Package 'powerSurvEpi'

March 1, 2021
Version 0.1.3
Date 2021-02-28
Title Power and Sample Size Calculation for Survival Analysis ofEpidemiological Studies
Author Weiliang Qiu, Jorge Chavarro, Ross Lazarus, Bernard Rosner, Jing Ma.
Maintainer Weiliang Qiu weiliang.qiu@gmail.com
Depends R (>= 3.6.0)
Imports stats, survival, pracma
Description Functions to calculate power and
sample size for testing main effect or interaction effect inthe survival analysis of epidemiological studies(non-randomized studies), taking into account thecorrelation between the covariate of the
interest and other covariates. Some calculations also take
into account the competing risks and stratified analysis.
This package also includesa set of functions to calculate power and sample sizefor testing main effect in the survival analysis ofrandomized clinical trials and conditional logistic regression for nested case-control study.
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2021-03-01 06:30:02 UTC
R topics documented:
numDEpi 2
numDEpi.default 4
Oph 6
power.stratify 8
powerConLogistic.bin 10
powerConLogistic.con 12
powerCT 15
powerCT.default 18
powerCT.default0 20
powerEpi 21
powerEpi.default 23
powerEpiCont 25
powerEpiCont.default 27
powerEpiInt 29
powerEpiInt.default0 31
powerEpiInt.default1 33
powerEpiInt2 35
ssize.stratify 37
ssizeCT 39
ssizeCT.default 42
ssizeEpi 44
ssizeEpi.default 46
ssizeEpiCont 48
ssizeEpiCont.default 50
ssizeEpiInt 52
ssizeEpiInt.default0 54
ssizeEpiInt.default1 56
ssizeEpiInt2 58
Index 60
numDEpi Calculate Number of Deaths Required for Cox Proportional Hazards Regression with Two Covariates for Epidemiological Studies

Description

Calculate number of deaths required for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates. Some parameters will be estimated based on a pilot data set.

```
Usage
    numDEpi(X1,
    X2,
    power,
    theta,
    alpha = 0.05)
```


Arguments

X1
numeric. a nPilot by 1 vector, where $n P i l o t$ is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X 1 should be binary and take only two possible values: zero and one.

X2
numeric. a nPilot by 1 vector, where $n P i l o t$ is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 can be binary or non-binary.
power numeric. the postulated power.
theta numeric. postulated hazard ratio
alpha numeric. type I error rate.

Details

This is an implementation of the calculation of the number of required deaths derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

where the covariate X_{1} is of our interest. The covariate X_{1} should be a binary variable taking two possible values: zero and one, while the covariate X_{2} can be binary or continuous.

Suppose we want to check if the hazard of $X_{1}=1$ is equal to the hazard of $X_{1}=0$ or not. Equivalently, we want to check if the hazard ratio of $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the total number of deaths required to achieve a power of $1-\beta$ is

$$
D=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p)\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution,

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ 1).
p and $r h o$ will be estimated from a pilot data set.

Value

D the number of deaths required to achieve the desired power with given type I error rate.
$\mathrm{p} \quad$ proportion of subjects taking $X_{1}=1$.
rho2 square of the correlation between X_{1} and X_{2}.

Note

(1) The formula can be used to calculate power for a randomized trial study by setting rho $2=0$.
(2) When $\mathrm{rho} 2=0$, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio θ measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio θ measures the difference of effect on the cause-specific hazard.

References

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.

Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

See Also

```
numDEpi.default
```


Examples

```
    # generate a toy pilot data set
    X1 <- c(rep(1, 39), rep(0, 61))
    set.seed(123456)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    res <- numDEpi(X1 = X1,
X2 = X2,
power = 0.8,
theta = 2,
alpha = 0.05)
    print(res)
    # proportion of subjects died of the disease of interest.
psi <- 0.505
    # total number of subjects required to achieve the desired power
    ceiling(res$D / psi)
```

 numDEpi.default

Description

Calculate number of deaths required for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

Usage

numDEpi.default(power, theta,
p , rho2, alpha = 0.05)

Arguments

power numeric. the postulated power.
theta numeric. postulated hazard ratio
$\mathrm{p} \quad$ numeric. proportion of subjects taking the value one for the covariate of interest.
rho2 numeric. square of the correlation between the covariate of interest and the other covariate.
alpha numeric. type I error rate.

Details

This is an implementation of the calculation of the number of required deaths derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

where the covariate X_{1} is of our interest. The covariate X_{1} should be a binary variable taking two possible values: zero and one, while the covariate X_{2} can be binary or continuous.
Suppose we want to check if the hazard of $X_{1}=1$ is equal to the hazard of $X_{1}=0$ or not. Equivalently, we want to check if the hazard ratio of $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the total number of deaths required to achieve a power of $1-\beta$ is

$$
D=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p)\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution,

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ $1)$.

Value

The number of deaths required to achieve the desired power with given type I error rate.

Note

(1) The formula can be used to calculate power for a randomized trial study by setting rho2=0.
(2) When r ho $2=0$, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio θ measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio θ measures the difference of effect on the cause-specific hazard.

References

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

See Also

numDEpi

Examples

```
    # Example at the end of Section 5.2 of Latouche et al. (2004)
    # for a cohort study.
    D <- numDEpi.default(power = 0.8,
            theta = 2,
            p = 0.39,
                rho2 = 0.132^2,
            alpha = 0.05)
    # proportion of subjects died of the disease of interest.
    psi <- 0.505
    # total number of subjects required to achieve the desired power
    ceiling(D / psi)
```

Oph Ophthalmology Data

Description

The Ophthalmology data set is described in Example 14.41 on page 807 in Rosner (2006).

Usage
 data(Oph)

Format

A data frame with 354 observations on the following 3 variables.
times a numeric vector recording the survival/censoring time for each event/censoring.
status a numeric vector recording if a observed time is event time (status=1) or censoring time (status=0).
group a factor with levels C (indicating control group) and E (indicating experimental group).

Details

This data set was from a clinical trial (Berson et al., 1993) conducted to test the efficacy of different vitamin supplements in preventing visual loss in patients with retinitis pigmentosa. Rosner (2006) used the data from this clinical trial to illustrate the analysis of survival data (Sections 14.9-14.12 of Rosner (2006)).

The data set consists of two groups of participants: (1) the experimental group (i.e., group E in which participants receiving 15,000 IU of vitamin A per day) and (2) the control group (i.e., group C in which participants receiving 75 IU of vitamin A per day).
The participants were enrolled over a 2-year period (1984-1987) and followed for a maximum of 6 years. The follow-up was terminated in September 1991. Some participants dropped out of the study before September 1991 and had not failed. Dropouts were due to death, other diseases, or side effects possibly due to the study medications, or unwillingness to comply (take study medications). There are 6 time points (at 1st year, 2nd year, 3rd year, 4th year, 5-th year, and 6-th year) in this data set.
Rosner (2006, page 786) defined the participants who do not reach a disease endpoint during their period of follow-up as censored observations. A participant has been censored at time t if the participant has been followed up to time t and has not failed. Noninformative censoring is assumed. That is, participants who are censored have the same underlying survival curve after their censoring time as patients who are not censored.

Source

Created based on Table 14.12 on page 787 of Rosner (2006).

References

Berson, E.L., Rosner, B., Sandberg, M.A., Hayes, K.C., Nicholson, B.W., Weigel-DiFranco, C., and Willett, W.C. (1993). A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Archives of Ophthalmology. 111:761-772.

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

Examples

data(Oph)

Power Calculation for Survival Analysis with Binary Predictor and Exponential Survival Function

Description

Power calculation for survival analysis with binary predictor and exponential survival function.

Usage

power.stratify(
n ,
timeUnit, gVec, PVec,
HR,
lambda0Vec,
power.ini = 0.8,
power.low = 0.001,
power.upp = 0.999, alpha = 0.05, verbose = TRUE)

Arguments

n
timeUnit numeric. Total study length.
gVec numerc. m by 1 vector. The s-th element is the proportion of the total sample size for the s-th stratum, where m is the number of strata.

PVec numeric. m by 1 vector. The s-th element is the proportion of subjects in treatment group 1 for the s-th stratum, where m is the number of strata.
HR numeric. Hazard ratio (Ratio of the hazard for treatment group 1 to the hazard for treatment group 0, i.e. reference group).
lambda0Vec numeric. m by 1 vector. The s-th element is the hazard for treatment group 0 (i.e., reference group) in the s-th stratum.
power.ini numeric. Initial power estimate.
power.low numeric. Lower bound for power.
power.upp numeric. Upper bound for power.
alpha numeric. Type I error rate.
verbose Logical. Indicating if intermediate results will be output or not.

Details

We assume (1) there is only one predictor and no covariates in the survival model (exponential survival function); (2) there are m strata; (3) the predictor x is a binary variable indicating treatment group $1(x=1)$ or treatment group $0(x=0)$; (3) the treatment effect is constant over time (proportional hazards); (4) the hazard ratio is the same in all strata, and (5) the data will be analyzed by the stratified log rank test.
The sample size formula is Formula (1) on page 801 of Palta M and Amini SB (1985):

$$
n=\left(Z_{\alpha}+Z_{\beta}\right)^{2} / \mu^{2}
$$

where α is the Type I error rate, β is the Type II error rate (power $=1-\beta$), Z_{α} is the $100(1-\alpha)$-th percentile of standard normal distribution, and

$$
\mu=\log (\delta) \sqrt{\sum_{s=1}^{m} g_{s} P_{s}\left(1-P_{s}\right) V_{s}}
$$

and

$$
V_{s}=P_{s}\left[1-\frac{1}{\lambda_{1 s}}\left\{\exp \left[-\lambda_{1 s}(T-1)\right]-\exp \left(-\lambda_{1 s} T\right)\right\}\right]+\left(1-P_{s}\right)\left[1-\frac{1}{\lambda_{0 s}}\left\{\exp \left[-\lambda_{0 s}(T-1)\right]-\exp \left(-\lambda_{0 s} T\right\}\right]\right.
$$

In the above formulas, m is the number of strata, T is the total study length, δ is the hazard ratio, g_{s} is the proportion of the total sample size in stratum s, P_{s} is the proportion of stratum s, which is in treatment group 1, and $\lambda_{i s}$ is the hazard for the i-th treatment group in stratum s.

Value

A list of 2 elments.
power Estimated power
res.optim Object returned by funciton optim. We used numerical optimization method to calculate power based on sample size calculation formula.

References

Palta M and Amini SB. (1985). Consideration of covariates and stratification in sample size determination for survival time studies. Journal of Chronic Diseases. 38(9):801-809.

See Also

```
ssize.stratify
```


Examples

```
# example on page 803 of Palta M and Amini SB. (1985).
res.power <- power.stratify(
    n = 146,
    timeUnit = 1.25,
    gVec = c(0.5, 0.5),
```

```
PVec = c(0.5, 0.5),
HR = 1 / 1.91,
lambda0Vec = c(2.303, 1.139),
power.ini = 0.8,
power.low = 0.001,
power.upp = 0.999,
alpha = 0.05,
verbose = TRUE
)
```

powerConLogistic.bin Sample Size Calculation for Conditional Logistic Regression with Binary Covariate

Description

Sample Size Calculation for Conditional Logistic Regression with Binary Covariate, such as matched logistic regression or nested case-control study.

Usage

powerConLogistic.bin(
$N=$ NULL,
power $=0.8$,
OR,
pE,
nD,
nH ,
R2 $=0$,
alpha $=0.05$,
nTests $=1$,
OR. low = 1.01,
OR.upp $=100$
)

Arguments

N
power

OR numeric. Odds ratio $=\exp (\theta)$, where θ is the regression coefficient of the exposure variable.
pE numeric. Population prevalence of exposure.
nD integer. Number of cases per set.
$\mathrm{nH} \quad$ integer. Number of controls per set.
integer. Number of sets. Each set contains nD cases and nH controls.
numeric. Power of the test for if the exposure variable is associated with the risk of diseases

R2 numeric. Coefficient of determination of the exposure variable and other covariates
alpha numeric. family-wise type I error rate.
nTests integer. Number of tests.
OR. low numeric. Lower bound of odds ratio. Only used when OR=NULL and power and N are not equal to NULL.
OR.upp numeric. Upper bound of odds ratio. Only used when OR=NULL and power and N are not equal to NULL.

Details

The power and sample size calculation formulas are provided by Lachin (2008, Section 3.3, Formula (38))

$$
\text { power }=\Phi\left(\sqrt{N c}-z_{\alpha /(2 n T e s t s)}\right)
$$

and

$$
N=\left(z_{\text {power }}+z_{\alpha /(2 n T e s t s)}\right)^{2} / c
$$

where Φ is the cumulative distribution function of the standard normal distribution $N(0,1), z_{a}$ is the upper $100 a$-th percentile of $N(0,1)$,

$$
c=\theta^{2} p E(1-p E)\left(1-R^{2}\right) n D * n H /(n D+n H)
$$

and R^{2} is the coefficient of determination for linear regression linking the exposure with other covariates.

Value

If the inputs is.null $(N)=$ TRUE and is.null(power) $=$ FALSE, then the function returns the number N of sets.
If the inputs is.null $(N)=$ FALSE and is.null (power) $=$ TRUE, then the function returns the power. Otherwise, an error message is output.

References

Lachin, JM Sample Size Evaluation for a Multiply Matched Case-Control Study Using the Score Test From a Conditional Logistic (Discrete Cox PH) Regression Model. Stat Med. 2008 27(14): 2509-2523

Examples

```
# estimate power
power = powerConLogistic.bin(
    N = 59,
    power = NULL,
    OR = 3.5,
    pE = 0.15,
```

```
        nD = 1,
        nH = 2,
        R2 = 0,
        alpha = 0.05,
        nTests = 1)
print(power) # 0.80
# estimate N (number of sets)
N = powerConLogistic.bin(
    N = NULL,
    power = 0.80,
    OR = 3.5,
    pE = 0.15,
    nD = 1,
    nH=2,
    R2 = 0,
    alpha = 0.05,
    nTests = 1)
print(ceiling(N)) # 59
# estimate OR
OR = powerConLogistic.bin(
    N = 59,
    power = 0.80,
    OR = NULL,
    pE = 0.15,
    nD = 1,
    nH = 2,
    R2 = 0,
    alpha = 0.05,
    nTests = 1,
    OR.low = 1.01,
    OR.upp = 100)
print(OR) # 3.49
```

powerConLogistic.con Sample Size Calculation for Conditional Logistic Regression with Continuous Covariate

Description

Sample Size Calculation for Conditional Logistic Regression with Continuous Covariate, such as matched logistic regression or nested case-control study.

Usage

powerConLogistic.con($\mathrm{N}=\mathrm{NULL}$, power = 0.8, OR, sigma,
nD,
nH ,
R2 $=0$,
alpha $=0.05$, nTests = 1, OR. low $=1.01$, OR.upp $=100$
)

Arguments

N
power numeric. Power of the test for if the exposure variable is associated with the risk of diseases
OR numeric. Odds ratio $=\exp (\theta)$, where θ is the regression coefficient of the exposure variable.
sigma numeric. Standard deviation of the continuous exposure variable.
nD integer. Number of cases per set.
$\mathrm{nH} \quad$ integer. Number of controls per set.
R2 numeric. Coefficient of determination of the exposure variable and other covariates
alpha numeric. family-wise type I error rate.
nTests integer. Number of tests.
OR. low numeric. Lower bound of odds ratio. Only used when OR=NULL and power and N are not equal to NULL.

OR.upp numeric. Upper bound of odds ratio. Only used when OR=NULL and power and N are not equal to NULL.

Details

The power and sample size calculation formulas are provided by Lachin (2008, Section 3.1, Formulas (24) and (25))

$$
\text { power }=\Phi\left(\sqrt{N c}-z_{\alpha /(2 n T e s t s)}\right)
$$

and

$$
N=\left(z_{\text {power }}+z_{\alpha /(2 n T e s t s)}\right)^{2} / c
$$

where Φ is the cumulative distribution function of the standard normal distribution $N(0,1), z_{a}$ is the upper 100a-th percentile of $N(0,1)$,

$$
c=\theta^{2} \sigma^{2} n D(1-1 / b)\left(1-R^{2}\right)
$$

and b is the Binomial coefficient (n chooses $n D$), $n=n D+n H$, and R^{2} is the coefficient of determination for linear regression linking the exposure with other covariates.

Value

If the inputs is.null $(N)=$ TRUE and is.null(power) $=$ FALSE, then the function returns the number N of sets.

If the inputs is. null $(N)=$ FALSE and is.null (power) $=$ TRUE, then the function returns the power. Otherwise, an error message is output.

References

Lachin, JM Sample Size Evaluation for a Multiply Matched Case-Control Study Using the Score Test From a Conditional Logistic (Discrete Cox PH) Regression Model. Stat Med. 2008 27(14): 2509-2523

Examples

```
library(pracma)
# Section 4.1 in Lachin (2008)
# estimate number of sets
N = powerConLogistic.con(N = NULL,
                                    power = 0.85,
                            OR = 1.39,
                            sigma = 1,
                    nD = 1,
                    nH = 2,
                            R2 = 0,
                            alpha = 0.05,
                            nTests = 1)
print(ceiling(N)) # 125
# estimate power
power = powerConLogistic.con(N = 125,
                    power = NULL,
                            OR = 1.39,
                        sigma = 1,
                        nD = 1,
                        nH = 2,
                        R2 = 0,
                            alpha = 0.05,
                        nTests = 1)
```

print(power) \# 0.85
\# estimate OR
$O R=$ powerConLogistic.con(N $=125$,

> power $=0.85$,
> $\mathrm{OR}=\mathrm{NULL}$,
> sigma $=1$,
> $\mathrm{nD}=1$,
> $\mathrm{nH}=2$,
> $\mathrm{R} 2=0$,
> alpha $=0.05$,
> $\mathrm{nTests}=1)$
print(OR) \# 1.39
powerct Power Calculation in the Analysis of Survival Data for Clinical Trials

Description

Power calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials. Some parameters will be estimated based on a pilot data set.

Usage

powerCT(formula,
dat,
nE ,
nC,
RR,
alpha $=0.05$)

Arguments

formula	A formula object, e.g. Surv(time, status) $\sim x$, where time is a vector of sur- vival/censoring time, status is a vector of censoring indicator, x is the group indicator, which is a factor object in R and takes only two possible values (C for control group and E for experimental group). See also the documentation of the function survfit in the library survival.
dat	a data frame representing the pilot data set and containing at least 3 columns: (1) survival/censoring time; (2) censoring indicator; (3) group indicator which is a factor object in R and takes only two possible values (C for control group and E for experimental group).
nE	integer. number of participants in the experimental group.
nC	integer. number of participants in the control group.
RR	numeric. postulated hazard ratio.
alpha numeric. type I error rate.	

Details

This is an implementation of the power calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).
The movitation of this function is that some times we do not have information about m or p_{E} and p_{C} available, but we have a pilot data set that can be used to estimate p_{E} and p_{C} hence m, where $m=n_{E} p_{E}+n_{C} p_{C}$ is the expected total number of events over both groups, n_{E} and n_{C} are numbers of participants in group E (experimental group) and group C (control group), respectively. p_{E} is the probability of failure in group E (experimental group) over the maximum time period of the study (t years). p_{C} is the probability of failure in group C (control group) over the maximum time period of the study (t years).
Suppose we want to compare the survival curves between an experimental group (E) and a control group (C) in a clinical trial with a maximum follow-up of t years. The Cox proportional hazards regression model is assumed to have the form:

$$
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
$$

Let n_{E} be the number of participants in the E group and n_{C} be the number of participants in the C group. We wish to test the hypothesis $H 0: R R=1$ versus $H 1: R R$ not equal to 1 , where $R R=\exp \left(\beta_{1}\right)=$ underlying hazard ratio for the E group versus the C group. Let $R R$ be the postulated hazard ratio, α be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group $\mathrm{C}=n_{E} / n_{C}=k$, then the power of the test is

$$
\text { power }=\Phi\left(\sqrt{k * m} *|R R-1| /(k * R R+1)-z_{1-\alpha / 2}\right)
$$

where

$$
m=n_{E} p_{E}+n_{C} p_{C}
$$

and $z_{1-\alpha / 2}$ is the $100(1-\alpha / 2)$-th percentile of the standard normal distribution $N(0,1), \Phi$ is the cumulative distribution function (CDF) of $N(0,1)$.
p_{C} and p_{E} can be calculated from the following formulaes:

$$
p_{C}=\sum_{i=1}^{t} D_{i}, p_{E}=\sum_{i=1}^{t} E_{i}
$$

where $D_{i}=\lambda_{i} A_{i} C_{i}, E_{i}=R R \lambda_{i} B_{i} C_{i}, A_{i}=\prod_{j=0}^{i-1}\left(1-\lambda_{j}\right), B_{i}=\prod_{j=0}^{i-1}\left(1-R R \lambda_{j}\right), C_{i}=$ $\prod_{j=0}^{i-1}\left(1-\delta_{j}\right)$. And λ_{i} is the probability of failure at time i among participants in the control group, given that a participant has survived to time $i-1$ and is not censored at time $i-1$, i.e., the approximate hazard time i in the control group, $i=1, \ldots, t ; R R l a m b d a_{i}$ is the probability of failure at time i among participants in the experimental group, given that a participant has survived to time $i-1$ and is not censored at time $i-1$, i.e., the approximate hazard time i in the experimental group, $i=1, \ldots, t$, delta is the prbability that a participant is censored at time i given that he was followed up to time i and has not failed, $i=0,1, \ldots, t$, which is assumed the same in each group.

Value

mat.lambda
a matrix with 9 columns and nTimes +1 rows, where $n T i m e s$ is the number of observed time points for the control group in the data set. The 9 columns are (1) time - observed time point for the control group; (2) lambda; (3) RRlambda; (4)
delta; (5) A; (6) B; (7) C; (8) D; (9) E. Please refer to the Details section for the definitions of elements of these quantities. See also Table 14.24 on page 809 of Rosner (2006).
mat.event a matrix with 5 columns and n Times +1 rows, where $n T i m e s$ is the number of observed time points for control group in the data set. The 5 columns are (1) time - observed time point for the control group; (2) nEvent. C - number of events in the control group at each time point; (3) nCensored. C - number of censorings in the control group at each time point; (4) nSurvive. C - number of alived in the control group at each time point; (5) nRisk.C - number of participants at risk in the control group at each time point. Please refer to Table 14.12 on page 787 of Rosner (2006).
pC estimated probability of failure in group C (control group) over the maximum time period of the study (t years).
$\mathrm{pE} \quad$ estimated probability of failure in group E (experimental group) over the maximum time period of the study (t years).
power the power of the test.

Note

(1) The estimates of $R R l a m b d a_{i}=R R * \lambda_{i}$. That is, RRlambda is not directly estimated based on data from the experimental group; (2) The power formula assumes that the central-limit theorem is valid and hence is appropriate for large samples.

References

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129
Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

See Also

powerCT.default0, powerCT.default

Examples

```
    # Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    # (6-th edition). (2006) page 809
    library(survival)
    data(Oph)
    res <- powerCT(formula = Surv(times, status) ~ group,
dat = Oph,
            nE = 200,
nC = 200,
RR = 0.7,
alpha = 0.05)
    # Table 14.24 on page 809 of Rosner (2006)
```

```
print(round(res$mat.lambda, 4))
# Table 14.12 on page 787 of Rosner (2006)
print(round(res$mat.event, 4))
# the power
print(round(res$power, 2))
```

powerCT. default Power Calculation in the Analysis of Survival Data for Clinical Trials

Description

Power calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials.

Usage

powerCT.default(nE,
nC ,
pE ,
pC ,
RR,
alpha = 0.05)

Arguments

$n E \quad$ integer. number of participants in the experimental group.
$\mathrm{nC} \quad$ integer. number of participants in the control group.
$\mathrm{pE} \quad$ numeric. probability of failure in group E (experimental group) over the maximum time period of the study (t years).
$\mathrm{pC} \quad$ numeric. probability of failure in group C (control group) over the maximum time period of the study (t years).
RR numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).

Suppose we want to compare the survival curves between an experimental group (E) and a control group (C) in a clinical trial with a maximum follow-up of t years. The Cox proportional hazards regression model is assumed to have the form:

$$
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
$$

Let n_{E} be the number of participants in the E group and n_{C} be the number of participants in the C group. We wish to test the hypothesis $H 0: R R=1$ versus $H 1: R R$ not equal to 1 , where $R R=\exp \left(\beta_{1}\right)=$ underlying hazard ratio for the E group versus the C group. Let $R R$ be the postulated hazard ratio, α be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group $\mathrm{C}=n_{E} / n_{C}=k$, then the power of the test is

$$
\text { power }=\Phi\left(\sqrt{k * m} *|R R-1| /(k * R R+1)-z_{1-\alpha / 2}\right)
$$

where

$$
m=n_{E} p_{E}+n_{C} p_{C}
$$

and $z_{1-\alpha / 2}$ is the $100(1-\alpha / 2)$-th percentile of the standard normal distribution $N(0,1), \Phi$ is the cumulative distribution function (CDF) of $N(0,1)$.

Value

The power of the test.

Note

The power formula assumes that the central-limit theorem is valid and hence is appropriate for large samples.

References

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

See Also

```
powerCT.default0, powerCT
```


Examples

```
    # Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    # (6-th edition). (2006) page 809
    powerCT.default(nE = 200,
    nC = 200,
    pE = 0.3707,
    pC = 0.4890,
        RR = 0.7,
    alpha = 0.05)
```


Description

Power calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials.

Usage

powerCT.defaulto(k,
m,
RR,
alpha $=0.05$)

Arguments

k
numeric. ratio of participants in group E (experimental group) compared to group C (control group).
$m \quad$ integer. expected total number of events over both groups.
RR numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).
Suppose we want to compare the survival curves between an experimental group (E) and a control group (C) in a clinical trial with a maximum follow-up of t years. The Cox proportional hazards regression model is assumed to have the form:

$$
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
$$

Let n_{E} be the number of participants in the E group and n_{C} be the number of participants in the C group. We wish to test the hypothesis $H 0: R R=1$ versus $H 1: R R$ not equal to 1 , where $R R=\exp \left(\beta_{1}\right)=$ underlying hazard ratio for the E group versus the C group. Let $R R$ be the postulated hazard ratio, α be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group $\mathrm{C}=n_{E} / n_{C}=k$, then the power of the test is

$$
\text { power }=\Phi\left(\sqrt{k * m} *|R R-1| /(k * R R+1)-z_{1-\alpha / 2}\right)
$$

where $z_{1-\alpha / 2}$ is the $100(1-\alpha / 2)$-th percentile of the standard normal distribution $N(0,1), \Phi$ is the cumulative distribution function (CDF) of $N(0,1)$.

Value

The power of the test.

Note

The power formula assumes that the central-limit theorem is valid and hence is appropriate for large samples.

References

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129
Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

See Also

powerCT.default, powerCT

Examples

```
    # Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    # (6-th edition). (2006) page 809
    powerCT.default0(k = 1,
    m = 171.9,
    RR = 0.7,
    alpha = 0.05)
```

powerEpi Power Calculation for Cox Proportional Hazards Regression with Two Covariates for Epidemiological Studies

Description

Power calculation for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates. Some parameters will be estimated based on a pilot data set.

Usage

powerEpi(X1, X2, failureFlag, n, theta, alpha = 0.05)

Arguments

X 1 numeric. a nPilot by 1 vector, where nPil ot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X 1 should be binary and take only two possible values: zero and one.

X2
numeric. a nPilot by 1 vector, where $n P i l o t$ is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 can be binary or non-binary.

failureFlag	numeric. a nPilot by 1 vector of indicators indicating if a subject is failure $($ failureFlag=1) or alive (failureFlag=0).
n	integer. total number of subjects
theta	numeric. postulated hazard ratio
alpha	numeric. type I error rate.

Details

This is an implementation of the power calculation formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

where the covariate X_{1} is of our interest. The covariate X_{1} should be a binary variable taking two possible values: zero and one, while the covariate X_{2} can be binary or continuous.
Suppose we want to check if the hazard of $X_{1}=1$ is equal to the hazard of $X_{1}=0$ or not. Equivalently, we want to check if the hazard ratio of $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp \left(\beta_{1}\right)=\theta$ is

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right),
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ 1).
p, ρ^{2}, and ψ will be estimated from a pilot data set.

Value

power the power of the test.
$\mathrm{p} \quad$ proportion of subjects taking $X_{1}=1$.
rho2 square of the correlation between X_{1} and X_{2}.
psi proportion of subjects died of the disease of interest.

Note

(1) The formula can be used to calculate power for a randomized trial study by setting rho $2=0$.
(2) When $\rho^{2}=0$, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio θ measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio θ measures the difference of effect on the cause-specific hazard.

References

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

See Also

powerEpi.default

Examples

```
    # generate a toy pilot data set
    X1 <- c(rep(1, 39), rep(0, 61))
    set.seed(123456)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    failureFlag <- sample(c(0, 1), 100, prob = c(0.5, 0.5), replace = TRUE)
    powerEpi(X1 = X1, X2 = X2, failureFlag = failureFlag,
        n = 139, theta = 2, alpha = 0.05)
```

powerEpi.default | Power Calculation for Cox Proportional Hazards Regression with |
| :---: |
| Two Covariates for Epidemiological Studies |

Description

Power calculation for Cox proportional hazards regression with two covariates for epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

Usage

powerEpi.default(n, theta,
p,
psi,
rho2,
alpha $=0.05$)

Arguments

n	integer. total number of subjects
theta	numeric. postulated hazard ratio

$\mathrm{p} \quad$ numeric. proportion of subjects taking the value one for the covariate of interest.

$$
\begin{array}{ll}
\text { psi } & \text { numeric. proportion of subjects died of the disease of interest. } \\
\text { rho2 } & \begin{array}{l}
\text { numeric. square of the correlation between the covariate of interest and the other } \\
\text { covariate. }
\end{array} \\
\text { alpha } & \text { numeric. type I error rate. }
\end{array}
$$

Details

This is an implementation of the power calculation formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

where the covariate X_{1} is of our interest. The covariate X_{1} should be a binary variable taking two possible values: zero and one, while the covariate X_{2} can be binary or continuous.
Suppose we want to check if the hazard of $X_{1}=1$ is equal to the hazard of $X_{1}=0$ or not. Equivalently, we want to check if the hazard ratio of $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp \left(\beta_{1}\right)=\theta$ is

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right),
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ $1)$.

Value

The power of the test.

Note

(1) The formula can be used to calculate power for a randomized trial study by setting rho $2=0$.
(2) When rho2=0, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio θ measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio θ measures the difference of effect on the cause-specific hazard.

References

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

See Also

```
powerEpi
```


Examples

```
# Example at the end of Section 5.2 of Latouche et al. (2004)
# for a cohort study.
powerEpi.default(n = 139,
    theta = 2,
    p = 0.39,
    psi = 0.505,
    rho2 = 0.132^2,
    alpha = 0.05)
```

```
powerEpiCont
```

Power Calculation for Cox Proportional Hazards Regression with Nonbinary Covariates for Epidemiological Studies

Description

Power calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies. Some parameters will be estimated based on a pilot data set.

Usage

powerEpiCont(formula, dat,
var.X1, var.failureFlag,
n,
theta,
alpha $=0.05$)

Arguments

formula a formula object relating the covariate of interest to other covariates to calculate the multiple correlation coefficient. The variables in formula must be in the data frame dat.
dat a nPilot by p data frame representing the pilot data set, where nPil ot is the number of subjects in the pilot study and the $p(>1)$ columns contains the covariate of interest and other covariates.
var. X1 character. name of the column in the data frame dat, indicating the covariate of interest.
var.failureFlag
character. name of the column in the data frame dat, indicating if a subject is failure (taking value 1) or alive (taking value 0).
$\mathrm{n} \quad$ integer. total number of subjects.
theta numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2}\right)
$$

where the covariate X_{1} is a nonbinary variable and \boldsymbol{X}_{2} is a vector of other covariates.
Suppose we want to check if the hazard ratio of the main effect $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp \left(\beta_{1}\right)=\theta$ is

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}\right),
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, $\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi$ is the proportion of subjects died of the disease of interest, and ρ is the multiple correlation coefficient of the following linear regression:

$$
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2}
$$

That is, $\rho^{2}=R^{2}$, where R^{2} is the proportion of variance explained by the regression of X_{1} on the vector of covriates \boldsymbol{X}_{2}.
$r h o$ will be estimated from a pilot study.

Value

power The power of the test.
rho2 square of the correlation between X_{1} and X_{2}.
sigma2 variance of the covariate of interest.
psi proportion of subjects died of the disease of interest.

Note

(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate power for a randomized trial study by setting rho2=0.

References

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

See Also

powerEpiCont.default

Examples

```
# generate a toy pilot data set
set.seed(123456)
X1 <- rnorm(100, mean = 0, sd = 0.3126)
X2 <- sample(c(0, 1), 100, replace = TRUE)
failureFlag <- sample(c(0, 1), 100, prob = c(0.25, 0.75), replace = TRUE)
dat <- data.frame(X1 = X1, X2 = X2, failureFlag = failureFlag)
powerEpiCont(formula = X1 ~ X2,
        dat = dat,
        var.X1 = "X1",
        var.failureFlag = "failureFlag",
                n = 107,
        theta = exp(1),
        alpha = 0.05)
```

powerEpiCont.default Power Calculation for Cox Proportional Hazards Regression with
Nonbinary Covariates for Epidemiological Studies

Description

Power calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies.

Usage

```
    powerEpiCont.default(n,
        theta,
        sigma2,
        psi,
        rho2,
        alpha = 0.05)
```


Arguments

n
theta
sigma2 numeric. variance of the covariate of interest.
psi numeric. proportion of subjects died of the disease of interest.
rho2 numeric. square of the multiple correlation coefficient between the covariate of interest and other covariates.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2}\right)
$$

where the covariate X_{1} is a nonbinary variable and \boldsymbol{X}_{2} is a vector of other covariates.
Suppose we want to check if the hazard ratio of the main effect $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp \left(\beta_{1}\right)=\theta$ is

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{n[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}\right)
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, $\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi$ is the proportion of subjects died of the disease of interest, and ρ is the multiple correlation coefficient of the following linear regression:

$$
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2}
$$

That is, $\rho^{2}=R^{2}$, where R^{2} is the proportion of variance explained by the regression of X_{1} on the vector of covriates \boldsymbol{X}_{2}.

Value

The power of the test.

Note

(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate power for a randomized trial study by setting rho2=0.

References

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

See Also

powerEpiCont

Examples

```
    # example in the EXAMPLE section (page 557) of Hsieh and Lavori (2000).
    # Hsieh and Lavori (2000) assumed one-sided test,
    # while this implementation assumed two-sided test.
    # Hence alpha=0.1 here (two-sided test) will correspond
    # to alpha=0.05 of one-sided test in Hsieh and Lavori's (2000) example.
    powerEpiCont.default(n = 107,
        theta = exp(1),
        sigma2 = 0.3126^2,
            psi = 0.738,
```

$$
\text { rho2 }=0.1837,
$$

alpha = 0.1)

Power Calculation Testing Interaction Effect for Cox Proportional Hazards Regression with two covariates for Epidemiological Studies (Both covariates should be binary)

Description

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates. Some parameters will be estimated based on a pilot study.

Usage

powerEpiInt(X1,
X2,
failureFlag,
n,
theta,
alpha $=0.05$)

Arguments

X1 numeric. a nPilot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X 1 should be binary and take only two possible values: zero and one.

X2
numeric. a nPilot by 1 vector, where $n P i l o t$ is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 should be binary and take only two possible values: zero and one.
failureFlag numeric.a nPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
n
integer. total number of subjects.
theta numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
$$

where both covariates X_{1} and X_{2} are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect $X_{1} X_{2}=1$ to $X_{1} X_{2}=0$ is equal to 1 or is equal to $\exp (\gamma)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp (\gamma)=\theta$ is:

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{\delta}[\log (\theta)]^{2} \psi}\right)
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution,

$$
\delta=\frac{1}{p_{00}}+\frac{1}{p_{01}}+\frac{1}{p_{10}}+\frac{1}{p_{11}}
$$

ψ is the proportion of subjects died of the disease of interest, and $p_{00}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $X_{2}=$ $0)$, $p_{01}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=1\right.$, and, $\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=\right.$ 1 , and, $X_{2}=1$).
$p_{00}, p_{01}, p_{10}, p_{11}$, and ψ will be estimated from the pilot data.

Value

power the power of the test.
p estimated $\operatorname{Pr}\left(X_{1}=1\right)$
q estimated $\operatorname{Pr}\left(X_{2}=1\right)$
p0 estimated $\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$
p1 estimated $\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)$
rho2 square of the estimated $\operatorname{corr}\left(X_{1}, X_{2}\right)$
G
a factor adjusting the sample size. The sample size needed to detect an effect of a prognostic factor with given error probabilities has to be multiplied by the factor G when an interaction of the same magnitude is to be detected.
mya estimated number of subjects taking values $X_{1}=0$ and $X_{2}=0$.
myb estimated number of subjects taking values $X_{1}=0$ and $X_{2}=1$.
myc estimated number of subjects taking values $X_{1}=1$ and $X_{2}=0$.
myd estimated number of subjects taking values $X_{1}=1$ and $X_{2}=1$.
psi proportion of subjects died of the disease of interest.

References

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

See Also

```
powerEpiInt.default0, powerEpiInt2
```


Examples

```
    # generate a toy pilot data set
    X1 <- c(rep(1, 39), rep(0, 61))
    set.seed(123456)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    failureFlag <- sample(c(0, 1), 100, prob = c(0.25, 0.75), replace = TRUE)
    powerEpiInt(X1 = X1,
        X2 = X2,
        failureFlag = failureFlag,
        n = 184,
        theta = 3,
        alpha = 0.05)
```

powerEpiInt.defaulto Power Calculation Testing Interaction Effect for Cox Proportional
Hazards Regression

Description

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

Usage

powerEpiInt. default0(n, theta,
p ,
psi,
G, rho2, alpha = 0.05)

Arguments

$\mathrm{n} \quad$ integer. total number of subjects.
theta numeric. postulated hazard ratio.
p
numeric. proportion of subjects taking the value one for the covariate of interest.
psi numeric. proportion of subjects died of the disease of interest.
numeric. a factor adjusting the sample size. The sample size needed to detect an effect of a prognostic factor with given error probabilities has to be multiplied by the factor G when an interaction of the same magnitude is to be detected.
rho2 numeric. square of the correlation between the covariate of interest and the other covariate.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
$$

where both covariates X_{1} and X_{2} are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect $X_{1} X_{2}=1$ to $X_{1} X_{2}=0$ is equal to 1 or is equal to $\exp (\gamma)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp (\gamma)=\theta$ is

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{G}[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right)
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ $1)$, and

$$
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
$$

If X_{1} and X_{2} are uncorrelated, we have $p_{0}=p_{1}=p$ leading to $1 /[(1-q) q]$. For $q=0.5$, we have $G=4$.

Value

The power of the test.

References

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

See Also

powerEpiInt.default1, powerEpiInt2

Examples

```
# Example at the end of Section 4 of Schmoor et al. (2000).
powerEpiInt.default0(n = 184,
    theta = 3,
    p = 0.61,
    psi = 139 / 184,
        G = 4.79177,
    rho2 = 0.015^2,
    alpha = 0.05)
```

powerEpiInt.default1 | Power Calculation Testing Interaction Effect for Cox Proportional |
| :---: |
| Hazards Regression | Hazards Regression

Description

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

Usage

powerEpiInt.default1(n, theta, psi, p00, p01, p10, p11, alpha $=0.05$)

Arguments

n
theta
psi
p00 numeric. proportion of subjects taking values $X_{1}=0$ and $X_{2}=0$, i.e., $p_{00}=$ $\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=0\right)$.
p01 numeric. proportion of subjects taking values $X_{1}=0$ and $X_{2}=1$, i.e., $p_{01}=$ $\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=1\right)$.
p10 numeric. proportion of subjects taking values $X_{1}=1$ and $X_{2}=0$, i.e., $p_{10}=$ $\operatorname{Pr}\left(X_{1}=1\right.$, and, $\left.X_{2}=0\right)$.
p11 numeric. proportion of subjects taking values $X_{1}=1$ and $X_{2}=1$, i.e., $p_{11}=$ $\operatorname{Pr}\left(X_{1}=1\right.$, and, $\left.X_{2}=1\right)$.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
$$

where both covariates X_{1} and X_{2} are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect $X_{1} X_{2}=1$ to $X_{1} X_{2}=0$ is equal to 1 or is equal to $\exp (\gamma)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp (\gamma)=\theta$ is:

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{\delta}[\log (\theta)]^{2} \psi}\right)
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution,

$$
\delta=\frac{1}{p_{00}}+\frac{1}{p_{01}}+\frac{1}{p_{10}}+\frac{1}{p_{11}}
$$

ψ is the proportion of subjects died of the disease of interest, and $p_{00}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $X_{2}=$ $0), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=1\right.$, and, $\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=\right.$ 1 , and, $X_{2}=1$).

Value

The power of the test.

References

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

See Also

powerEpiInt.default0, powerEpiInt2

Examples

```
# Example at the end of Section 4 of Schmoor et al. (2000).
# p00, p01, p10, and p11 are calculated based on Table III on page 448
    # of Schmoor et al. (2000).
    powerEpiInt.default1(n = 184,
        theta = 3,
        psi = 139 / 184,
        p00 = 50 / 184,
    p01 = 21 / 184,
    p10 = 78 / 184,
    p11 = 35 / 184,
        alpha = 0.05)
```


Description

Power calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

Usage

powerEpiInt2(n, theta, psi,
mya,
myb,
myc,
myd,
alpha $=0.05$)

Arguments

n
integer. total number of subjects.
theta numeric. postulated hazard ratio.
psi numeric. proportion of subjects died of the disease of interest.
mya integer. number of subjects taking values $X_{1}=0$ and $X_{2}=0$ obtained from a pilot study.
myb integer. number of subjects taking values $X_{1}=0$ and $X_{2}=1$ obtained from a pilot study.
myc integer. number of subjects taking values $X_{1}=1$ and $X_{2}=0$ obtained from a pilot study.
myd integer. number of subjects taking values $X_{1}=1$ and $X_{2}=1$ obtained from a pilot study.
alpha numeric. type I error rate.

Details

This is an implementation of the power calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
$$

where both covariates X_{1} and X_{2} are binary variables.

Suppose we want to check if the hazard ratio of the interaction effect $X_{1} X_{2}=1$ to $X_{1} X_{2}=0$ is equal to 1 or is equal to $\exp (\gamma)=\theta$. Given the type I error rate α for a two-sided test, the power required to detect a hazard ratio as small as $\exp (\gamma)=\theta$ is

$$
\text { power }=\Phi\left(-z_{1-\alpha / 2}+\sqrt{\frac{n}{G}[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}\right),
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ $1)$, and

$$
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
$$

and $p 0=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)=m y c /(m y a+m y c), p 1=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)=$ $m y d /(m y b+m y d), p=\operatorname{Pr}\left(X_{1}=1\right)=(m y c+m y d) / n_{o b s}, q=\operatorname{Pr}\left(X_{2}=1\right)=(m y b+$ $m y d) / n_{o b s}, n_{o b s}=m y a+m y b+m y c+m y d$.
$p_{00}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.$ 1 , and, $\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.$, and, $\left.X_{2}=1\right)$.

Value

The power of the test.

References

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

See Also

powerEpiInt.default0, powerEpiInt.default1

Examples

```
    # Example at the end of Section 4 of Schmoor et al. (2000).
    # mya, myb, myc, and myd are obtained from Table III on page 448
    # of Schmoor et al. (2000).
    powerEpiInt2(n = 184,
        theta = 3,
        psi = 139 / 184,
            mya = 50,
        myb = 21,
        myc = 78,
        myd = 35,
        alpha = 0.05)
```


Description

Sample size calculation for survival analysis with binary predictor and exponential survival function.

Usage

ssize.stratify(
power,
timeUnit,
gVec,
PVec,
HR,
lambda0Vec,
alpha $=0.05$,
verbose = TRUE)

Arguments

power numeric. Power of the test.
timeUnit numeric. Total study length.
gVec numeric. m by 1 vector. The s-th element is the proportion of the total sample size for the s-th stratum, where m is the number of strata.
PVec numeric. m by 1 vector. The s-th element is the proportion of subjects in treatment group 1 for the s-th stratum, where m is the number of strata.
HR numeric. Hazard ratio (Ratio of the hazard for treatment group 1 to the hazard for treatment group 0, i.e. reference group).
lambda0Vec numeric. m by 1 vector. The s-th element is the hazard for treatment group 0 (i.e., reference group) in the s-th stratum.
alpha numeric. Type I error rate.
verbose Logical. Indicating if intermediate results will be output or not.

Details

We assume (1) there is only one predictor and no covariates in the survival model (exponential survival function); (2) there are m strata; (3) the predictor x is a binary variable indicating treatment group $1(x=1)$ or treatment group $0(x=0)$; (3) the treatment effect is constant over time (proportional hazards); (4) the hazard ratio is the same in all strata, and (5) the data will be analyzed by the stratified log rank test.
The sample size formula is Formula (1) on page 801 of Palta M and Amini SB (1985):

$$
n=\left(Z_{\alpha}+Z_{\beta}\right)^{2} / \mu^{2}
$$

where α is the Type I error rate, β is the Type II error rate (power=1- β), Z_{α} is the $100(1-\alpha)$-th percentile of standard normal distribution, and

$$
\mu=\log (\delta) \sqrt{\sum_{s=1}^{m} g_{s} P_{s}\left(1-P_{s}\right) V_{s}}
$$

and

$$
V_{s}=P_{s}\left[1-\frac{1}{\lambda_{1 s}}\left\{\exp \left[-\lambda_{1 s}(T-1)\right]-\exp \left(-\lambda_{1 s} T\right)\right\}\right]+\left(1-P_{s}\right)\left[1-\frac{1}{\lambda_{0 s}}\left\{\exp \left[-\lambda_{0 s}(T-1)\right]-\exp \left(-\lambda_{0 s} T\right\}\right]\right.
$$

In the above formulas, m is the number of strata, T is the total study length, δ is the hazard ratio, g_{s} is the proportion of the total sample size in stratum s, P_{s} is the proportion of stratum s, which is in treatment group 1, and $\lambda_{i s}$ is the hazard for the i-th treatment group in stratum s.

Value

The sample size.

References

Palta M and Amini SB. (1985). Consideration of covariates and stratification in sample size determination for survival time studies. Journal of Chronic Diseases. 38(9):801-809.

See Also

```
power.stratify
```


Examples

```
# example on page 803 of Palta M and Amini SB. (1985).
n <- ssize.stratify(
    power = 0.9,
    timeUnit = 1.25,
    gVec = c(0.5, 0.5),
    PVec = c(0.5, 0.5),
    HR = 1 / 1.91,
    lambda0Vec = c(2.303, 1.139),
    alpha = 0.05,
    verbose = TRUE
)
```


Sample Size Calculation in the Analysis of Survival Data for Clinical

 Trials
Description

Sample size calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials. Some parameters will be estimated based on a pilot data set.

Usage

ssizeCT(formula,
dat,
power,
k,
RR,
alpha $=0.05)$

Arguments

formula A formula object, e.g. Surv(time, status) $\sim x$, where time is a vector of survival/censoring time, status is a vector of censoring indicator, x is the group indicator, which is a factor object in R and takes only two possible values (C for control group and E for experimental group). See also the documentation of the function survfit in the library survival.
dat a data frame representing the pilot data set and containing at least 3 columns: (1) survival/censoring time; (2) censoring indicator; (3) group indicator which is a factor object in R and takes only two possible values (C for control group and E for experimental group).
power numeric. power to detect the magnitude of the hazard ratio as small as that specified by RR.
k numeric. ratio of participants in group E (experimental group) compared to group C (control group).
RR numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the sample size calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).

The movitation of this function is that some times we do not have information about m or p_{E} and p_{C} available, but we have a pilot data set that can be used to estimate p_{E} and p_{C} hence m, where $m=n_{E} p_{E}+n_{C} p_{C}$ is the expected total number of events over both groups, n_{E} and n_{C} are numbers of participants in group E (experimental group) and group C (control group), respectively.
p_{E} is the probability of failure in group E (experimental group) over the maximum time period of the study (t years). p_{C} is the probability of failure in group C (control group) over the maximum time period of the study (t years).
Suppose we want to compare the survival curves between an experimental group (E) and a control group (C) in a clinical trial with a maximum follow-up of t years. The Cox proportional hazards regression model is assumed to have the form:

$$
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
$$

Let n_{E} be the number of participants in the E group and n_{C} be the number of participants in the C group. We wish to test the hypothesis $H 0: R R=1$ versus $H 1: R R$ not equal to 1 , where $R R=\exp \left(\beta_{1}\right)=$ underlying hazard ratio for the E group versus the C group. Let $R R$ be the postulated hazard ratio, α be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group $\mathrm{C}=n_{E} / n_{C}=k$, then the number of participants needed in each group to achieve a power of $1-\beta$ is

$$
n_{E}=\frac{m k}{k p_{E}+p_{C}}, n_{C}=\frac{m}{k p_{E}+p_{C}}
$$

where

$$
m=\frac{1}{k}\left(\frac{k R R+1}{R R-1}\right)^{2}\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}
$$

and $z_{1-\alpha / 2}$ is the $100(1-\alpha / 2)$-th percentile of the standard normal distribution $N(0,1)$.
p_{C} and p_{E} can be calculated from the following formulaes:

$$
p_{C}=\sum_{i=1}^{t} D_{i}, p_{E}=\sum_{i=1}^{t} E_{i}
$$

where $D_{i}=\lambda_{i} A_{i} C_{i}, E_{i}=R R \lambda_{i} B_{i} C_{i}, A_{i}=\prod_{j=0}^{i-1}\left(1-\lambda_{j}\right), B_{i}=\prod_{j=0}^{i-1}\left(1-R R \lambda_{j}\right), C_{i}=$ $\prod_{j=0}^{i-1}\left(1-\delta_{j}\right)$. And λ_{i} is the probability of failure at time i among participants in the control group, given that a participant has survived to time $i-1$ and is not censored at time $i-1$, i.e., the approximate hazard time i in the control group, $i=1, \ldots, t ; R R l a m b d a_{i}$ is the probability of failure at time i among participants in the experimental group, given that a participant has survived to time $i-1$ and is not censored at time $i-1$, i.e., the approximate hazard time i in the experimental group, $i=1, \ldots, t$; delta is the prbability that a participant is censored at time i given that he was followed up to time i and has not failed, $i=0,1, \ldots, t$, which is assumed the same in each group.

Value

mat.lambda a matrix with 9 columns and nTimes +1 rows, where $n T i m e s$ is the number of observed time points for the control group in the data set. The 9 columns are (1) time - observed time point for the control group; (2) lambda; (3) RRlambda; (4) delta; (5) A; (6) B; (7) C; (8) D; (9) E. Please refer to the Details section for the definitions of elements of these quantities. See also Table 14.24 on page 809 of Rosner (2006).
mat.event a matrix with 5 columns and nTimes+1 rows, where n Times is the number of observed time points for control group in the data set. The 5 columns are (1) time - observed time point for the control group; (2) nEvent. C - number of events in
the control group at each time point; (3) nCensored. C - number of censorings in the control group at each time point; (4) nSurvive. C - number of alived in the control group at each time point; (5) nRisk.C - number of participants at risk in the control group at each time point. Please refer to Table 14.12 on page 787 of Rosner (2006).
pC estimated probability of failure in group C (control group) over the maximum time period of the study (t years).
$\mathrm{pE} \quad$ estimated probability of failure in group E (experimental group) over the maximum time period of the study (t years).
ssize a two-element vector. The first element is n_{E} and the second element is n_{C}.

Note

(1) The estimates of RRlambda ${ }_{i}=R R * \lambda_{i}$. That is, RRlambda is not directly estimated based on data from the experimental group; (2) The sample size formula assumes that the central-limit theorem is valid and hence is appropriate for large samples. (3) n_{E} and n_{C} will be rounded up to integers.

References

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

See Also

ssizeCT.default

Examples

```
    # Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    # (6-th edition). (2006) page 809
    library(survival)
    data(Oph)
    res <- ssizeCT(formula = Surv(times, status) ~ group,
dat = Oph,
            power = 0.8,
k = 1,
RR = 0.7,
alpha = 0.05)
    # Table 14.24 on page 809 of Rosner (2006)
    print(round(res$mat.lambda, 4))
    # Table 14.12 on page 787 of Rosner (2006)
    print(round(res$mat.event, 4))
    # the sample size
```

```
print(res$ssize)
```

ssizeCT.default Sample Size Calculation in the Analysis of Survival Data for Clinical Trials

Description

Sample size calculation for the Comparison of Survival Curves Between Two Groups under the Cox Proportional-Hazards Model for clinical trials.

Usage

ssizeCT.default(power,
k,
pE ,
pC,
RR,
alpha $=0.05)$

Arguments

power numeric. power to detect the magnitude of the hazard ratio as small as that specified by RR.
k numeric. ratio of participants in group E (experimental group) compared to group C (control group).
$\mathrm{pE} \quad$ numeric. probability of failure in group E (experimental group) over the maximum time period of the study (t years).
pC numeric. probability of failure in group C (control group) over the maximum time period of the study (t years).
RR numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the sample size calculation method described in Section 14.12 (page 807) of Rosner (2006). The method was proposed by Freedman (1982).

Suppose we want to compare the survival curves between an experimental group (E) and a control group (C) in a clinical trial with a maximum follow-up of t years. The Cox proportional hazards regression model is assumed to have the form:

$$
h\left(t \mid X_{1}\right)=h_{0}(t) \exp \left(\beta_{1} X_{1}\right)
$$

Let n_{E} be the number of participants in the E group and n_{C} be the number of participants in the C group. We wish to test the hypothesis $H 0: R R=1$ versus $H 1: R R$ not equal to 1 , where
$R R=\exp \left(\beta_{1}\right)=$ underlying hazard ratio for the E group versus the C group. Let $R R$ be the postulated hazard ratio, α be the significance level. Assume that the test is a two-sided test. If the ratio of participants in group E compared to group $\mathrm{C}=n_{E} / n_{C}=k$, then the number of participants needed in each group to achieve a power of $1-\beta$ is

$$
n_{E}=\frac{m k}{k p_{E}+p_{C}}, n_{C}=\frac{m}{k p_{E}+p_{C}}
$$

where

$$
m=\frac{1}{k}\left(\frac{k R R+1}{R R-1}\right)^{2}\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}
$$

and $z_{1-\alpha / 2}$ is the $100(1-\alpha / 2)$-th percentile of the standard normal distribution $N(0,1)$.

Value

A two-element vector. The first element is n_{E} and the second element is n_{C}.

Note

(1) The sample size formula assumes that the central-limit theorem is valid and hence is appropriate for large samples. (2) n_{E} and n_{C} will be rounded up to integers.

References

Freedman, L.S. (1982). Tables of the number of patients required in clinical trials using the log-rank test. Statistics in Medicine. 1: 121-129

Rosner B. (2006). Fundamentals of Biostatistics. (6-th edition). Thomson Brooks/Cole.

See Also

```
ssizeCT
```


Examples

```
    # Example 14.42 in Rosner B. Fundamentals of Biostatistics.
    # (6-th edition). (2006) page 809
    ssizeCT.default(power = 0.8,
    k = 1,
    pE = 0.3707,
    pC = 0.4890,
        RR = 0.7,
    alpha = 0.05)
```


Description

Sample size calculation for Cox proportional hazards regression with two covariates for Epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

Usage

ssizeEpi(X1, X2, failureFlag, power, theta, alpha $=0.05$)

Arguments

X1
numeric. a nPil ot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the nPilot subjects in the pilot study. X 1 should be binary and take only two possible values: zero and one.
X2 numeric. a nPilot by 1 vector, where $n P i l o t$ is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 can be binary or non-binary.
failureFlag numeric. a nPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
power numeric. postulated power.
theta numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the sample size formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

where the covariate X_{1} is of our interest. The covariate X_{1} has to be a binary variable taking two possible values: zero and one, while the covariate X_{2} can be binary or continuous.
Suppose we want to check if the hazard of $X_{1}=1$ is equal to the hazard of $X_{1}=0$ or not. Equivalently, we want to check if the hazard ratio of $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal
to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the total number of subjects required to achieve a power of $1-\beta$ is

$$
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ 1).
p, ρ^{2}, and ψ will be estimated from a pilot study.

Value

$\mathrm{n} \quad$ the total number of subjects required.
$\mathrm{p} \quad$ the proportion that X_{1} takes value one.
rho2 square of the correlation between X_{1} and X_{2}.
psi proportion of subjects died of the disease of interest.

Note

(1) The calculated sample size will be round up to an integer.
(2) The formula can be used to calculate sample size required for a randomized trial study by setting rho2=0.
(3) When rho2=0, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio $\exp \left(\beta_{1}\right)=\theta$ measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio θ measures the difference of effect on the cause-specific hazard.

References

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.

Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

See Also

```
ssizeEpi.default
```


Examples

```
    # generate a toy pilot data set
    X1 <- c(rep(1, 39), rep(0, 61))
    set.seed(123456)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    failureFlag <- sample(c(0, 1), 100, prob = c(0.5, 0.5), replace = TRUE)
    ssizeEpi(X1 = X1,
    X2 = X2,
    failureFlag = failureFlag,
        power = 0.80,
    theta = 2,
    alpha = 0.05)
```

ssizeEpi.default Sample Size Calculation for Cox Proportional Hazards Regression

Description

Sample size calculation for Cox proportional hazards regression with two covariates for Epidemiological Studies. The covariate of interest should be a binary variable. The other covariate can be either binary or non-binary. The formula takes into account competing risks and the correlation between the two covariates.

Usage

ssizeEpi.default(power, theta, p,
psi,
rho2,
alpha $=0.05$)

Arguments

power numeric. postulated power.
theta numeric. postulated hazard ratio.
$\mathrm{p} \quad$ numeric. proportion of subjects taking value one for the covariate of interest.
psi numeric. proportion of subjects died of the disease of interest.
rho2 numeric. square of the correlation between the covariate of interest and the other covariate.
alpha numeric. type I error rate.

Details

This is an implementation of the sample size formula derived by Latouche et al. (2004) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

where the covariate X_{1} is of our interest. The covariate X_{1} has to be a binary variable taking two possible values: zero and one, while the covariate X_{2} can be binary or continuous.
Suppose we want to check if the hazard of $X_{1}=1$ is equal to the hazard of $X_{1}=0$ or not. Equivalently, we want to check if the hazard ratio of $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the total number of subjects required to achieve a power of $1-\beta$ is

$$
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} p(1-p) \psi\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ $1)$.

Value

The required sample size to achieve the specified power with the given type I error rate.

Note

(1) The calculated sample size will be round up to an integer.
(2) The formula can be used to calculate sample size required for a randomized trial study by setting rho2=0.
(3) When rho2=0, the formula derived by Latouche et al. (2004) looks the same as that derived by Schoenfeld (1983). Latouche et al. (2004) pointed out that in this situation, the interpretations are different hence the two formulae are actually different. In Latouched et al. (2004), the hazard ratio $\exp \left(\beta_{1}\right)=\theta$ measures the difference of effect of a covariate at two different levels on the subdistribution hazard for a particular failure, while in Schoenfeld (1983), the hazard ratio θ measures the difference of effect on the cause-specific hazard.

References

Schoenfeld DA. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics. 39:499-503.
Latouche A., Porcher R. and Chevret S. (2004). Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 23:3263-3274.

See Also

ssizeEpi

Examples

```
    # Examples at the end of Section 5.2 of Latouche et al. (2004)
    # for a cohort study.
    ssizeEpi.default(power = 0.80,
    theta = 2,
    p = 0.39,
    psi = 0.505,
    rho2 = 0.132^2,
    alpha = 0.05)
```


Description

Sample size calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies.

Usage

ssizeEpiCont(formula, dat, var.X1, var.failureFlag, power,
theta,
alpha $=0.05$)

Arguments

formula a formula object relating the covariate of interest to other covariates to calculate the multiple correlation coefficient. The variables in formula must be in the data frame dat.
dat a nPilot by p data frame representing the pilot data set, where nPilot is the number of subjects in the pilot study and the $p(>1)$ columns contains the covariate of interest and other covariates.
var.X1 character. name of the column in the data frame dat, indicating the covariate of interest.
var.failureFlag
character. name of the column in the data frame dat, indicating if a subject is failure (taking value 1) or alive (taking value 0).
power numeric. postulated power.

```
theta numeric. postulated hazard ratio.
alpha numeric. type I error rate.
```


Details

This is an implementation of the sample size calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2},\right.
$$

where the covariate X_{1} is a nonbinary variable and \boldsymbol{X}_{2} is a vector of other covariates.
Suppose we want to check if the hazard ratio of the main effect $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the total number of subjects required to achieve a sample size of $1-\beta$ is

$$
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, $\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi$ is the proportion of subjects died of the disease of interest, and ρ is the multiple correlation coefficient of the following linear regression:

$$
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2}
$$

That is, $\rho^{2}=R^{2}$, where R^{2} is the proportion of variance explained by the regression of X_{1} on the vector of covriates \boldsymbol{X}_{2}.
$r h o^{2}, \sigma^{2}$, and ψ will be estimated from a pilot study.

Value

$\mathrm{n} \quad$ the total number of subjects required.
rho2 square of the correlation between X_{1} and X_{2}.
sigma2 variance of the covariate of interest.
psi proportion of subjects died of the disease of interest.

Note

(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate ssize for a randomized trial study by setting rho2=0.

References

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

See Also

```
ssizeEpiCont.default
```


Examples

```
# generate a toy pilot data set
set.seed(123456)
X1 <- rnorm(100, mean = 0, sd = 0.3126)
X2 <- sample(c(0, 1), 100, replace = TRUE)
failureFlag <- sample(c(0, 1), 100, prob = c(0.25, 0.75), replace = TRUE)
dat <- data.frame(X1 = X1, X2 = X2, failureFlag = failureFlag)
ssizeEpiCont(formula = X1 ~ X2,
        dat = dat,
        var.X1 = "X1",
        var.failureFlag = "failureFlag",
                power = 0.806,
        theta = exp(1),
        alpha = 0.05)
```

```
ssizeEpiCont.default Sample Size Calculation for Cox Proportional Hazards Regression
    with Nonbinary Covariates for Epidemiological Studies
```


Description

Sample size calculation for Cox proportional hazards regression with nonbinary covariates for Epidemiological Studies.

Usage

ssizeEpiCont.default(power, theta,
sigma2,
psi,
rho2,
alpha $=0.05)$

Arguments

power numeric. postulated power.
theta numeric. postulated hazard ratio.
sigma2 numeric. variance of the covariate of interest.
psi numeric. proportion of subjects died of the disease of interest.
rho2 numeric. square of the multiple correlation coefficient between the covariate of interest and other covariates.
alpha numeric. type I error rate.

Details

This is an implementation of the sample size calculation formula derived by Hsieh and Lavori (2000) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, \boldsymbol{x}_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\boldsymbol{\beta}_{2} \boldsymbol{x}_{2},\right.
$$

where the covariate X_{1} is a nonbinary variable and \boldsymbol{X}_{2} is a vector of other covariates.
Suppose we want to check if the hazard ratio of the main effect $X_{1}=1$ to $X_{1}=0$ is equal to 1 or is equal to $\exp \left(\beta_{1}\right)=\theta$. Given the type I error rate α for a two-sided test, the total number of subjects required to achieve a sample size of $1-\beta$ is

$$
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2}}{[\log (\theta)]^{2} \sigma^{2} \psi\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, $\sigma^{2}=\operatorname{Var}\left(X_{1}\right), \psi$ is the proportion of subjects died of the disease of interest, and ρ is the multiple correlation coefficient of the following linear regression:

$$
x_{1}=b_{0}+\boldsymbol{b}^{T} \boldsymbol{x}_{2} .
$$

That is, $\rho^{2}=R^{2}$, where R^{2} is the proportion of variance explained by the regression of X_{1} on the vector of covriates \boldsymbol{X}_{2}.

Value

The total number of subjects required.

Note

(1) Hsieh and Lavori (2000) assumed one-sided test, while this implementation assumed two-sided test. (2) The formula can be used to calculate ssize for a randomized trial study by setting rho2=0.

References

Hsieh F.Y. and Lavori P.W. (2000). Sample-size calculation for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials. 21:552-560.

See Also

```
ssizeEpiCont
```


Examples

```
    # example in the EXAMPLE section (page 557) of Hsieh and Lavori (2000).
    # Hsieh and Lavori (2000) assumed one-sided test,
    # while this implementation assumed two-sided test.
    # Hence alpha=0.1 here (two-sided test) will correspond
    # to alpha=0.05 of one-sided test in Hsieh and Lavori's (2000) example.
    ssizeEpiCont.default(power = 0.806,
        theta = exp(1),
        sigma2 = 0.3126^2,
            psi = 0.738,
```

rho2 $=0.1837$,
alpha $=0.1$)
ssizeEpiInt
Sample Size Calculation Testing Interaction Effect for Cox Propor-
tional Hazards Regression

Description

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

Usage

ssizeEpiInt(X1,
X2,
failureFlag,
power,
theta,
alpha $=0.05$)

Arguments

X 1 numeric. a nPilot by 1 vector, where nPilot is the number of subjects in the pilot data set. This vector records the values of the covariate of interest for the n Pilot subjects in the pilot study. X 1 should be binary and take only two possible values: zero and one.
X2 numeric. a nPilot by 1 vector, where nPilot is the number of subjects in the pilot study. This vector records the values of the second covariate for the nPilot subjects in the pilot study. X2 should be binary and take only two possible values: zero and one.
failureFlag numeric. a nPilot by 1 vector of indicators indicating if a subject is failure (failureFlag=1) or alive (failureFlag=0).
power numeric. postulated power.
theta numeric. postulated hazard ratio.
alpha numeric. type I error rate.

Details

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right),
$$

where both covariates X_{1} and X_{2} are binary variables.

Suppose we want to check if the hazard ratio of the interaction effect $X_{1} X_{2}=1$ to $X_{1} X_{2}=0$ is equal to 1 or is equal to $\exp (\gamma)=\theta$. Given the type I error rate α for a two-sided test, the total number of subjects required to achieve the desired power $1-\beta$ is:

$$
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} G}{[\log (\theta)]^{2} \psi(1-p) p\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ $1)$, and

$$
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
$$

and $p 0=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)=m y c /(m y a+m y c), p 1=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)=$ $m y d /(m y b+m y d), p=\operatorname{Pr}\left(X_{1}=1\right)=(m y c+m y d) / n, q=\operatorname{Pr}\left(X_{2}=1\right)=(m y b+m y d) / n$, $n=m y a+m y b+m y c+m y d$.
$p_{00}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.$, and, $\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.$ 1 , and, $\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.$, and, $\left.X_{2}=1\right)$.
$p_{00}, p_{01}, p_{10}, p_{11}$, and ψ will be estimated from the pilot data.

Value

n the total number of subjects required.
p estimated $\operatorname{Pr}\left(X_{1}=1\right)$
q estimated $\operatorname{Pr}\left(X_{2}=1\right)$
p0 estimated $\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$
p1 estimated $\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)$
rho2 square of the estimated $\operatorname{corr}\left(X_{1}, X_{2}\right)$
G a factor adjusting the sample size. The sample size needed to detect an effect of a prognostic factor with given error probabilities has to be multiplied by the factor G when an interaction of the same magnitude is to be detected.
mya estimated number of subjects taking values $X_{1}=0$ and $X_{2}=0$.
myb estimated number of subjects taking values $X_{1}=0$ and $X_{2}=1$.
myc estimated number of subjects taking values $X_{1}=1$ and $X_{2}=0$.
myd estimated number of subjects taking values $X_{1}=1$ and $X_{2}=1$.
psi
proportion of subjects died of the disease of interest.

References

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

See Also

```
ssizeEpiInt.default0, ssizeEpiInt2
```


Examples

```
    # generate a toy pilot data set
    X1 <- c(rep(1, 39), rep(0, 61))
    set.seed(123456)
    X2 <- sample(c(0, 1), 100, replace = TRUE)
    failureFlag <- sample(c(0, 1), 100, prob = c(0.25, 0.75), replace = TRUE)
    ssizeEpiInt(X1 = X1,
        X2 = X2,
        failureFlag = failureFlag,
        power = 0.88,
        theta = 3,
        alpha = 0.05)
```

ssizeEpiInt.default0 Sample Size Calculation Testing Interaction Effect for Cox Proportional Hazards Regression

Description

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

Usage

ssizeEpiInt.default0(power, theta,
p ,
psi,
G, rho2, alpha $=0.05$)

Arguments

power numeric. postulated power.
theta numeric. postulated hazard ratio.
p
numeric. proportion of subjects taking value one for the covariate of interest.
psi numeric. proportion of subjects died of the disease of interest.

G numeric. a factor adjusting the sample size. The sample size needed to detect an effect of a prognostic factor with given error probabilities has to be multiplied by the factor G when an interaction of the same magnitude is to be detected.
rho2 numeric. square of the correlation between the covariate of interest and the other covariate.
alpha numeric. type I error rate.

Details

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:

$$
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
$$

where both covariates X_{1} and X_{2} are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect $X_{1} X_{2}=1$ to $X_{1} X_{2}=0$ is equal to 1 or is equal to $\exp (\gamma)=\theta$. Given the type I error rate α for a two-sided test, the total number of subjects required to achieve a power of $1-\beta$ is

$$
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} G}{[\log (\theta)]^{2} \psi(1-p) p\left(1-\rho^{2}\right)}
$$

where z_{a} is the $100 a$-th percentile of the standard normal distribution, ψ is the proportion of subjects died of the disease of interest, and

$$
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
$$

and $p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)$, and $p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.$ $1)$, and

$$
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
$$

If X_{1} and X_{2} are uncorrelated, we have $p_{0}=p_{1}=p$ leading to $1 /[(1-q) q]$. For $q=0.5$, we have $G=4$.

Value

The total number of subjects required.

References

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

See Also

```
ssizeEpiInt.default1, ssizeEpiInt2
```


Examples

```
# Example at the end of Section 4 of Schmoor et al. (2000).
ssizeEpiInt.default0(power = 0.8227,
    theta = 3,
    p = 0.61,
    psi = 139 / 184,
    G = 4.79177,
    rho2 = 0.015^2,
    alpha = 0.05)
```

```
ssizeEpiInt.default1 Sample Size Calculation Testing Interaction Effect for Cox Propor-
``` tional Hazards Regression

\section*{Description}

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
ssizeEpiInt.default1 (power, theta, psi, p00, p01, p10, p11, alpha \(=0.05\))

\section*{Arguments}
power numeric. postulated power.
theta numeric. postulated hazard ratio.
psi numeric. proportion of subjects died of the disease of interest.
p00 numeric. proportion of subjects taking values \(X_{1}=0\) and \(X_{2}=0\), i.e., \(p_{00}=\) \(\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=0\right)\).
p01 numeric. proportion of subjects taking values \(X_{1}=0\) and \(X_{2}=1\), i.e., \(p_{01}=\) \(\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right)\).
p10 numeric. proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=0\), i.e., \(p_{10}=\) \(\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=0\right)\).
p11 numeric. proportion of subjects taking values \(X_{1}=1\) and \(X_{2}=1\), i.e., \(p_{11}=\) \(\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=1\right)\).
alpha type I error rate.

\section*{Details}

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemoilogical studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.
Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a power of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} \delta}{[\log (\theta)]^{2} \psi}
\]
where \(z_{a}\) is the \(100 a\)-th percentile of the standard normal distribution, \(\psi\) is the proportion of subjects died of the disease of interest,
\[
\delta=\frac{1}{p_{00}}+\frac{1}{p_{01}}+\frac{1}{p_{10}}+\frac{1}{p_{11}}
\]
and \(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=1\right)\).

\section*{Value}

The ssize of the test.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
ssizeEpiInt.default0, ssizeEpiInt2

\section*{Examples}
```


# Example at the end of Section 4 of Schmoor et al. (2000).

# p00, p01, p10, and p11 are calculated based on Table III on page 448

# of Schmoor et al. (2000).

ssizeEpiInt.default1(power = 0.8227,
theta = 3,
psi = 139 / 184,
p00 = 50/184,
p01 = 21 / 184,
p10 = 78 / 184,
p11 = 35 / 184,
alpha = 0.05)

```

\section*{Description}

Sample size calculation testing interaction effect for Cox proportional hazards regression with two covariates for Epidemiological Studies. Both covariates should be binary variables. The formula takes into account the correlation between the two covariates.

\section*{Usage}
ssizeEpiInt2(power, theta, psi,
mya,
myb,
myc,
myd,
alpha = 0.05)

\section*{Arguments}
power numeric. postulated power.
theta numeric. postulated hazard ratio.
psi numeric. proportion of subjects died of the disease of interest.
mya integer. number of subjects taking values \(X_{1}=0\) and \(X_{2}=0\) from the pilot study.
myb integer. number of subjects taking values \(X_{1}=0\) and \(X_{2}=1\) from the pilot study.
myc integer. number of subjects taking values \(X_{1}=1\) and \(X_{2}=0\) from the pilot study.
myd integer. number of subjects taking values \(X_{1}=1\) and \(X_{2}=1\) from the pilot study.
alpha numeric. type I error rate.

\section*{Details}

This is an implementation of the sample size calculation formula derived by Schmoor et al. (2000) for the following Cox proportional hazards regression in the epidemiological studies:
\[
h\left(t \mid x_{1}, x_{2}\right)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}+\gamma\left(x_{1} x_{2}\right)\right)
\]
where both covariates \(X_{1}\) and \(X_{2}\) are binary variables.

Suppose we want to check if the hazard ratio of the interaction effect \(X_{1} X_{2}=1\) to \(X_{1} X_{2}=0\) is equal to 1 or is equal to \(\exp (\gamma)=\theta\). Given the type I error rate \(\alpha\) for a two-sided test, the total number of subjects required to achieve a power of \(1-\beta\) is
\[
n=\frac{\left(z_{1-\alpha / 2}+z_{1-\beta}\right)^{2} G}{[\log (\theta)]^{2} \psi(1-p) p\left(1-\rho^{2}\right)}
\]
where \(z_{a}\) is the \(100 a\)-th percentile of the standard normal distribution, \(\psi\) is the proportion of subjects died of the disease of interest, and
\[
\rho=\operatorname{corr}\left(X_{1}, X_{2}\right)=\left(p_{1}-p_{0}\right) \times \sqrt{\frac{q(1-q)}{p(1-p)}}
\]
and \(p=\operatorname{Pr}\left(X_{1}=1\right), q=\operatorname{Pr}\left(X_{2}=1\right), p_{0}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)\), and \(p_{1}=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=\right.\) \(1)\), and
\[
G=\frac{\left[(1-q)\left(1-p_{0}\right) p_{0}+q\left(1-p_{1}\right) p_{1}\right]^{2}}{(1-q) q\left(1-p_{0}\right) p_{0}\left(1-p_{1}\right) p_{1}}
\]
and \(p 0=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=0\right)=m y c /(m y a+m y c), p 1=\operatorname{Pr}\left(X_{1}=1 \mid X_{2}=1\right)=\) \(m y d /(m y b+m y d), p=\operatorname{Pr}\left(X_{1}=1\right)=(m y c+m y d) / n, q=\operatorname{Pr}\left(X_{2}=1\right)=(m y b+m y d) / n\), \(n=m y a+m y b+m y c+m y d\).
\(p_{00}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=0\right), p_{01}=\operatorname{Pr}\left(X_{1}=0\right.\), and, \(\left.X_{2}=1\right), p_{10}=\operatorname{Pr}\left(X_{1}=\right.\) 1 , and, \(\left.X_{2}=0\right), p_{11}=\operatorname{Pr}\left(X_{1}=1\right.\), and, \(\left.X_{2}=1\right)\).

\section*{Value}

The total number of subjects required.

\section*{References}

Schmoor C., Sauerbrei W., and Schumacher M. (2000). Sample size considerations for the evaluation of prognostic factors in survival analysis. Statistics in Medicine. 19:441-452.

\section*{See Also}
ssizeEpiInt.default0, ssizeEpiInt.default1

\section*{Examples}
```


# Example at the end of Section 4 of Schmoor et al. (2000).

# mya, myb, myc, and myd are obtained from Table III on page 448

# of Schmoor et al. (2000).

ssizeEpiInt2(power = 0.8227,
theta = 3,
psi = 139 / 184,
mya = 50,
myb = 21,
myc = 78,
myd = 35,
alpha = 0.05)

```

\section*{Index}
```

* datasets
Oph,6
* design
numDEpi, 2
numDEpi.default,4
powerCT, 15
powerCT.default, 18
powerCT.default0, 20
powerEpi,21
powerEpi.default, 23
powerEpiCont,25
powerEpiCont.default, 27
powerEpiInt,29
powerEpiInt.default0,31
powerEpiInt.default1, 33
powerEpiInt2,35
ssizeCT, 39
ssizeCT.default,42
ssizeEpi,44
ssizeEpi.default,46
ssizeEpiCont,48
ssizeEpiCont.default, 50
ssizeEpiInt,52
ssizeEpiInt.default0,54
ssizeEpiInt.default1,56
ssizeEpiInt2,58
* method
powerConLogistic.bin,10
powerConLogistic.con, 12
* survival
numDEpi,2
numDEpi.default,4
power.stratify,8
powerCT, 15
powerCT.default, 18
powerCT.default0, 20
powerEpi,21
powerEpi.default, 23
powerEpiCont,25

```
 powerEpiCont.default, 27
 powerEpiInt, 29
 powerEpiInt.default0, 31
 powerEpiInt.default1, 33
 powerEpiInt2, 35
 ssize.stratify, 37
 ssizeCT, 39
 ssizeCT. default, 42
 ssizeEpi, 44
 ssizeEpi.default, 46
 ssizeEpiCont, 48
 ssizeEpiCont.default, 50
 ssizeEpiInt, 52
 ssizeEpiInt.default0, 54
 ssizeEpiInt.default1, 56
 ssizeEpiInt2, 58
numDEpi, 2, 6
numDEpi.default, 4, 4
Oph, 6
power.stratify, 8,38
powerConLogistic.bin, 10
powerConLogistic.con, 12
powerCT, 15, 19, 21
powerCT.default, \(17,18,21\)
powerCT.default0, \(17,19,20\)
powerEpi, 21, 25
powerEpi.default, 23, 23
powerEpiCont, 25, 28
powerEpiCont.default, 26, 27
powerEpiInt, 29
powerEpiInt.default0, 31, 31, 34, 36
powerEpiInt.default1, 32, 33, 36
powerEpiInt2, 31, 32, 34, 35
ssize.stratify, 9, 37
ssizeCT, 39, 43
ssizeCT. default, 41, 42
```

ssizeEpi,44,48
ssizeEpi.default,45,46
ssizeEpiCont,48,51
ssizeEpiCont.default, 49,50
ssizeEpiInt,52
ssizeEpiInt.default0, 54, 54, 57, 59
ssizeEpiInt.default1, 55, 56, 59
ssizeEpiInt2, 54, 55, 57, 58

```
```

