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PaaS-BDP 

A Multi-Cloud Architectural Pattern for Big Data Processing  

on a Platform-as-a-Service Model                                                                                                                                            
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Abstract: This paper presents a contribution to the fields of Big Data Analytics and Software Architecture, namely an 

emerging and unifying architectural pattern for big data processing in the cloud from a cloud consumer’s 

perspective. PaaS-BDP (Platform-as-a-Service for Big Data) is an architectural pattern based on resource 

pooling and the use of a unified programming model for building big data processing pipelines capable of 

processing both batch and stream data. It uses container cluster technology on a PaaS service model to 

overcome common shortfalls of current big data solutions offered by major cloud providers such as low 

portability, lack of interoperability and the risk of vendor lock-in. 

1 INTRODUCTION 

Big data is an area of technological research 

which has been receiving increased attention in 

recent years. As the Internet of Things (IoT) expands 

to different spheres of human life, a large volume of 

structured, semi-structured and unstructured data is 

generated at very high velocity. To derive value from 

big data, businesses and organisations need to detect 

patterns and trends in historical data. They also need 

to receive, process and analyse streaming data in real-

time, or close to real-time, a challenge which current 

technologies and traditional system architectures find 

difficult to meet. 

Cloud computing has also been attracting 

growing interest lately. With different service models 

available such as infrastructure as-a-service (IaaS), 

platform as-a-service (PaaS) and software as-a-

service (SaaS), it is no longer essential that 

companies host their IT infrastructure on-premises. 

Consequently, an increasing number of small and 

medium-sized enterprises (SME) has ventured into 

big data analytics utilising powerful computing 

resources, previously unavailable to them, without 

having to procure their own hardware or maintain an 

in-house team of highly skilled IT professionals. 

2 MOTIVATION 

With the popularisation of the cloud, Big Data 
analytics is now an accessible service to many SMEs. 

The top four cloud providers in terms of market 
share, Amazon, Microsoft, IBM and Google 
(Synergy Research Group, 2016), offer Big Data as a 
managed service on a SaaS service model. This 
model, however, comes with associated risks of low 
portability and reduced interoperability between the 
processing components developed. 

The plethora of technologies currently being used 
for Big Data processing, and the lack of a systematic, 
unified approach to processing pipeline development, 
is also a motivation for this research. There is no single 
accepted solution to cater for all types of big data 
processing, so various technologies tend to be used in 
combination, as illustrated by the different Apache 
projects incorporated into what is now known as the 
Hadoop ecosystem. Consequently, the learning curve 
for a developer working with big data is steep, and the 
processing logic developed within one system is 
generally incompatible with other systems, leading to 
code duplication and low maintainability. 

The aim of this research is to produce a systematic 
and unified approach to developing portable and 
interoperable Big Data processing pipelines on a multi-
cloud PaaS service model. PaaS-BDP is based on a 
programming model applicable to both stream and 
batch data, thus eliminating the need for the Lambda 
Architecture where multiple technologies are used in 
combination. The risk of vendor lock-in is reduced by 
using containers on a PaaS service model, which 
increases portability, and by using container clustering 
technology, which provides seamless interoperability 
amongst different clouds. 



3 SCOPE 

This research focuses on big data processing, 
defined as the transformations which takes place after 
the data has been collected and before it is analysed 
(see Fig. 1). Storage, which can happen after 
collection, after processing, after analysing, or at any 
combination of these stages, is excluded from the 
scope of this project. 

Figure 1: Big Data Architectural Layers 

4 RESEARCH CONTEXT 

4.1 Batch and Stream Programming 

Batch processing was the first and is the most 
solidly established approach to big data processing. It 
is based on the MapReduce algorithm and was 
designed at Google (Dean & Ghemawat, 2008), 
before going open-source as the Hadoop software 
framework. Hadoop is a distributed system for 
processing large volumes of data which is easy to use 
and extremely powerful (Dean & Ghemawat, 2008). 
It abstracts the complexities of parallelisation and 
inter-machine communication away from the user, 
who only needs to specify the map and reduce 
functions (Dean & Ghemawat, 2008). Hadoop can 
handle terabytes of data (O’Malley, 2008), but one of 
its main criticisms is its high latency and high start-
up overhead (Stewart & Singer, 2012), which renders 
it ineffective for real-time systems. 

Stream processing architectures evolved from the 
need to process real-time data. While batch 
processing is related to the volume of big data, stream 
processing relates to velocity. Real-time information 
such as which topics are trending on Twitter needs to 
come from data which is constantly being updated, 
with minimal latency. The notion of a data stream is 
an abstraction used to convey the nature of the data 
source: continuous and potentially infinite, and the 
way in which it is processed: in real-time (or close to 

real-time), before it is persisted to storage 
(Zikopoulos et al., 2013, p. 47). 

4.2 The Lambda Architecture 

The Lambda Architecture was introduced by 
Marz & Warren as a description of architectures 
adopting a “best of both” approach to the 
batch/stream dichotomy. These architectures would 
use the stream layer for real-time data and the batch 
layer for historical data. The data would then be 
merged at query level (Marz & Warren, 2015). 
Examples of this type of architecture can be found in 
Twitter’s SummingBird (Hausenblas, 2014), Yahoo’s 
Storm-Yarn (Evans & Feng, 2013), IBM’s Big Data 
platform (Zikopoulos et al., 2013), Lambdoop 
(Tejedor, 2013), AllJoynLambda (Villari et al., 2014) 
and Facebook’s integration between its Puma, Swift 
and Stylus stream systems and its data stores (Chen, 
G. J. et al., 2016). The main criticism to this approach 
is having to maintain two different complex 
architectures and having duplicate code in the two 
different layers (Kreps, 2014). 

4.3 Programming Language 

Big data pipelines must be capable of ingesting 
and processing both batch and stream data in order to 
avoid code duplication and enhance maintainability. 
The Apache Beam project is a pioneering effort 
which currently fulfils this requirement through its 
released SDKs for Java and Python. That 
notwithstanding, other languages/libraries in the 
future could prove to be just as suitable, or perhaps 
even more suitable in some circumstances than the 
ones included in the Apache Beam project. 

One fundamental abstraction used to rationalise 
very large or infinite data inputs is the concept of 
windows of data. These appear in the stream 
processing literature as groupings based on event 
time, stream time, element count or, as is the case 
with punctuation or frame-based windows, based on 
some attribute of the elements (Zikopoulos et al., 
2012), (Whiteneck et al., 2010). Windows of data can 
be fixed (e.g. every hour) or sliding (e.g. every hour, 
starting every minute). Akidau et al. combine these 
two concepts by defining fixed windows as “a special 
case of sliding windows where size equals period” 
(Akidau et al., 2015). Because sliding time windows 
are a recurrent pattern in stream processing (Khare et 
al., 2015), their inclusion in a programming language 
capable of processing different types of big data is to 
be expected. The adapter used by IBM’s big data 
platform to allow batch data to be processed as a 
stream, for example, uses the concept of windows of 
data to perform the conversion (Zikopoulos et al., 
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2012, p. 128). This concept is also present in the 
Apache Beam solution, as well as in the Java Stream 
API, which uses windows based on element count to 
make an infinite stream finite (Java Platform, 
Standard Edition 8, 2014). This research uses the 
concept of windowing to provide a unifying 
programming model for both batch and stream data. 

Java SE could indeed become the de facto 
language for big data processing, considering that 
amongst the significant structural enhancement 
released with JDK 8 was the introduction of a concept 
of stream to represent a processing pipeline. A Java 
stream has a data source, which can be a collection, a 
file or a function, a number of intermediate 
operations, and a terminal operation. Streams can be 
processed in parallel by calling a convenient parallel() 
method on an existing stream. This uses the Fork/Join 
algorithm to create new threads as needed and process 
the stream pipeline in parallel. The Fork/Join 
algorithm is very effective and performs better than 
Hadoop’s MapReduce for data up to around 
104.3MB, but fails with an out-of-memory error for 
larger files (Stewart & Singer, 2012). The JUNIPER 
project has overcome this limitation by introducing 
the concept of stored collections. Their rationale is 
that, if the data does not need to be loaded into 
memory, the Fork/Join algorithm is adequate and, 
indeed, at times more powerful than MapReduce for 
processing big data (Chan et al., 2014). The JUNIPER 
research tested the performance of Fork/Join vs. 
MapReduce on a single multicore node. More 
research is needed to verify how well the standard 
Fork/Join algorithm utilised by the Java Stream API 
processes distributed stored collections, and whether 
it could pose a threat to the hegemony of MapReduce 
in the big data processing domain. 

4.4 Vendor Lock-in 

One of the biggest drawbacks of deploying 
complex applications in the cloud is the risk presented 
by vendor lock-in (Ardagna et al., 2012), (Guillén et 
al., 2013), (Silva et al., 2013a), (Silva et al., 2013b), 
(Kogias et al., 2016), (Assis & Bittencourt, 2016) and 
others. Assis & Bittencourt define vendor lock-in as: 
“technical and monetary costs faced by the customer 
for migrating from one cloud provider to another 
when some advantage is observed (e.g. more 
attractive prices).” (Assis & Bittencourt, 2016, p. 55). 

This definition emphasises the low portability 
aspect of vendor lock-in, defined as the ability to 
transfer an application from the cloud where it is 
currently deployed to a cloud from a different 
provider (Silva et al., 2013a).  Another important 
aspect of vendor lock-in highlighted in the literature 
is its effect on interoperability (Silva et al., 2013a), 

(Martino, 2014), (Opara-Martins et al., 2016), 
(Yasrab & Gu, 2016). Interoperability occurs when an 
application or component deployed to a given cloud 
server exchanges information harmoniously with 
applications or components deployed to other cloud 
servers (Silva et al., 2013a). A distributed architecture 
where components are hosted by different cloud 
providers, for example, would rely extensively on 
some guarantee of interoperability between these 
providers. Additionally, interoperability between 
cloud-deployed artefacts and those hosted on-
premises must also exist, as companies may choose 
not to deploy all their resources to the cloud for 
strategic or security reasons (Opara-Martins et al., 
2016). 

Vendor lock-in can have serious consequences for 
small businesses who have fewer spare resources to 
spend on potential redevelopment of a whole suite of 
applications following price rises or changes in their 
cloud provider’s offered services (Ardagna et al., 
2012).  A survey on the effect of vendor lock-in on 
cloud adoption by UK-based SMEs and larger 
companies, based on 114 participants, revealed that 
most decision makers lack in-depth knowledge of the 
risks associated with vendor lock-in. This could have 
a significant impact on cloud computing adoption, as 
organisations are understandably reluctant to embark 
on business-critical undertakings without a clear exit 
strategy (Opara-Martins et al., 2016). Additionally, 
cloud providers generally reserve the right to control 
their prices, and very few guarantee an expected level 
of service quality through service level agreements, 
representing a considerable risk to potential cloud 
adopters (Satzger et al., 2013). 

5 RELATED WORK 

This research proposes a solution to the vendor 
lock-in aspects of low portability and lack of 
interoperability affecting existing big data processing 
offerings in the cloud. Solutions to the vendor lock-in 
issue encountered in the literature can be categorised 
as follows:  

5.1 Standardisation 

Standardisation of cloud resource offerings is 
considered a way of dealing with the vendor lock-in 
issue. No universal set of standards has yet been 
identified which would successfully solve the issues 
of portability and interoperability between different 
cloud providers (Martino, 2014), and the standards 
that do exist have not been widely adopted by the 
industry (Guillén et al., 2013). 



 

5.2 Cloud Federations 

Another alternative solution to the vendor lock-in 
issue is the establishment of cloud federations 
(Kogias et al., 2016). In a cloud federation, providers 
voluntarily agree to participate and are bound by rules 
and regulations. This however places the focus on the 
cloud provider, rather than on the consumer of cloud 
services. As this research approaches the vendor lock-
in issue from the cloud consumer’s perspective, cloud 
federations are excluded from its scope. 

5.3 Middleware 

The introduction of a layer of abstraction to 
enable distribution and interoperability between 
different cloud providers has also been proposed as a 
possible solution to the cloud lock-in problem 
(Guillén et al., 2013), (Silva et al., 2013a). One such 
model, called Neo-Metropolis, was proposed by H. 
Chen et al. (Chen, H. M. et al., 2016). This model is 
based on a kernel, which provides the platform’s 
basic functionality, a periphery, composed of various 
service providers hosted on different clouds, and an 
edge, representing customers who utilise services and 
provide requirements (Chen, H. M. et al., 2016). 
Whilst the kernel would be fairly stable and 
backwards compatible, with stable releases, the 
periphery would be in constant development, or 
perpetual beta, and would be based on open-source 
code (Chen, H. M. et al., 2016). 

One criticism to this type of approach, however, 
is that the lock-in problem is not resolved, it is simply 
shifted to the enabling middleware layer (Guillén et 
al., 2013). 

5.4 Unified Models 

A model-driven approach to development, 
combined with a unifying framework for modelling 
cloud artefacts, has been suggested as a possible 
solution to the vendor lock-in problem. In fact, the 
“model once, generate everywhere” precept of MDA 
(Model Driven Architecture) suggests that software 
can be cloud platform-agnostic, provided that the 
necessary code generating engines are in place 
(Martino, 2014). In reality, however, it is difficult to 
find concrete examples of perfectly accurate code 
generation engines capable of producing all of the 
source code exclusively from the models (Guillén et 
al., 2013). 

MULTICLAPP was proposed as an 
architectural framework that separates the application 
design from cloud provider-specific deployment 
configuration. Application modelling is done using 
an extended UML profile. The models are then 

processed by a Model Transformation Engine, 
responsible for inserting cloud provider-specific 
configuration and generating class skeletons (Guillén 
et al., 2013). Although this approach ensures the 
perpetuation of the models in case of cloud provider 
migration, application implementation code would 
still need to be re-written. 

5.5 Virtualisation 

The use of containers or hypervisor technology 
(virtual machine managers) to deploy software in the 
cloud is a pattern which minimises the effects of 
vendor lock-in, as the environment configuration and 
requirements are packaged together with the 
deployed application.  

5.5.1 Virtual Machines 

The use of VMs to deploy applications is 
generally associated with the IaaS cloud service 
model. Together with the code for the developed 
application, a VM also contains an entire operating 
system configured to run that code. 

5.5.2 Containers 

Containers are a lighter alternative to VMs 
(Bernstein, 2014). They have gained increased 
popularity recently, following the open-sourcing of 
the most widely-accepted technology, Docker, in 
March 2013 (Miell & Sayers, 2015).  

The benefits of using containers become more 
apparent when it comes to implementing distributed 
architectures (Bernstein, 2014), as their small size and 
relative ease of deployment allow for better elasticity 
across different clouds. Docker is based on the Linux 
operating system, which is a good fit for the cloud as 
it is reliable, has a wide user base, and allows 
containers to scale up without incurring additional 
licensing costs (Celesti et al., 2016). 

This research embraces the emerging trend 
towards containerisation as it recognises the benefits 
of using a multi-cloud environment for the 
deployment of distributed big data processing 
frameworks. 

6 PROPOSED SOLUTION 

The proposed solution is an architectural pattern 
for big data processing using frameworks and 
containers on a PaaS service model. Fig. 2 shows a 
simplified view of the proposed model.  

There are four conceptual elements depicted in 
Fig. 2: framework, image, container and machine. The 



next sub-section discusses each of the four conceptual 
elements in detail.  

6.1 Conceptual Elements 

6.1.1 Framework 

The framework takes care of parallelising the data 
processing, scheduling work between the processing 
units and ensuring fault tolerance. In traditional, on-
premises implementations, the framework code is 
generally downloaded and unpacked in each 
participating machine. A number of setup steps are 
then completed to integrate each machine into the 
cluster as a worker (Hadoop Cluster Setup, 2017), 
(Spark Standalone Mode, n.d.), (Apache Flink 1.3 
Documentation: Standalone Cluster, n.d.). As this 
process is executed within each participating 
machine, usually by entering commands on a 
terminal, it is prone to failure due to differences 
between environments or human error. The 
architectural pattern proposed in this section presents 
a solution to this problem. 

6.1.2 Image 

An image specifies how to build/get an 
application, its runtime environment and 
dependencies and execute it in a container. It is 
abstract, whereas a container is concrete. Many 
identical containers can be created from a single 
image, which makes them a good choice of 
technology for exploring the elasticity of the cloud 
when building distributed systems. In a similar way 
in which a class is used to instantiate an object in 
object-oriented programming, an image is used to 
instantiate containers in container-based 
implementations. 

Images can be layered, which means new images 
can be created from a base image plus additional 

instructions (Pahl & Lee, 2015). The oracle/openjdk 
image published on DockerHub, for example, is built 
on top of the oraclelinux/7-slim image and contains 
additional instructions to download and install JDK-
8. The oraclelinux/7-slim image, on the other hand,
starts from a base image called scratch (an empty 
image provided by Docker) and contains instructions 
to download and install the Oracle Linux 7 operating 
system (library/oraclelinux - Docker Hub, n.d.). Fig.3 
depicts this example and illustrates how images stack 
up. 

Images are stored in a registry, which can be 
private or public, and downloaded when needed. 
Registries enable version control and promote code 
sharing and reuse. 

6.1.3 Container 

Containers are lightweight runtime environments 
deployed to virtual or physical machines. Each 
machine can have several containers running in it. 
They share the same operating system, but are 
otherwise separate deployment environments. 

6.1.4 Machine 

A bare-metal or virtual machine can have a 
number of containers running on it. They can be 
based on-premises or in the cloud, with the latter 
generally exhibiting greater elasticity. AWS, for 
example, allows vertical scaling of their virtual 
machines through re-sizing, which involves selecting 
a more powerful configuration from the offers 
available (Resizing Your Instance - Amazon Elastic 
Compute Cloud, 2017). 

6.2 Resource Sharing 

The new architectural pattern proposed in this 
research decouples the physical deployment 
environment, i.e. machines, from the artifacts that are 
deployed to them and ultimately the frameworks that 
own the artifacts. Instead of having dedicated 
machines for Hadoop, Spark, etc, these frameworks 
share a pool of resources and take or drop them as 
needed. Increased utilisation and improved access to 
data sharing have been highlighted in the literature as 
advantages associated with pooling resources 
between big data frameworks (Hindman et al., 2011). 
In fact, these factors are particularly relevant in the 
context of cloud-based architectures, where costs are 
transparent and changes are immediately visible. If 
we take, for example, a multi-cloud setup where 
resources are fluid and vendor lock-in is negligible, it 
is possible to scale up using whichever provider is 
most suitable at the time, or even replace providers 
without detrimentally affecting the system. 

empty
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The existence of mixed big data packages, such as 
the Hadoop Ecosystem, suggests that there is no de-
facto big data technology to cater for all different 
needs and scenarios. Instead, organisations tend to 
utilise more than one framework concurrently. This is 
another strong argument for choosing an architecture 
which allows resources to be pooled and shared 
between frameworks. 

Fig.4 illustrates how the proposed architectural 
pattern decouples frameworks from machines by 
introducing a new abstraction: containers. From a 
machine’s perspective, it runs containers. A machine 
is unaware of which frameworks, if any, are 
associated with the containers running on it. Specific 
environment configuration is defined at container 
level, leaving the machine itself generic and agnostic. 
The framework, on the other hand, knows nothing 
about the specific machines on which their workers 
and managers run. It does know which containerised 
workers and managers are part of the cluster at a given 
time, and their corresponding states, but it has no 
knowledge of machines and their configurations.  

Fig.5 illustrates how the proposed architecture 
scales up. Different big data frameworks are 
maintained concurrently, as are different sets of 
machines hosted in different locations. More 
machines can be added to the cluster to scale the 
system vertically. Likewise, more containers can be 
created from a worker image and deployed to the 
cluster if a particular job executed by a framework 
needs to be scaled horizontally.  

6.3 Programming the Big Data Processing 
Pipeline 

This section decouples the big data processing 
pipeline code from the framework under which it 
ultimately runs. When the concept of a processing 
pipeline is abstracted as a series of operations, defined 
by business needs, performed on units of data, we find 
no reason to believe it could not be written in a 
framework-agnostic way. This avoids duplication 
when different frameworks are used and enables the 
portability of the developed artifact between 
frameworks.  

6.3.1 Different Programming Models 

Many big data frameworks claim that any 
programming language can be used to define their 
processing pipelines, e.g. (Apache Storm - Project 
Information, n.d.), (MapReduce Tutorial, 2013). This 
section shall demonstrate that the main issue affecting 
the portability and interoperability of artifacts 
produced for a given framework is not to do with the 
programming language, but with the abstractions and 
programming model to which a developer must 
adhere. These tend to be specific to each framework 
and not easily translatable between them. A simple 
visual example of a classifier and counter 
implementation is used to illustrate this point. 

Imagine a scenario where there are various green 
and yellow circles, and a business need to count how 
many circles there are of each colour. This section 
compares two different approaches to implementing 
a solution: one using MapReduce, a popular 
algorithm for distributed parallel processing of batch 
files, and another using a topology of spouts and 
bolts, abstractions provided by the Storm framework. 
Fig.6 presents a MapReduce-based solution. A 
mapping function is first applied to each element of 
each data set. It accepts coloured circles and outputs 
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numbered coloured circles which, in code, would be 
represented as key/value pairs where the key is the 
colour and the value is the number. The reduce 
function then takes a set of values (all the circles 
where the colour is yellow, or all the circles where the 
colour is green) and performs a reduction operation, 
i.e. transforms them into a smaller set of values. In 
this case, it outputs one element, a circle where the 
number is the sum of all the other numbers in the set. 
The result could also be represented as a key/value 
pair where the key is the colour or the circle and the 
value is the number it displays. 

Storm, a framework mainly designed for stream 
processing, uses a different type of abstraction from 
those used by MapReduce, namely spouts and bolts. 
Spouts represent sources of streaming data, whilst 
bolts represent transformations applied to them. 
Because streaming data is infinite, a similar exercise 
of counting circles by colour only makes sense if time 
is taken into consideration, not only in the visual 
representation, but also in the code implementation of 
a possible solution. Fig. 7 represents a stream-based 
approach to the circle count exercise. Using spouts 
and bolts, it processes each element it sees in real-
time and updates a counter. Because the source of 
data is infinite, the processing of the data is also 
infinite, and the results are never final. 
 

Having examined two very simple examples 
where the same problem is solved using different 
frameworks and different approaches to big data 
processing, it becomes apparent that the lack of 
portability or interoperability between artifacts 
produced for different frameworks is a complex issue 
that goes beyond the simple translation of one library 
into another. The abstractions upon which these 
frameworks are built are fundamentally diverse, one 
of the reasons why they generally provide their own 
libraries. 

In this section, a simple example of a counter for 
different coloured circles was used to obtain an 
insight into how big data frameworks use different 
abstractions and a different programming model to 
implement solutions to the same problem. In 
particular, batch and stream architectures appear to 

differ fundamentally due to the limited or unlimited 
nature of the data source. The Lambda Architecture, 
developed as an answer to this predicament, never did 
circumvent the inconvenience of developers having 
to maintain different pieces of code, containing the 
same business logic, in different places, only because 
the incoming data is, in some cases, limited and, in 
others, unlimited. Section 6.3.3 looks at how this 
dichotomy has been broken and explores the benefits 
associated with using a unified programming model 
with different big data frameworks. Before that, 
however, the following section takes a closer look at 
the traditional scenario of software development 
using different frameworks and different 
programming models. 

6.3.2 Framework-Specific Programming 

Framework-specific programming is hereby 
defined as writing software code which is intended to 
be executed from within a given framework. In a 
scenario where multiple frameworks are used, 
artifacts produced for each framework exist 
independently and are maintained independently 
throughout their existences. If a business case arises 
to duplicate the functionality developed within one 
framework onto a different framework, it is usually 
the case that new code will need to be written, as the 
conceptual model and abstractions used in the 
implementation will be incompatible. Fig. 8 
illustrates the process of programming for specific 
frameworks. 

6.3.3 Framework-Agnostic Programming 

As seen in the previous section, in framework-
specific programming, developers use specialised 
libraries provided by each framework. The processing 
code written is therefore only compatible with a 
particular framework, as are the artifacts produced. 
The necessary conditions to enable framework-
agnostic programming can be understood by once 
again referring to the process in Fig. 8. If, instead of 
using a framework-provided library, developers used 
a common library compatible with the main big data 
frameworks, they would be able to write processing 
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code in a framework-agnostic way, and to produce 
artifacts compatible with multiple frameworks. The 
Apache Beam SDK comes very close to being such a 
library. The issue of fundamental differences between 
programming models for batch and stream is resolved 
by treating all data as if it were streaming. Streaming 
data, due to its unbounded nature, is divided into 
bounded subsets called windows, which are finite and 
can be processed one at a time. The same approach is 
used for the processing of batch data: even though the 
data is finite, it could be so large that, for processing 
purposes, it makes sense to treat it as infinite. Large 
sources of batch data would therefore be divided into 
windows and processed one subset at a time, as if they 
were streaming. Fig. 9 and 10 illustrate the 
windowing of batch data so the same programming 
model is applied for both batch and stream data. 

 

Because it uses the same programming model for 
both batch and stream, the Apache Beam SDK is 
compatible with a number of big data frameworks. At 
the time of writing, it can accept incoming data from 
over 20 different sources, with a number of others still 
in development. These include distributed batch files 
from Hadoop, streaming topics from Kafka, and 
database data from Cassandra or MongoDB (Built-in 
I/O Transforms, n.d.). When it comes to running the 
processing pipelines, however, one of five 
frameworks can currently be used: Flink, Spark, 
Dataflow, Apex and Gearpump (Apache Beam 
Capability Matrix, n.d.). The fact that they are all 
stream-based is not a coincidence, but a limitation 
which arises from the choice of a stream-based 
programming model for batch and stream big data 
processing in Apache Beam. Even though the Beam 
meta-framework accepts clearly finite batch data such 
as distributed Hadoop files, the way it handles batch 
data in the programming layer is as if it were 
streaming. This is both its main strength and its 
limitation, as it allows for a common set of 
abstractions compatible with most big data 
frameworks, but it limits the running platforms to 
stream-based frameworks. 

The benefits of decoupling the programming 
model from specific big data frameworks include less 
code duplication, increased reusability and 
maintainability of artifacts produced, and a shallower 
learning curve for developers wanting to work with 
big data. Fig. 11 illustrates the framework-agnostic 
programming model. Note how the developer only 
produces one artifact, which is then uploaded to 
different frameworks, to be processed using their 
respective resources.  

6.3.4 Framework-Agnostic Programming 
with Pooled Resources 

This section aims to amalgamate the framework 
agnostic programming model described in the 
previous section with the container-based 
architectural pattern proposed earlier. It demonstrates 
how decoupling artifacts from frameworks and from 
the machines that run them leads to less duplication, 
higher maintainability of code, as well as easier, 
simpler and more effective management of machine 
clusters. 

Fig. 12 illustrates the framework-agnostic model 
with pooled resources. Big data processing pipelines 
are developed once per business case, instead of one 
per framework. Once the artifact is ready to be 
released into production, it can be uploaded to and 
executed by any compatible big data framework. 
Because the programming model used is stream-
based, the big data framework must be able to execute 
stream pipelines. This is one of the limitations of the 
model. However, should users of major batch 
processing frameworks such as Hadoop wish to adopt 
the proposed unified model, they could do so with 
minimal impact and without the need for migration 
by adopting a parallel transition strategy over a long 
period of time (Okrent & Vokurka, 2004). Since 
HDFS files can be used as data sources in the 
proposed model, new processing pipelines can be 
developed using the unified model and run by a 
stream engine without affecting the existing code 
developed to run in Hadoop. 

window window

1

1

apply 
windowing 

function

process one 
window
at a time

update counter

Figure 9: Batch Processing using a Stream-Based 

Programming Model 

apply 
windowing 

function

window

process one 
window
at a time

1

1
update counter

Figure 10: Stream Processing using a Stream-Based 

Programming Model 

   Developer

Big Data 
Processing
Pipeline 1

   Framework 1   Machine

distribute
Container

Big Data 
Processing

PipelineContainer
Big Data 

Processing
Pipeline

Big Data 
Processing

Pipeline
Big Data 

Processing
Pipeline

   Framework 2   Machine

distributeBig Data 
Processing

Pipeline

Container
Big Data 

Processing
PipelineContainer

Big Data 
Processing

Pipeline
Big Data 

Processing
Pipeline

Big Data 
Processing

Pipeline

Big Data 
Processing

Pipeline

upload

upload

 

decoupled

Figure 11: Framework-Agnostic Programming 

 



Figure 12: Framework-Agnostic Programming with Pooled 

Resources 

The second decoupling line in Fig. 12 shows how 
resources can be pooled and shared by different 
frameworks. Frameworks have a number of runners 
or workers responsible for the parallel execution of 
data processing pipelines. These workers are typically 
deployed to clusters of machines on a one cluster per 
framework basis, as shown in Fig. 11. This represents 
a potential waste of resources, magnified in a cloud 
scenario where machines are charged on a per-minute 
base. The chance of charges being incurred for 
machines which are idle is higher, since a machine 
commissioned for a given framework’s cluster cannot 
be immediately utilised by a different framework. 
The proposed model solves this issue by allowing 
different frameworks to share the same cluster. 
Runners belonging to different frameworks are 
deployed to machines as containers. Because 
machines only execute containers and know nothing 
about which framework, if any, the containers belong 
to, they become framework-independent and can be 
shared between several of them. 

This section presented the full proposed model for 
big data processing in the cloud. It discussed the 
advantages of utilising a unified programming model 
and a container-based architecture with pooled 
resources for cases where different big data 
frameworks are used simultaneously.  

7 EVALUATION 

Given the vendor lock-in problem which pervades 
current Big Data solutions offered by cloud providers, 
the products of this research are evaluated in terms of 
inter-cloud portability and interoperability, as well as 
usability. Additionally, as existing solutions tend to 
combine a range of technologies to enable processing 
of different types of big data, leading to code 
duplication and low maintainability, these factors are 
considered in our evaluation. 

7.1 Prototype 

For the purposes of evaluating the proposed 
architecture, a prototype was constructed and 
implemented using the OSDC and Microsoft Azure 
clouds. The Apache Beam SDK was used to program 
the big data processing pipeline, since it provides a 
unifying programming model for both batch and 
stream data. Apache Flink was selected as a runner 
since, at the time of writing, it provided the widest 
range of capabilities from the open-source 
technologies supported by Apache Beam (Apache 
Beam Capability Matrix, n.d.).  

Only streaming data was tested in this initial 
experiment. A simple pipeline was constructed to 
calculate the PUE (power usage effectiveness) of a 
fictitious server room. The PUE calculation was 
implemented using the following formula:  

An integrated gateway server dispatching 
consumption data was simulated programmatically. 
The simulator dispatched Total Facility Energy and 
IT Equipment Energy data every second to a Kafka 
server, which fed streaming data to the Big Data 
Framework. 

The data was processed in parallel by Flink 
workers deployed as containerised services to a 
virtual machine in the OSDC, a virtual machine in the 
Azure cloud and two virtual machines running on 
local hardware. As Docker Swarm comes as standard 
with the latest Docker implementations, it was used 
for orchestration and for scaling the number of 
running containers.  

The pipeline code processed the streaming data 
using fixed windows of 30 seconds, based on event 
time. It emitted results at the end of every window, 
and the results were posted to a different Kafka topic. 
For the sake of simplicity, no late data was allowed 
and late data was discarded. 

7.2 Results 

This initial experiment proved that the proposed 
architectural pattern is feasible and allows for a 
unifying model for both batch and stream processing 
by a pool of seamlessly integrated multi-cloud 
resources. It demonstrated the possibility of 
horizontal scaling using orchestration technology to 
increase the number of containers running the 
framework’s workers. It also demonstrated the 
possibility of vertical scaling through the 
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incorporation of additional machines in a provider-
agnostic way. 

In terms of portability and interoperability, we 
compared the proposed solution with existing big data 
architectures offered as managed services in the 
cloud. Table 1 summarises the result of this 
comparison. Solutions which are based on separate 
processing for stream and batch data (Google Cloud 
Dataproc, Microsoft Azure HDInsight, Amazon 
EMR, Oracle Big Data Cloud Service and IBM 
BigInsights) are grouped together and displayed as 
Lambda Architecture. 

Table 1: Comparison Between the Proposed Solution and 

Existing Big Data Architectures in the Cloud 

Evaluation Metric 
Lambda 
Archit. 

Google 
Dataflow 

Proposed 
Solution 

Inter-Cloud Portability Medium Low High 

Inter-Cloud Interoperability Medium Medium High 

Code Duplication High Low Low 

Usability Low Medium Medium 

Inter-cloud portability is defined as the ease with 
which a service hosted in one cloud can be migrated 
to a different cloud. Services based on the Lambda 
Architecture are generally portable, provided that the 
technologies used are open-source and available in 
both the source and the destination clouds. The 
Dataflow solution is based on an open-source 
programming language, but it would require a change 
in service model from SaaS to PaaS in order to be 
easily portable across clouds. Our proposed solution 
is highly portable, as it is based on containers and a 
PaaS service model from the start. Irrespective of 
which cloud provider is utilised, the containers are 
built from the same base image, and guarantee an 
identical execution environment for the service. 

Inter-cloud interoperability is defined as the ease 
with which a service hosted in one cloud can operate 
harmoniously with services hosted on different 
clouds as part of the same architecture. Both the 
Lambda Architecture and the Dataflow solution were 
evaluated as medium, as they do allow for 
distribution, although additional setup would need to 
be carried out in order to provide service discovery 
and orchestration. The proposed solution is ranked as 
high, as it is based on Docker Swarm technology, 
which provides service discovery and orchestration as 
part of the Docker distribution, with no need to install, 
configure and manage an external tool for this 
purpose. Because machines can self-register and 
automatically become part of an orchestrated swarm, 
it does not matter where specific container nodes 
reside, they are all part of the swarm and are 
seamlessly interoperable. 

Code Duplication and Maintainability are related 
metrics, so they are evaluated together. 
Maintainability is defined as the ease with which the 
big data processing code can be changed. Code 
duplication leads to low maintainability, as any 
change in the processing logic needs to be 
implemented twice, increasing the amount of 
development work involved, and the risk of bugs 
being introduced. Lambda Architecture-based 
services use different technologies to process batch 
and stream data, so the logic within the processing 
pipelines is duplicated, leading to low 
maintainability. Both Google Dataflow and the 
solution proposed in this research are based on a 
unified data processing pipeline for batch and stream 
data, so code duplication is low and maintainability is 
improved. 

Usability is defined here as the ease with which a 
developer can approach, learn and work with the 
technologies involved in a given solution. As the 
Lambda Architecture involves a number of different 
technologies such as Hadoop, Spark and Hive, the 
learning curve is high. The Google Dataflow solution 
is based on well documented open-source SDKs 
which are easily accessible to software developers. It 
does not however offer a systematic approach to 
software design and development, leading to code 
disparity and reducing the potential for collaboration 
and reuse. The proposed solution is also a medium at 
this point, but our aim is to develop a domain-specific 
modelling language to facilitate the design and model 
of container-based big data framework deployments 
using a notation that is easy to use and instantly 
recognisable, not only by developers, but also by 
architects and business users. 

8 CONCLUSIONS AND FUTURE 

WORK 

This paper presented a contribution to the field of 
Big Data Analytics and Software Architecture of an 
emerging and unifying architectural pattern for big 
data processing in the cloud. This pattern is based on 
the use of big data frameworks, containers and 
container orchestration technology for the 
deployment of big data processing pipelines capable 
of processing both batch and stream data. We 
demonstrated how the issues of low portability and 
lack of interoperability, identified as common 
shortcomings of current cloud-based solutions, are 
overcome by our proposed solution. 

The issues of code duplication and low 
maintainability, which are known to affect the 
Lambda Architecture, are also addressed by our 



solution. By adopting a unifying programming model 
for processing batch and stream data, we have 
demonstrated how these metrics are improved. 

A limitation of this initial experiment is the fact 
that the evaluation of other big data architectures was 
based on documentation rather than reproduction of 
the experiment. We aim to address this as our 
research progresses. 

We envision further development of the initial 
prototype to collect metrics related to processing time 
from a data flow perspective. The aim is to develop a 
monitoring service to inform cloud consumers of 
delays in the processing of windows of data, thus 
highlighting the need to increase processing capacity 
by scaling the system vertically (i.e. adding more 
virtual machines to the pool).  Correspondingly, the 
monitoring service would gather information on 
whether data is waiting too long to be processed, thus 
suggesting the need to scale the system horizontally 
(i.e. increase the number of containers running the 
framework’s workers). 

We are also working on developing a modelling 
notation and a model-driven engineering approach to 
designing, modelling and developing big data 
solutions using the architectural pattern proposed in 
this paper.  
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