
Citation:
Vergilio, T and Ramachandran, M (2018) PaaS-BDP a multi-cloud architectural pattern for big data
processing on a platform-as-a-service model. In: Proceedings of the 3rd International Conference
on Complexity, Future Information Systems and Risk - Volume 1: COMPLEXIS. SciTePress, pp.
45-52. ISBN 9789897582974 DOI: https://doi.org/10.5220/0006632400450052

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/7408/

Document Version:
Book Section (Accepted Version)

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/7408/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

PaaS-BDP

A Multi-Cloud Architectural Pattern for Big Data Processing

on a Platform-as-a-Service Model

Keywords: Big Data, Containers, Resource Pooling, Docker Swarm, Orchestration, Multi-Cloud, PaaS

Abstract: This paper presents a contribution to the fields of Big Data Analytics and Software Architecture, namely an

emerging and unifying architectural pattern for big data processing in the cloud from a cloud consumer’s

perspective. PaaS-BDP (Platform-as-a-Service for Big Data) is an architectural pattern based on resource

pooling and the use of a unified programming model for building big data processing pipelines capable of

processing both batch and stream data. It uses container cluster technology on a PaaS service model to

overcome common shortfalls of current big data solutions offered by major cloud providers such as low

portability, lack of interoperability and the risk of vendor lock-in.

1 INTRODUCTION

Big data is an area of technological research

which has been receiving increased attention in

recent years. As the Internet of Things (IoT) expands

to different spheres of human life, a large volume of

structured, semi-structured and unstructured data is

generated at very high velocity. To derive value from

big data, businesses and organisations need to detect

patterns and trends in historical data. They also need

to receive, process and analyse streaming data in real-

time, or close to real-time, a challenge which current

technologies and traditional system architectures find

difficult to meet.

Cloud computing has also been attracting

growing interest lately. With different service models

available such as infrastructure as-a-service (IaaS),

platform as-a-service (PaaS) and software as-a-

service (SaaS), it is no longer essential that

companies host their IT infrastructure on-premises.

Consequently, an increasing number of small and

medium-sized enterprises (SME) has ventured into

big data analytics utilising powerful computing

resources, previously unavailable to them, without

having to procure their own hardware or maintain an

in-house team of highly skilled IT professionals.

2 MOTIVATION

With the popularisation of the cloud, Big Data
analytics is now an accessible service to many SMEs.

The top four cloud providers in terms of market
share, Amazon, Microsoft, IBM and Google
(Synergy Research Group, 2016), offer Big Data as a
managed service on a SaaS service model. This
model, however, comes with associated risks of low
portability and reduced interoperability between the
processing components developed.

The plethora of technologies currently being used
for Big Data processing, and the lack of a systematic,
unified approach to processing pipeline development,
is also a motivation for this research. There is no single
accepted solution to cater for all types of big data
processing, so various technologies tend to be used in
combination, as illustrated by the different Apache
projects incorporated into what is now known as the
Hadoop ecosystem. Consequently, the learning curve
for a developer working with big data is steep, and the
processing logic developed within one system is
generally incompatible with other systems, leading to
code duplication and low maintainability.

The aim of this research is to produce a systematic
and unified approach to developing portable and
interoperable Big Data processing pipelines on a multi-
cloud PaaS service model. PaaS-BDP is based on a
programming model applicable to both stream and
batch data, thus eliminating the need for the Lambda
Architecture where multiple technologies are used in
combination. The risk of vendor lock-in is reduced by
using containers on a PaaS service model, which
increases portability, and by using container clustering
technology, which provides seamless interoperability
amongst different clouds.

3 SCOPE

This research focuses on big data processing,
defined as the transformations which takes place after
the data has been collected and before it is analysed
(see Fig. 1). Storage, which can happen after
collection, after processing, after analysing, or at any
combination of these stages, is excluded from the
scope of this project.

Figure 1: Big Data Architectural Layers

4 RESEARCH CONTEXT

4.1 Batch and Stream Programming

Batch processing was the first and is the most
solidly established approach to big data processing. It
is based on the MapReduce algorithm and was
designed at Google (Dean & Ghemawat, 2008),
before going open-source as the Hadoop software
framework. Hadoop is a distributed system for
processing large volumes of data which is easy to use
and extremely powerful (Dean & Ghemawat, 2008).
It abstracts the complexities of parallelisation and
inter-machine communication away from the user,
who only needs to specify the map and reduce
functions (Dean & Ghemawat, 2008). Hadoop can
handle terabytes of data (O’Malley, 2008), but one of
its main criticisms is its high latency and high start-
up overhead (Stewart & Singer, 2012), which renders
it ineffective for real-time systems.

Stream processing architectures evolved from the
need to process real-time data. While batch
processing is related to the volume of big data, stream
processing relates to velocity. Real-time information
such as which topics are trending on Twitter needs to
come from data which is constantly being updated,
with minimal latency. The notion of a data stream is
an abstraction used to convey the nature of the data
source: continuous and potentially infinite, and the
way in which it is processed: in real-time (or close to

real-time), before it is persisted to storage
(Zikopoulos et al., 2013, p. 47).

4.2 The Lambda Architecture

The Lambda Architecture was introduced by
Marz & Warren as a description of architectures
adopting a “best of both” approach to the
batch/stream dichotomy. These architectures would
use the stream layer for real-time data and the batch
layer for historical data. The data would then be
merged at query level (Marz & Warren, 2015).
Examples of this type of architecture can be found in
Twitter’s SummingBird (Hausenblas, 2014), Yahoo’s
Storm-Yarn (Evans & Feng, 2013), IBM’s Big Data
platform (Zikopoulos et al., 2013), Lambdoop
(Tejedor, 2013), AllJoynLambda (Villari et al., 2014)
and Facebook’s integration between its Puma, Swift
and Stylus stream systems and its data stores (Chen,
G. J. et al., 2016). The main criticism to this approach
is having to maintain two different complex
architectures and having duplicate code in the two
different layers (Kreps, 2014).

4.3 Programming Language

Big data pipelines must be capable of ingesting
and processing both batch and stream data in order to
avoid code duplication and enhance maintainability.
The Apache Beam project is a pioneering effort
which currently fulfils this requirement through its
released SDKs for Java and Python. That
notwithstanding, other languages/libraries in the
future could prove to be just as suitable, or perhaps
even more suitable in some circumstances than the
ones included in the Apache Beam project.

One fundamental abstraction used to rationalise
very large or infinite data inputs is the concept of
windows of data. These appear in the stream
processing literature as groupings based on event
time, stream time, element count or, as is the case
with punctuation or frame-based windows, based on
some attribute of the elements (Zikopoulos et al.,
2012), (Whiteneck et al., 2010). Windows of data can
be fixed (e.g. every hour) or sliding (e.g. every hour,
starting every minute). Akidau et al. combine these
two concepts by defining fixed windows as “a special
case of sliding windows where size equals period”
(Akidau et al., 2015). Because sliding time windows
are a recurrent pattern in stream processing (Khare et
al., 2015), their inclusion in a programming language
capable of processing different types of big data is to
be expected. The adapter used by IBM’s big data
platform to allow batch data to be processed as a
stream, for example, uses the concept of windows of
data to perform the conversion (Zikopoulos et al.,

Disk
Storage

Disk
Storage

Disk
StorageCloud

S

Collection

Processing

Analysis

Storage

2012, p. 128). This concept is also present in the
Apache Beam solution, as well as in the Java Stream
API, which uses windows based on element count to
make an infinite stream finite (Java Platform,
Standard Edition 8, 2014). This research uses the
concept of windowing to provide a unifying
programming model for both batch and stream data.

Java SE could indeed become the de facto
language for big data processing, considering that
amongst the significant structural enhancement
released with JDK 8 was the introduction of a concept
of stream to represent a processing pipeline. A Java
stream has a data source, which can be a collection, a
file or a function, a number of intermediate
operations, and a terminal operation. Streams can be
processed in parallel by calling a convenient parallel()
method on an existing stream. This uses the Fork/Join
algorithm to create new threads as needed and process
the stream pipeline in parallel. The Fork/Join
algorithm is very effective and performs better than
Hadoop’s MapReduce for data up to around
104.3MB, but fails with an out-of-memory error for
larger files (Stewart & Singer, 2012). The JUNIPER
project has overcome this limitation by introducing
the concept of stored collections. Their rationale is
that, if the data does not need to be loaded into
memory, the Fork/Join algorithm is adequate and,
indeed, at times more powerful than MapReduce for
processing big data (Chan et al., 2014). The JUNIPER
research tested the performance of Fork/Join vs.
MapReduce on a single multicore node. More
research is needed to verify how well the standard
Fork/Join algorithm utilised by the Java Stream API
processes distributed stored collections, and whether
it could pose a threat to the hegemony of MapReduce
in the big data processing domain.

4.4 Vendor Lock-in

One of the biggest drawbacks of deploying
complex applications in the cloud is the risk presented
by vendor lock-in (Ardagna et al., 2012), (Guillén et
al., 2013), (Silva et al., 2013a), (Silva et al., 2013b),
(Kogias et al., 2016), (Assis & Bittencourt, 2016) and
others. Assis & Bittencourt define vendor lock-in as:
“technical and monetary costs faced by the customer
for migrating from one cloud provider to another
when some advantage is observed (e.g. more
attractive prices).” (Assis & Bittencourt, 2016, p. 55).

This definition emphasises the low portability
aspect of vendor lock-in, defined as the ability to
transfer an application from the cloud where it is
currently deployed to a cloud from a different
provider (Silva et al., 2013a). Another important
aspect of vendor lock-in highlighted in the literature
is its effect on interoperability (Silva et al., 2013a),

(Martino, 2014), (Opara-Martins et al., 2016),
(Yasrab & Gu, 2016). Interoperability occurs when an
application or component deployed to a given cloud
server exchanges information harmoniously with
applications or components deployed to other cloud
servers (Silva et al., 2013a). A distributed architecture
where components are hosted by different cloud
providers, for example, would rely extensively on
some guarantee of interoperability between these
providers. Additionally, interoperability between
cloud-deployed artefacts and those hosted on-
premises must also exist, as companies may choose
not to deploy all their resources to the cloud for
strategic or security reasons (Opara-Martins et al.,
2016).

Vendor lock-in can have serious consequences for
small businesses who have fewer spare resources to
spend on potential redevelopment of a whole suite of
applications following price rises or changes in their
cloud provider’s offered services (Ardagna et al.,
2012). A survey on the effect of vendor lock-in on
cloud adoption by UK-based SMEs and larger
companies, based on 114 participants, revealed that
most decision makers lack in-depth knowledge of the
risks associated with vendor lock-in. This could have
a significant impact on cloud computing adoption, as
organisations are understandably reluctant to embark
on business-critical undertakings without a clear exit
strategy (Opara-Martins et al., 2016). Additionally,
cloud providers generally reserve the right to control
their prices, and very few guarantee an expected level
of service quality through service level agreements,
representing a considerable risk to potential cloud
adopters (Satzger et al., 2013).

5 RELATED WORK

This research proposes a solution to the vendor
lock-in aspects of low portability and lack of
interoperability affecting existing big data processing
offerings in the cloud. Solutions to the vendor lock-in
issue encountered in the literature can be categorised
as follows:

5.1 Standardisation

Standardisation of cloud resource offerings is
considered a way of dealing with the vendor lock-in
issue. No universal set of standards has yet been
identified which would successfully solve the issues
of portability and interoperability between different
cloud providers (Martino, 2014), and the standards
that do exist have not been widely adopted by the
industry (Guillén et al., 2013).

5.2 Cloud Federations

Another alternative solution to the vendor lock-in
issue is the establishment of cloud federations
(Kogias et al., 2016). In a cloud federation, providers
voluntarily agree to participate and are bound by rules
and regulations. This however places the focus on the
cloud provider, rather than on the consumer of cloud
services. As this research approaches the vendor lock-
in issue from the cloud consumer’s perspective, cloud
federations are excluded from its scope.

5.3 Middleware

The introduction of a layer of abstraction to
enable distribution and interoperability between
different cloud providers has also been proposed as a
possible solution to the cloud lock-in problem
(Guillén et al., 2013), (Silva et al., 2013a). One such
model, called Neo-Metropolis, was proposed by H.
Chen et al. (Chen, H. M. et al., 2016). This model is
based on a kernel, which provides the platform’s
basic functionality, a periphery, composed of various
service providers hosted on different clouds, and an
edge, representing customers who utilise services and
provide requirements (Chen, H. M. et al., 2016).
Whilst the kernel would be fairly stable and
backwards compatible, with stable releases, the
periphery would be in constant development, or
perpetual beta, and would be based on open-source
code (Chen, H. M. et al., 2016).

One criticism to this type of approach, however,
is that the lock-in problem is not resolved, it is simply
shifted to the enabling middleware layer (Guillén et
al., 2013).

5.4 Unified Models

A model-driven approach to development,
combined with a unifying framework for modelling
cloud artefacts, has been suggested as a possible
solution to the vendor lock-in problem. In fact, the
“model once, generate everywhere” precept of MDA
(Model Driven Architecture) suggests that software
can be cloud platform-agnostic, provided that the
necessary code generating engines are in place
(Martino, 2014). In reality, however, it is difficult to
find concrete examples of perfectly accurate code
generation engines capable of producing all of the
source code exclusively from the models (Guillén et
al., 2013).

MULTICLAPP was proposed as an
architectural framework that separates the application
design from cloud provider-specific deployment
configuration. Application modelling is done using
an extended UML profile. The models are then

processed by a Model Transformation Engine,
responsible for inserting cloud provider-specific
configuration and generating class skeletons (Guillén
et al., 2013). Although this approach ensures the
perpetuation of the models in case of cloud provider
migration, application implementation code would
still need to be re-written.

5.5 Virtualisation

The use of containers or hypervisor technology
(virtual machine managers) to deploy software in the
cloud is a pattern which minimises the effects of
vendor lock-in, as the environment configuration and
requirements are packaged together with the
deployed application.

5.5.1 Virtual Machines

The use of VMs to deploy applications is
generally associated with the IaaS cloud service
model. Together with the code for the developed
application, a VM also contains an entire operating
system configured to run that code.

5.5.2 Containers

Containers are a lighter alternative to VMs
(Bernstein, 2014). They have gained increased
popularity recently, following the open-sourcing of
the most widely-accepted technology, Docker, in
March 2013 (Miell & Sayers, 2015).

The benefits of using containers become more
apparent when it comes to implementing distributed
architectures (Bernstein, 2014), as their small size and
relative ease of deployment allow for better elasticity
across different clouds. Docker is based on the Linux
operating system, which is a good fit for the cloud as
it is reliable, has a wide user base, and allows
containers to scale up without incurring additional
licensing costs (Celesti et al., 2016).

This research embraces the emerging trend
towards containerisation as it recognises the benefits
of using a multi-cloud environment for the
deployment of distributed big data processing
frameworks.

6 PROPOSED SOLUTION

The proposed solution is an architectural pattern
for big data processing using frameworks and
containers on a PaaS service model. Fig. 2 shows a
simplified view of the proposed model.

There are four conceptual elements depicted in
Fig. 2: framework, image, container and machine. The

next sub-section discusses each of the four conceptual
elements in detail.

6.1 Conceptual Elements

6.1.1 Framework

The framework takes care of parallelising the data
processing, scheduling work between the processing
units and ensuring fault tolerance. In traditional, on-
premises implementations, the framework code is
generally downloaded and unpacked in each
participating machine. A number of setup steps are
then completed to integrate each machine into the
cluster as a worker (Hadoop Cluster Setup, 2017),
(Spark Standalone Mode, n.d.), (Apache Flink 1.3
Documentation: Standalone Cluster, n.d.). As this
process is executed within each participating
machine, usually by entering commands on a
terminal, it is prone to failure due to differences
between environments or human error. The
architectural pattern proposed in this section presents
a solution to this problem.

6.1.2 Image

An image specifies how to build/get an
application, its runtime environment and
dependencies and execute it in a container. It is
abstract, whereas a container is concrete. Many
identical containers can be created from a single
image, which makes them a good choice of
technology for exploring the elasticity of the cloud
when building distributed systems. In a similar way
in which a class is used to instantiate an object in
object-oriented programming, an image is used to
instantiate containers in container-based
implementations.

Images can be layered, which means new images
can be created from a base image plus additional

instructions (Pahl & Lee, 2015). The oracle/openjdk
image published on DockerHub, for example, is built
on top of the oraclelinux/7-slim image and contains
additional instructions to download and install JDK-
8. The oraclelinux/7-slim image, on the other hand,
starts from a base image called scratch (an empty
image provided by Docker) and contains instructions
to download and install the Oracle Linux 7 operating
system (library/oraclelinux - Docker Hub, n.d.). Fig.3
depicts this example and illustrates how images stack
up.

Images are stored in a registry, which can be
private or public, and downloaded when needed.
Registries enable version control and promote code
sharing and reuse.

6.1.3 Container

Containers are lightweight runtime environments
deployed to virtual or physical machines. Each
machine can have several containers running in it.
They share the same operating system, but are
otherwise separate deployment environments.

6.1.4 Machine

A bare-metal or virtual machine can have a
number of containers running on it. They can be
based on-premises or in the cloud, with the latter
generally exhibiting greater elasticity. AWS, for
example, allows vertical scaling of their virtual
machines through re-sizing, which involves selecting
a more powerful configuration from the offers
available (Resizing Your Instance - Amazon Elastic
Compute Cloud, 2017).

6.2 Resource Sharing

The new architectural pattern proposed in this
research decouples the physical deployment
environment, i.e. machines, from the artifacts that are
deployed to them and ultimately the frameworks that
own the artifacts. Instead of having dedicated
machines for Hadoop, Spark, etc, these frameworks
share a pool of resources and take or drop them as
needed. Increased utilisation and improved access to
data sharing have been highlighted in the literature as
advantages associated with pooling resources
between big data frameworks (Hindman et al., 2011).
In fact, these factors are particularly relevant in the
context of cloud-based architectures, where costs are
transparent and changes are immediately visible. If
we take, for example, a multi-cloud setup where
resources are fluid and vendor lock-in is negligible, it
is possible to scale up using whichever provider is
most suitable at the time, or even replace providers
without detrimentally affecting the system.

empty

install
Oracle Linux 7

install
JDK-8

scratch image

oraclelinux/7-slim image

oracle/openjdk image

() image

Figure 3: Image Layers

Framework provides Image instantiates Container
deployed

to
Machine

Figure 2: Simplified Architectural Pattern Diagram

The existence of mixed big data packages, such as
the Hadoop Ecosystem, suggests that there is no de-
facto big data technology to cater for all different
needs and scenarios. Instead, organisations tend to
utilise more than one framework concurrently. This is
another strong argument for choosing an architecture
which allows resources to be pooled and shared
between frameworks.

Fig.4 illustrates how the proposed architectural
pattern decouples frameworks from machines by
introducing a new abstraction: containers. From a
machine’s perspective, it runs containers. A machine
is unaware of which frameworks, if any, are
associated with the containers running on it. Specific
environment configuration is defined at container
level, leaving the machine itself generic and agnostic.
The framework, on the other hand, knows nothing
about the specific machines on which their workers
and managers run. It does know which containerised
workers and managers are part of the cluster at a given
time, and their corresponding states, but it has no
knowledge of machines and their configurations.

Fig.5 illustrates how the proposed architecture
scales up. Different big data frameworks are
maintained concurrently, as are different sets of
machines hosted in different locations. More
machines can be added to the cluster to scale the
system vertically. Likewise, more containers can be
created from a worker image and deployed to the
cluster if a particular job executed by a framework
needs to be scaled horizontally.

6.3 Programming the Big Data Processing
Pipeline

This section decouples the big data processing
pipeline code from the framework under which it
ultimately runs. When the concept of a processing
pipeline is abstracted as a series of operations, defined
by business needs, performed on units of data, we find
no reason to believe it could not be written in a
framework-agnostic way. This avoids duplication
when different frameworks are used and enables the
portability of the developed artifact between
frameworks.

6.3.1 Different Programming Models

Many big data frameworks claim that any
programming language can be used to define their
processing pipelines, e.g. (Apache Storm - Project
Information, n.d.), (MapReduce Tutorial, 2013). This
section shall demonstrate that the main issue affecting
the portability and interoperability of artifacts
produced for a given framework is not to do with the
programming language, but with the abstractions and
programming model to which a developer must
adhere. These tend to be specific to each framework
and not easily translatable between them. A simple
visual example of a classifier and counter
implementation is used to illustrate this point.

Imagine a scenario where there are various green
and yellow circles, and a business need to count how
many circles there are of each colour. This section
compares two different approaches to implementing
a solution: one using MapReduce, a popular
algorithm for distributed parallel processing of batch
files, and another using a topology of spouts and
bolts, abstractions provided by the Storm framework.
Fig.6 presents a MapReduce-based solution. A
mapping function is first applied to each element of
each data set. It accepts coloured circles and outputs

 Framework

 Framework

 Framework
 Framework

Image
(Worker)

Image
(Manager)

 Machine

 Machine

 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

Figure 5: Container-Based Big Data Processing Deployment

on a PaaS Service Model

Figure 4: Container-Based Big Data Processing

Deployment

 Framework

Image
(Worker)

Image
(Manager)

 Machine

Container
Container

Container
Container

1

1

1

1

1

1

1

1

1

1

1

1

map

map

map

map

reduce

reduce

7

5

Figure 6: The Map-Reduce Algorithm

numbered coloured circles which, in code, would be
represented as key/value pairs where the key is the
colour and the value is the number. The reduce
function then takes a set of values (all the circles
where the colour is yellow, or all the circles where the
colour is green) and performs a reduction operation,
i.e. transforms them into a smaller set of values. In
this case, it outputs one element, a circle where the
number is the sum of all the other numbers in the set.
The result could also be represented as a key/value
pair where the key is the colour or the circle and the
value is the number it displays.

Storm, a framework mainly designed for stream
processing, uses a different type of abstraction from
those used by MapReduce, namely spouts and bolts.
Spouts represent sources of streaming data, whilst
bolts represent transformations applied to them.
Because streaming data is infinite, a similar exercise
of counting circles by colour only makes sense if time
is taken into consideration, not only in the visual
representation, but also in the code implementation of
a possible solution. Fig. 7 represents a stream-based
approach to the circle count exercise. Using spouts
and bolts, it processes each element it sees in real-
time and updates a counter. Because the source of
data is infinite, the processing of the data is also
infinite, and the results are never final.

Having examined two very simple examples
where the same problem is solved using different
frameworks and different approaches to big data
processing, it becomes apparent that the lack of
portability or interoperability between artifacts
produced for different frameworks is a complex issue
that goes beyond the simple translation of one library
into another. The abstractions upon which these
frameworks are built are fundamentally diverse, one
of the reasons why they generally provide their own
libraries.

In this section, a simple example of a counter for
different coloured circles was used to obtain an
insight into how big data frameworks use different
abstractions and a different programming model to
implement solutions to the same problem. In
particular, batch and stream architectures appear to

differ fundamentally due to the limited or unlimited
nature of the data source. The Lambda Architecture,
developed as an answer to this predicament, never did
circumvent the inconvenience of developers having
to maintain different pieces of code, containing the
same business logic, in different places, only because
the incoming data is, in some cases, limited and, in
others, unlimited. Section 6.3.3 looks at how this
dichotomy has been broken and explores the benefits
associated with using a unified programming model
with different big data frameworks. Before that,
however, the following section takes a closer look at
the traditional scenario of software development
using different frameworks and different
programming models.

6.3.2 Framework-Specific Programming

Framework-specific programming is hereby
defined as writing software code which is intended to
be executed from within a given framework. In a
scenario where multiple frameworks are used,
artifacts produced for each framework exist
independently and are maintained independently
throughout their existences. If a business case arises
to duplicate the functionality developed within one
framework onto a different framework, it is usually
the case that new code will need to be written, as the
conceptual model and abstractions used in the
implementation will be incompatible. Fig. 8
illustrates the process of programming for specific
frameworks.

6.3.3 Framework-Agnostic Programming

As seen in the previous section, in framework-
specific programming, developers use specialised
libraries provided by each framework. The processing
code written is therefore only compatible with a
particular framework, as are the artifacts produced.
The necessary conditions to enable framework-
agnostic programming can be understood by once
again referring to the process in Fig. 8. If, instead of
using a framework-provided library, developers used
a common library compatible with the main big data
frameworks, they would be able to write processing

filter by
colour

update
green count

update
yellow count

yellow

green

1s2s 0s3s

2
3

2
5

1s

2s5

3s

1s

3s

2s7

Figure 7: Spouts and Bolts Representing Stream Data

Processing

Big Data

Processing
Pipeline 1

 Developer Framework 2 Machine

distributeupload

Big Data
Processing
Pipeline 2

Big Data
Processing
Pipeline 2

Container
Big Data

Processing
Pipeline 2Container

Big Data
Processing
Pipeline 2

Big Data
Processing
Pipeline 2

Big Data
Processing
Pipeline 2

Big Data
Processing
Pipeline 1

 Developer Framework 1 Machine

distributeupload

Big Data
Processing
Pipeline 1

Big Data
Processing
Pipeline 1

Container
Big Data

Processing
Pipeline 1Container

Big Data
Processing
Pipeline 1

Big Data
Processing
Pipeline 1

Big Data
Processing
Pipeline 1

Figure 8: Framework-Specific Programming

code in a framework-agnostic way, and to produce
artifacts compatible with multiple frameworks. The
Apache Beam SDK comes very close to being such a
library. The issue of fundamental differences between
programming models for batch and stream is resolved
by treating all data as if it were streaming. Streaming
data, due to its unbounded nature, is divided into
bounded subsets called windows, which are finite and
can be processed one at a time. The same approach is
used for the processing of batch data: even though the
data is finite, it could be so large that, for processing
purposes, it makes sense to treat it as infinite. Large
sources of batch data would therefore be divided into
windows and processed one subset at a time, as if they
were streaming. Fig. 9 and 10 illustrate the
windowing of batch data so the same programming
model is applied for both batch and stream data.

Because it uses the same programming model for
both batch and stream, the Apache Beam SDK is
compatible with a number of big data frameworks. At
the time of writing, it can accept incoming data from
over 20 different sources, with a number of others still
in development. These include distributed batch files
from Hadoop, streaming topics from Kafka, and
database data from Cassandra or MongoDB (Built-in
I/O Transforms, n.d.). When it comes to running the
processing pipelines, however, one of five
frameworks can currently be used: Flink, Spark,
Dataflow, Apex and Gearpump (Apache Beam
Capability Matrix, n.d.). The fact that they are all
stream-based is not a coincidence, but a limitation
which arises from the choice of a stream-based
programming model for batch and stream big data
processing in Apache Beam. Even though the Beam
meta-framework accepts clearly finite batch data such
as distributed Hadoop files, the way it handles batch
data in the programming layer is as if it were
streaming. This is both its main strength and its
limitation, as it allows for a common set of
abstractions compatible with most big data
frameworks, but it limits the running platforms to
stream-based frameworks.

The benefits of decoupling the programming
model from specific big data frameworks include less
code duplication, increased reusability and
maintainability of artifacts produced, and a shallower
learning curve for developers wanting to work with
big data. Fig. 11 illustrates the framework-agnostic
programming model. Note how the developer only
produces one artifact, which is then uploaded to
different frameworks, to be processed using their
respective resources.

6.3.4 Framework-Agnostic Programming
with Pooled Resources

This section aims to amalgamate the framework
agnostic programming model described in the
previous section with the container-based
architectural pattern proposed earlier. It demonstrates
how decoupling artifacts from frameworks and from
the machines that run them leads to less duplication,
higher maintainability of code, as well as easier,
simpler and more effective management of machine
clusters.

Fig. 12 illustrates the framework-agnostic model
with pooled resources. Big data processing pipelines
are developed once per business case, instead of one
per framework. Once the artifact is ready to be
released into production, it can be uploaded to and
executed by any compatible big data framework.
Because the programming model used is stream-
based, the big data framework must be able to execute
stream pipelines. This is one of the limitations of the
model. However, should users of major batch
processing frameworks such as Hadoop wish to adopt
the proposed unified model, they could do so with
minimal impact and without the need for migration
by adopting a parallel transition strategy over a long
period of time (Okrent & Vokurka, 2004). Since
HDFS files can be used as data sources in the
proposed model, new processing pipelines can be
developed using the unified model and run by a
stream engine without affecting the existing code
developed to run in Hadoop.

window window

1

1

apply
windowing

function

process one
window
at a time

update counter

Figure 9: Batch Processing using a Stream-Based

Programming Model

apply
windowing

function

window

process one
window
at a time

1

1
update counter

Figure 10: Stream Processing using a Stream-Based

Programming Model

 Developer

Big Data
Processing
Pipeline 1

 Framework 1 Machine

distribute
Container

Big Data
Processing

PipelineContainer
Big Data

Processing
Pipeline

Big Data
Processing

Pipeline
Big Data

Processing
Pipeline

 Framework 2 Machine

distributeBig Data
Processing

Pipeline

Container
Big Data

Processing
PipelineContainer

Big Data
Processing

Pipeline
Big Data

Processing
Pipeline

Big Data
Processing

Pipeline

Big Data
Processing

Pipeline

upload

upload

decoupled

Figure 11: Framework-Agnostic Programming

Figure 12: Framework-Agnostic Programming with Pooled

Resources

The second decoupling line in Fig. 12 shows how
resources can be pooled and shared by different
frameworks. Frameworks have a number of runners
or workers responsible for the parallel execution of
data processing pipelines. These workers are typically
deployed to clusters of machines on a one cluster per
framework basis, as shown in Fig. 11. This represents
a potential waste of resources, magnified in a cloud
scenario where machines are charged on a per-minute
base. The chance of charges being incurred for
machines which are idle is higher, since a machine
commissioned for a given framework’s cluster cannot
be immediately utilised by a different framework.
The proposed model solves this issue by allowing
different frameworks to share the same cluster.
Runners belonging to different frameworks are
deployed to machines as containers. Because
machines only execute containers and know nothing
about which framework, if any, the containers belong
to, they become framework-independent and can be
shared between several of them.

This section presented the full proposed model for
big data processing in the cloud. It discussed the
advantages of utilising a unified programming model
and a container-based architecture with pooled
resources for cases where different big data
frameworks are used simultaneously.

7 EVALUATION

Given the vendor lock-in problem which pervades
current Big Data solutions offered by cloud providers,
the products of this research are evaluated in terms of
inter-cloud portability and interoperability, as well as
usability. Additionally, as existing solutions tend to
combine a range of technologies to enable processing
of different types of big data, leading to code
duplication and low maintainability, these factors are
considered in our evaluation.

7.1 Prototype

For the purposes of evaluating the proposed
architecture, a prototype was constructed and
implemented using the OSDC and Microsoft Azure
clouds. The Apache Beam SDK was used to program
the big data processing pipeline, since it provides a
unifying programming model for both batch and
stream data. Apache Flink was selected as a runner
since, at the time of writing, it provided the widest
range of capabilities from the open-source
technologies supported by Apache Beam (Apache
Beam Capability Matrix, n.d.).

Only streaming data was tested in this initial
experiment. A simple pipeline was constructed to
calculate the PUE (power usage effectiveness) of a
fictitious server room. The PUE calculation was
implemented using the following formula:

An integrated gateway server dispatching
consumption data was simulated programmatically.
The simulator dispatched Total Facility Energy and
IT Equipment Energy data every second to a Kafka
server, which fed streaming data to the Big Data
Framework.

The data was processed in parallel by Flink
workers deployed as containerised services to a
virtual machine in the OSDC, a virtual machine in the
Azure cloud and two virtual machines running on
local hardware. As Docker Swarm comes as standard
with the latest Docker implementations, it was used
for orchestration and for scaling the number of
running containers.

The pipeline code processed the streaming data
using fixed windows of 30 seconds, based on event
time. It emitted results at the end of every window,
and the results were posted to a different Kafka topic.
For the sake of simplicity, no late data was allowed
and late data was discarded.

7.2 Results

This initial experiment proved that the proposed
architectural pattern is feasible and allows for a
unifying model for both batch and stream processing
by a pool of seamlessly integrated multi-cloud
resources. It demonstrated the possibility of
horizontal scaling using orchestration technology to
increase the number of containers running the
framework’s workers. It also demonstrated the
possibility of vertical scaling through the

 Machine

 Machine

 Machine

 Developer

Big Data
Processing
Pipeline 1

 Framework 1

distribute

 Framework 2

Big Data
Processing

Pipeline

Big Data
Processing

Pipeline

upload

upload

decoupled

 Machine

Container
Big Data

Processing
PipelineContainer

Big Data
Processing

Pipeline

Big Data
Processing

Pipeline
Big Data

Processing
Pipeline

distribute

decoupled

PUE =
Total Facility Energy

IT Equipment Energy

incorporation of additional machines in a provider-
agnostic way.

In terms of portability and interoperability, we
compared the proposed solution with existing big data
architectures offered as managed services in the
cloud. Table 1 summarises the result of this
comparison. Solutions which are based on separate
processing for stream and batch data (Google Cloud
Dataproc, Microsoft Azure HDInsight, Amazon
EMR, Oracle Big Data Cloud Service and IBM
BigInsights) are grouped together and displayed as
Lambda Architecture.

Table 1: Comparison Between the Proposed Solution and

Existing Big Data Architectures in the Cloud

Evaluation Metric
Lambda
Archit.

Google
Dataflow

Proposed
Solution

Inter-Cloud Portability Medium Low High

Inter-Cloud Interoperability Medium Medium High

Code Duplication High Low Low

Usability Low Medium Medium

Inter-cloud portability is defined as the ease with
which a service hosted in one cloud can be migrated
to a different cloud. Services based on the Lambda
Architecture are generally portable, provided that the
technologies used are open-source and available in
both the source and the destination clouds. The
Dataflow solution is based on an open-source
programming language, but it would require a change
in service model from SaaS to PaaS in order to be
easily portable across clouds. Our proposed solution
is highly portable, as it is based on containers and a
PaaS service model from the start. Irrespective of
which cloud provider is utilised, the containers are
built from the same base image, and guarantee an
identical execution environment for the service.

Inter-cloud interoperability is defined as the ease
with which a service hosted in one cloud can operate
harmoniously with services hosted on different
clouds as part of the same architecture. Both the
Lambda Architecture and the Dataflow solution were
evaluated as medium, as they do allow for
distribution, although additional setup would need to
be carried out in order to provide service discovery
and orchestration. The proposed solution is ranked as
high, as it is based on Docker Swarm technology,
which provides service discovery and orchestration as
part of the Docker distribution, with no need to install,
configure and manage an external tool for this
purpose. Because machines can self-register and
automatically become part of an orchestrated swarm,
it does not matter where specific container nodes
reside, they are all part of the swarm and are
seamlessly interoperable.

Code Duplication and Maintainability are related
metrics, so they are evaluated together.
Maintainability is defined as the ease with which the
big data processing code can be changed. Code
duplication leads to low maintainability, as any
change in the processing logic needs to be
implemented twice, increasing the amount of
development work involved, and the risk of bugs
being introduced. Lambda Architecture-based
services use different technologies to process batch
and stream data, so the logic within the processing
pipelines is duplicated, leading to low
maintainability. Both Google Dataflow and the
solution proposed in this research are based on a
unified data processing pipeline for batch and stream
data, so code duplication is low and maintainability is
improved.

Usability is defined here as the ease with which a
developer can approach, learn and work with the
technologies involved in a given solution. As the
Lambda Architecture involves a number of different
technologies such as Hadoop, Spark and Hive, the
learning curve is high. The Google Dataflow solution
is based on well documented open-source SDKs
which are easily accessible to software developers. It
does not however offer a systematic approach to
software design and development, leading to code
disparity and reducing the potential for collaboration
and reuse. The proposed solution is also a medium at
this point, but our aim is to develop a domain-specific
modelling language to facilitate the design and model
of container-based big data framework deployments
using a notation that is easy to use and instantly
recognisable, not only by developers, but also by
architects and business users.

8 CONCLUSIONS AND FUTURE

WORK

This paper presented a contribution to the field of
Big Data Analytics and Software Architecture of an
emerging and unifying architectural pattern for big
data processing in the cloud. This pattern is based on
the use of big data frameworks, containers and
container orchestration technology for the
deployment of big data processing pipelines capable
of processing both batch and stream data. We
demonstrated how the issues of low portability and
lack of interoperability, identified as common
shortcomings of current cloud-based solutions, are
overcome by our proposed solution.

The issues of code duplication and low
maintainability, which are known to affect the
Lambda Architecture, are also addressed by our

solution. By adopting a unifying programming model
for processing batch and stream data, we have
demonstrated how these metrics are improved.

A limitation of this initial experiment is the fact
that the evaluation of other big data architectures was
based on documentation rather than reproduction of
the experiment. We aim to address this as our
research progresses.

We envision further development of the initial
prototype to collect metrics related to processing time
from a data flow perspective. The aim is to develop a
monitoring service to inform cloud consumers of
delays in the processing of windows of data, thus
highlighting the need to increase processing capacity
by scaling the system vertically (i.e. adding more
virtual machines to the pool). Correspondingly, the
monitoring service would gather information on
whether data is waiting too long to be processed, thus
suggesting the need to scale the system horizontally
(i.e. increase the number of containers running the
framework’s workers).

We are also working on developing a modelling
notation and a model-driven engineering approach to
designing, modelling and developing big data
solutions using the architectural pattern proposed in
this paper.

9 ACKNOWLEDGEMENTS

This work (blinded for reviewing purposes).

9 REFERENCES

Akidau, Bradshaw, Chambers, Chernyak, Fernández-

Moctezuma, Lax, McVeety, Mills, Perry, Schmidt &

Whittle (2015) The Dataflow Model: A Practical

Approach to Balancing Correctness, Latency, and Cost

in Massive-Scale, Unbounded, Out-of-Order Data

Processing. Proceedings of the VLDB Endowment, 8,

pp. 1792–1803.

Apache Beam Capability Matrix (n.d.) [Online]. Available

from:

<https://beam.apache.org/documentation/runners/capa

bility-matrix/> [Accessed 9 August 2017].

Apache Flink 1.3 Documentation: Standalone Cluster (n.d.)

[Online]. Available from: <

https://ci.apache.org/projects/flink/flink-docs-release-

1.3/setup/cluster_setup.html> [Accessed 14 July 2017].

Apache Storm - Project Information (n.d.) [Online].

Available from: <http://storm.apache.org/about/multi-

language.html> [Accessed 7 August 2017].

Ardagna, Di Nitto, Casale, Petcu, Mohagheghi, Mosser,

Matthews, Gericke, Ballagny, D’Andria, Nechifor &

Sheridan (2012) MODAClouds: A Model-Driven

Approach for the Design and Execution of Applications

on Multiple Clouds. In: Proceedings of the 4th

International Workshop on Modeling in Software

Engineering, 2012. Piscataway, NJ, USA: IEEE Press,

pp. 50–56.

Assis & Bittencourt (2016) A Survey on Cloud Federation

Architectures: Identifying Functional and Non-

Functional Properties. Journal of Network and

Computer Applications, 72 September, pp. 51–71.

Bernstein (2014) Containers and Cloud: From LXC to

Docker to Kubernetes. IEEE Cloud Computing, 1 (3)

September, pp. 81–84.

Built-in I/O Transforms (n.d.) [Online]. Available from:

<https://beam.apache.org/documentation/io/built-in/>

[Accessed 9 August 2017].

Celesti, Mulfari, Fazio, Villari & Puliafito (2016) Exploring

Container Virtualization in IoT Clouds. In: 2016 IEEE

International Conference on Smart Computing

(SMARTCOMP), May 2016. pp. 1–6.

Chan, Gray, Wellings & Audsley (2014) Exploiting

Multicore Architectures in Big Data Applications: The

JUNIPER Approach. Programmability Issues for

Heterogeneous Multicores (MULTIPROG).

Chen, G. J., Yilmaz, Wiener, Iyer, Jaiswal, Lei, Simha,

Wang, Wilfong & Williamson (2016) Realtime Data

Processing at Facebook. ACM Press, pp. 1087–1098.

Chen, H. M., Kazman, Haziyev, Kropov & Chtchourov

(2016) Big Data as a Service: A Neo-Metropolis Model

Approach for Innovation. In: 2016 49th Hawaii

International Conference on System Sciences (HICSS),

January 2016. pp. 5458–5467.

Dean & Ghemawat (2008) MapReduce: Simplified Data

Processing on Large Clusters. Communications of the

ACM, 51 (1) January, p. 107.

Evans & Feng (2013) Storm-YARN Released as Open

Source | YDN Blog - Yahoo [Online]. Available from:

<https://developer.yahoo.com/blogs/ydn/storm-yarn-

released-open-source-143745133.html> [Accessed 28

October 2016].

Guillén, Miranda, Murillo & Canal (2013) A UML Profile

for Modeling Multicloud Applications. In: Lau,

Lamersdorf & Pimentel ed., Service-Oriented and

Cloud Computing, September 11, 2013. Springer Berlin

Heidelberg, pp. 180–187.

Hadoop Cluster Setup (2017) Apache Hadoop 3.0.0-alpha4

– Hadoop Cluster Setup [Online]. Available from:

<http://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-common/ClusterSetup.html>

[Accessed 14 July 2017].

Hausenblas (2014) Twitter Open-Sources Its MapReduce

Streaming Framework Summingbird [Online].

Available from:

<https://www.infoq.com/news/2014/01/twitter-

summingbird> [Accessed 28 October 2016].

Hindman, Konwinski, Zaharia, Ghodsi, Joseph, Katz,

Shenker & Stoica (2011) Mesos: A Platform for Fine-

Grained Resource Sharing in the Data Center. In:

Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation, 2011.

Berkeley, CA, USA: USENIX Association, pp. 295–

308.

 Java Platform, Standard Edition 8 (2014) [Online].

Available from:

<https://docs.oracle.com/javase/8/docs/api/>

[Accessed 30 October 2016].

Khare, An, Gokhale, Tambe & Meena (2015) Reactive

Stream Processing for Data-Centric Publish/Subscribe.

In: Proceedings of the 9th ACM International

Conference on Distributed Event-Based Systems, 2015.

New York, NY, USA: ACM, pp. 234–245.

Kogias, Xevgenis & Patrikakis (2016) Cloud Federation

and the Evolution of Cloud Computing. Computer, 49

(11) November, pp. 96–99.

Kreps (2014) Questioning the Lambda Architecture -

O’Reilly Media [Online]. Available from:

<https://www.oreilly.com/ideas/questioning-the-

lambda-architecture> [Accessed 28 October 2016].

library/oraclelinux - Docker Hub (n.d.) [Online]. Available

from: <https://hub.docker.com/_/oraclelinux/>

[Accessed 23 August 2017].

Martino (2014) Applications Portability and Services

Interoperability among Multiple Clouds. IEEE Cloud

Computing, 1 (1) May, pp. 74–77.

Marz & Warren (2015) Big Data: Principles and Best

Practices of Scalable Realtime Data Systems. 1st ed.

Manning Publications.

Miell & Sayers (2015) Docker in Practice. Shelter Island,

NY: Manning Publications.

Okrent & Vokurka (2004) Process Mapping in Successful

ERP Implementations. Industrial Management & Data

Systems, 104 (8) October, pp. 637–643.

O’Malley (2008) Apache Hadoop Wins Terabyte Sort

Benchmark | Hadoopnew - Yahoo [Online]. Available

from:

<https://developer.yahoo.com/blogs/hadoop/apache-

hadoop-wins-terabyte-sort-benchmark-408.html>

[Accessed 30 October 2016].

Opara-Martins, Sahandi & Tian (2016) Critical Analysis of

Vendor Lock-in and Its Impact on Cloud Computing

Migration: A Business Perspective. Journal of Cloud

Computing, 5 (1) December, p. 4.

oracle/openjdk - Docker Hub (n.d.) - Docker Hub [Online].

Available from:

<https://hub.docker.com/r/oracle/openjdk/> [Accessed

23 August 2017].

Pahl & Lee (2015) Containers and Clusters for Edge Cloud

Architectures – A Technology Review. In: 2015 3rd

International Conference on Future Internet of Things

and Cloud, August 2015. pp. 379–386.

Resizing Your Instance - Amazon Elastic Compute Cloud

(2017) [Online]. Available from:

<http://docs.aws.amazon.com/AWSEC2/latest/UserGu

ide/ec2-instance-resize.html> [Accessed 24 July 2017].

Satzger, Hummer, Inzinger, Leitner & Dustdar (2013)

Winds of Change: From Vendor Lock-In to the Meta

Cloud. IEEE Internet Computing, 17 (1) January, pp.

69–73.

Silva, Rose & Calinescu (2013a) A Systematic Review of

Cloud Lock-In Solutions. In: 2013 IEEE 5th

International Conference on Cloud Computing

Technology and Science, December 2013. vol. 2. pp.

363–368.

Silva, Rose & Calinescu (2013b) Towards a Model-Driven

Solution to the Vendor Lock-In Problem in Cloud

Computing. In: 2013 IEEE 5th International

Conference on Cloud Computing Technology and

Science, December 2013. vol. 1. pp. 711–716.

Spark Standalone Mode (n.d.) Spark 2.2.0 Documentation

[Online]. Available from:

<https://spark.apache.org/docs/latest/spark-

standalone.html> [Accessed 14 July 2017].

Stewart & Singer (2012) Comparing Fork/Join and

MapReduce. In: Department of Computer Science,

Heriot-Watt University, 2012. Citeseer.

Synergy Research Group (2016) AWS Remains Dominant

Despite Microsoft and Google Growth Surges [Online].

Available from:

<https://www.srgresearch.com/articles/aws-remains-

dominant-despite-microsoft-and-google-growth-

surges> [Accessed 2 March 2017].

Tejedor (2013) Lambdoop, a Framework for Easy

Development of Big Data Applications [Online].

Presented at: December 3, 2013. Available from:

<http://www.slideshare.net/Datadopter/lambdoop-a-

framework-for-easy-development-of-big-data-

applications> [Accessed 28 October 2016].

Villari, Celesti, Fazio & Puliafito (2014) AllJoyn Lambda:

An Architecture for the Management of Smart

Environments in IoT. IEEE, pp. 9–14.

Whiteneck, Tufte, Bhat, Maier & Fernández-Moctezuma

(2010) Framing the Question: Detecting and Filling

Spatial-Temporal Windows. In: Proceedings of the

ACM SIGSPATIAL International Workshop on

GeoStreaming, 2010. New York, NY, USA: ACM, pp.

19–22.

Yasrab & Gu (2016) Multi-Cloud PaaS Architecture

(MCPA): A Solution to Cloud Lock-In. In: 2016 3rd

International Conference on Information Science and

Control Engineering (ICISCE), July 2016. pp. 473–

477.

Zikopoulos, deRoos, Parasuraman, Deutsch, Giles &

Corrigan (2013) Harness the Power of Big Data The

IBM Big Data Platform. McGraw-Hill Education.

Zikopoulos, Eaton, Deroos, Deutsch & Lapis (2012)

Understanding Big Data: Analytics for Enterprise

Class Hadoop and Streaming Data. New York:

McGraw-Hill Osborne.

