be in the linear region of the transistor (we want the output to be a linear representation of the input).

You pick the operating point such that for reasonable changes in $V_{\mathrm{CE}}, I_{\mathrm{C}}$ the circuit stays out of the non-linear region and has $I_{\mathrm{C}}>0$.
(I_{C} must be >0 or transistor won't conduct current in the "correct" direction!)
If circuit is in nonlinear region then $V_{\text {out }}$ is a distorted version of V_{in}.
If circuit is in region where $I_{\mathrm{C}}=0$ then $V_{\text {out }}$ is "clipped".

If we pick $I_{\mathrm{C}}=2.5 \mathrm{~mA}$ as operating point then from spec sheet the range
$V_{\mathrm{CE}}<0.5$ is in the non-linear region!
$V_{\mathrm{CE}}>0.5 \mathrm{~V}$ is in the linear region! Looks ok as long as $I_{\mathrm{C}}>0$.
Usually pick I_{C} to be in the middle of the linear region. This way the amp will respond the same way to symmetric (around the operating point) output voltage swings.

If $I_{\mathrm{C}}=2.5 \mathrm{~mA}$ and $I_{\mathrm{B}}=10-11 \square \mathrm{~A}$, then from above spec sheet for 2 N 3904 transistor $V_{\mathrm{CE}}=5-6 \mathrm{~V}$. Can now choose the values for resistors $\left(R_{1}, R_{2}\right)$ to give the above voltages and currents.

- Current Gain Calculation from Spec Sheet

From the above spec sheet we can also calculate the current gain of the amplifier.
We define current gain as:

$$
\left.G=\square I_{\text {out }} / \square I_{\text {in }} \text { (often this quantity is called } \square\right) .
$$

In our example I_{B} is the input and I_{C} is the output.
If we are in the linear region $\left(V_{\mathrm{CE}}>0.5 \mathrm{~V}\right)$ and the base current changes from 5 to $10 \square \mathrm{~A}$ then the collector current $\left(I_{\mathrm{C}}\right)$ changes from (approx.) 1.1 mA to 2.2 mA . Thus the current gain is:

$$
G=(2.2-1.1 \mathrm{~mA}) /(10-5 \square \mathrm{~A}) \square 200
$$

Note: Like almost all transistor parameters, the exact current gain depends on many parameters:
frequency of input voltage
V_{CE}
I_{C}
I_{B}

