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Lab 8: Frequency Response and Passive Filters 
 

OBJECTIVES 
 To reinforce the concepts behind filter circuits and frequency response  
 To reinforce the idea of a phasor 

o To understand and use phasor circuit analysis 
 To reinforce the procedure of deriving a transfer function 
  To graphically demonstrate the effects of different passive component configurations on different 

ranges of frequency 
 
MATERIALS 
 The lab assignment (this document) 
 Your lab parts 
 Printouts (required) of the below documents: 

o Pre-lab analyses 
o Multisim screenshots e-mailed to course e-mail 

 Graph paper. 
 
INTRODUCTION 
In this experiment we will analytically determine and measure the frequency response of networks 
containing resistors, ac sources, and energy storage elements (inductors and capacitors). 
 
Given an input sinusoidal voltage, we will analyze the circuit using the frequency-domain method to 
determine the phasor of output voltage in the ac steady state. The response function is defined as the 
ratio of the output and input voltage phasors. It is a function of the input frequency and the values of the 
circuit elements (resistors, inductors, capacitors).  
 
We start with examples of a few filter circuits to illustrate the concept. 

RC Low-Pass Filter: 
Consider the series combination in Fig 1 of the resistor R and the capacitor C, connected to an input 
signal represented by ac voltage source of frequency . 
 
 vin(t) = Vs cos(t + I) (1) 
 

 
 Figure 1  Low-pass filter. 
 
Suppose we are interested in monitoring the voltage across the capacitor. We designate this voltage as 
the output voltage. We know that it will be a sinusoid of frequency .  Thus, 
 
 vout(t) = Vo cos(t + o) (2) 
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We will now determine expressions for the amplitude Vo and the phase angle o. First we convert the 
network to frequency domain, as shown in Fig. 2. 
 

 
Figure 2  Low-pass filter in frequency domain. 

 
In the above circuit, the voltage source is represented by its phasor and the resistor and capacitor by their 
impedances. We wish to evaluate the phasor Vout for the output sinusoid. Since the three elements are in 
series, the voltage divider formula can be used and we obtain 
 
 Vout = [ Zc / (Zc + R) ] Vin  , (3) 
 
where Vin is the phasor of the input voltage. It is given by 
 
 Vin = Vse

j
I (4) 

 Zc = 1/jC (5) 
 
The transfer function is defined as the output divided by the input.  The frequency response, H(jw), 
can be found by manipulation of equation (3), 
 
 H(j) = Vout / Vin = 1/(1 + jRC) (6) 
 
The product RC has units of the inverse of angular frequency. We define (7) as a characteristic 
frequency of the network and write the frequency response as (8). 
 
 o = 1/RC (7) 
 H(j) = 1/(1 + j/o) (8) 
 
In other words, we are measuring frequency in units of o (rad/s). 
 
The sinusoid corresponding to the output voltage can be written as 
 
 vout(t) = Re{Vout e

jt} = Re{H(j)Vin ejt} = Re{Vse
j

I
 ejt/(1+j/o)} (9) 

 vout(t) = {Vs / [1+(/o)
2]}cos( t + I  tan1(/o) ) (10) 

 
Returning to the frequency response, H(j) is a complex number. It has a magnitude and phase. Both 
depend on the frequency, R and C. Thus, 
 
 H(j) = H exp(jH) (11) 
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The magnitude (absolute value) of H is a measure of the ratio of the amplitudes of the output and input 
voltages. It is given by: 
 
 H = | H(j) | = Vo / Vs = 1/[1+(/o)

2]1/2 (12) 
 

On the other hand, the phase angle of H measures the difference in the output and input phase angles. It 
is given by: 
 
 O - I = H =  tan1( /o)

 (13) 
 
The frequency dependence of the magnitude H is plotted in Fig. 3.  Note that the x-axis is unitless, the 
normalized frequency of /o. 

 
Figure 3  Magnitude frequency response. 

 
From Fig. 3, it is evident that for low frequencies (<<o), H is close to one.  In this frequency range, 
the network allows effective transmission of the input voltage. For >>o, H becomes much less than 
one. This means that high frequencies do not get transmitted well by the network, but low frequencies 
are transmitted well.  In other words, the network acts as a low-pass filter. 

The characteristic frequency o is called the cut-off frequency.  It is defined as the frequency at which 
H is equal to (1/2)*Hmax. Similarly, the frequency dependence of the phase H is shown in Fig. 4. There 
is negligible phase shift at very low frequencies and a phase shift approaching 90 at very high 
frequencies. 
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Figure 4  Angle frequency response. 
 
The magnitude and phase plots shown in Fig. 3 and Fig. 4 are plotted using linear scales. However, in 
electrical circuits, the frequency range may span several decades. For example, in audio amplifiers, the 
frequency range of interest is 20 Hz to 20,000 Hz. Similarly, the magnitude of the frequency response 
may vary over several orders of magnitude. Therefore, linear scaled plots are of little use and the 
frequency response is represented by Bode Plots.  
 
In Bode plots, the magnitude H is plotted on the vertical axis, in units of dB, defined by the following 
equation: 
 
 HdB = 20 log H (14) 
 
On the horizontal axis, the frequency is represented on a log scale.  On the log scale, the distance 
between10 and 100 rad/s is equal to that between 100 and 1000 rad/s. This is due to the fact that (log 
100  log 10)  (log 1000  log 100) = 1.  The distance from 10 to 20 is 30% of the distance between 10 
and 100, which can easily inferred since (log 20  log 10) = 0.3. 
 
Fig. 5 shows the Bode plot of the magnitude and phase of the low-pass filter of Fig. 1.  
 
At low frequencies, the value of HdB is close to 0 dB and it is represented by a straight line with zero 
gradient. At the cut off frequency HdB drops to  3 dB, and at frequencies much larger than the 
cutoff frequency, the response is accurately represented by a straight line with a slope of 20 
dB/decade. If we extrapolate the two straight lines, they will intersect at the cutoff frequency. The two 
lines represent the asymptotic Bode Plots. The maximum error in asymptotic Bode plot for this case is 
3 dB, occurring at the cutoff frequency. 
 
Asymptotic Bode plots are very useful in estimating the magnitude H at any frequency fairly accurately. 
They are easy to sketch since only straight lines are involved. For example, if we wish to know H at a 
frequency 100 times larger than the cutoff frequency, we get HdB = 40 dB, which gives H = 0.01, 
implying that the amplitude of the output voltage at this frequency is 1% of the amplitude of the input 
voltage. 
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Figure 6  RL circuit. 

 
Figure 7  RC high-pass filter. 

 
Figure 5  Bode magnitude (top) and phase (bottom) plots. 

 
When H is smaller than unity, HdB is a negative number. That means the output voltage amplitude is 
smaller than the input voltage amplitude and the network attenuates the input signal. Such is the case in 
the passive low-pass filter considered thus far. We will see 
later, however, that when active elements such as Op Amps 
are used, there is usually a net gain and HdB can be a positive 
number! 
 
One can also design a low-pass filter using an inductor and a 
resistor, as shown in Fig. 6. It has characteristics very similar 
to the RC low-pass filter we analyzed above. In the prelab 
you will look at this example RL circuit. 
 
RC High-Pass Filter: 
Suppose that in the network of Fig. 1, we monitor the output 
voltage across the resistor as we vary the frequency as shown in 
Fig. 7.  
 
It can be shown that 
 
 H(j) = (j/0)/(1 + j/0)  , (15) 

 
where 0 = 1/RC. 
 
The Bode plot of this filter is shown in Fig. 8. 
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Figure 8  Bode plot of high pass filter. 

 
This circuit acts like a high-pass filter. The asymptotic Bode plot once again is given by two straight 
lines. For low frequencies, the slope of the line is +20 dB/decade and the 3 dB attenuation point exists at 
ωo. 
 
A simple passive high-pass filter can also be designed using an inductor and a resistor (see the prelab). 
 
Band-Pass Filter: 
Consider the series combination of a resistor, an inductor, and a capacitor, as shown in Fig. 9.   
 

 
Figure 9  RLC series band-pass circuit. 

 
We will monitor the output voltage across the resistor. In frequency domain, we use the voltage divider 
formula to obtain the phasor for the output voltage. 
 
 Vout = Vin {R/[R + j(L  1/C)]} (16) 

 
From the above equation, we get the magnitude of the frequency response. 
 
 | H(j) | = R/[R2 + (L  1/C)2]1/2 (17) 
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The magnitude of the frequency response is shown in Fig. 10 for R/L = 1. On the horizontal axis, the 
frequency has been normalized to o  = 1, the resonance frequency given in equation 18.  
 

 
Figure 10  Bode plots for circuit of Fig. 9 with R/L=1. 

 
At very low frequencies, the capacitor has very large impedance, resulting in a low output voltage. 
Similarly, at very large frequencies, the inductor offers large impedance which results in a drop in the 
output voltage. However, when the impedances of the capacitor and the inductor cancel each other, the 
series combination of the two energy-storage elements acts as a short circuit and all the input voltage 
appears across the resistor (H = 1). This frequency is called the resonance frequency. 
The resonance frequency is given by 
 
 o = (LC)1/2 (18) 

 
It is seen that the network allows efficient transmission of frequencies in the vicinity of the resonance. 
This is why it is called a band-pass filter. 
 
Apart from the resonance frequency, the filter is also characterized by its band width and Q (quality 
factor). The bandwidth and Q are defined as  
 
 BW = 2  1 (19) 
 Q = o / BW, (20) 
 
where 1 and 2 are the two frequencies at which H = (1/2) Hmax.  Fig. 11 shows the Bode plot of the 
band-pass filter for R = 10 , L = 10 mH, and C = 100 F.  
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Figure 11  Bode plots for circuit of Fig. 9 with R = 10 , L = 10 mH, C = 100 F. 

 
PRE-LAB AND QUESTIONS 
 
Bode Measurements Using Multisim: 
1. Using Multisim, one can measure the Bode plot of a given filter. Refer to Fig. 12. This is a simple 

RC circuit driven by a function generator. The “XBP1” instrument is known as a Bode plotter and 
(found in the “Instruments” toolbar) applies a sweep of frequencies to the circuit (imagine a function 
generator inputting a signal with varying frequency as well as varying voltage) then measures the 
response of the output relative to the input, thus providing a plot of the transfer functions. Note that 
it is not necessary to set the values of the function generator for the bode plotter to work. 

 
Figure 12 – Circuit Setup for Bode Measurement in Multisim 

 
In Fig. 12, we have a resistance of 1kΩ and a capacitance of 1µF. Thus, by (7), ωo = 1,000 rad/s, or 
159.16 Hz (ω=2πf). This is verified in Fig. 13. By double-clicking on the Bode plotter and 
energizing the circuit, the cursor can be adjusted to read roughly -3dB. As can be seen, this 
attenuation corresponds to value of roughly 159 Hz (and a phase of -45, as seen in Fig. 14). 

R1

1kΩ 
C1
1uF 

XFG1

XBP1

IN OUT
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Figure 13 – Bode Magnitude plot created in Multisim. 

 
Note that the phase response can also be obtained simply by changing the Mode to “Phase.” 
 

 
Figure 14 – Bode Phase plot created in Multisim. 
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Figure 15  Low-pass RL circuit. 

 
Figure 16  High-pass RL circuit. 

 

2. Build the same circuit as in Fig. 12, but use values of 4kΩ and 500nF for the resistance and 
capacitance, respectively. Take screenshots of both the magnitude (with the cursor at the -3dB 
magnitude frequency) and phase plots. 

 
Low-pass Circuits: 
1. Derive the response function { Vout(j) / Vin(j) } for the 

low-pass RL circuit in Fig. 15. Calculate the expected 
value of ωo of this RL circuit if R=100Ω and L=1mH. 
(Note: Zc = 1/jC; ZL = jL). 

2. Build the circuit in Fig. 15 using values of 100Ω and 1mH 
for the resistance and inductance, respectively. Measure 
and take a screenshot of the magnitude response showing 
the 3dB frequency. Does this agree with your value from step 1? (Hint: remember that ω is measured 
in rad/s). 

 
High-pass Circuits: 
1. Derive the response function { Vout(j) / Vin(j) } for the 

high-pass RL circuit in Fig. 16. Calculate the expected 
value of ωo of this RL circuit if R=100Ω and L=1mH. 

2. Using the same component values as described above, 
build the circuit of Fig. 16. Measure and take a screenshot 
of the magnitude response showing the 3dB frequency. 
Does this agree with your value from step 1?  

 
Band-pass Filters: 
1. Derive the response function { Vout(j) / Vin(j)  } for the band-pass RLC circuit in Fig. 17. Using 

(18) through (20) find ωo, BW, and Q for R=1kΩ, L=1mH, and C=1µF. 
 

 
Figure 17  RLC circuit. 

 
2. Using Multisim, build the circuit in Fig. 17 and measure and take a screenshot of the Bode 

magnitude plot. Use the cursor to measure ω2 and ω1. Determine the bandwidth of this band pass 
filter. 

 
Band-stop Filter: 
Often times it is desired to remove a particular or narrow range of frequencies from a signal. For 
example you may want to remove (notch) the 60 Hz line interference from your signal while allowing 
all other frequencies to pass through undistorted.  One solution to this problem is to design a band-stop 
filter (also known as a notch filter) to remove the unwanted components. The magnitude response may 
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be considered to be the compliment of the band-pass response. Figure 18 presents the Bode magnitude 
response of a normalized band-stop filter. Its response function can be expressed as: 
 

 H(j) = [(j
(j + (Q)(j

 
 
where and Q are defined in equations (18) and (20), respectively. For the band stop case, is also 
referred to as the notch frequency. 
  

Figure 18  Bode plots for band-stop (notch) filter circuit. 
 
1. Derive the response function { Vout(j) / Vin(j)  } for the band-pass RLC circuit in Fig. 17 (and the 

same values of for R=1kΩ, L=1mH, and C=1µF as in the band-pass case, but with the output 
across the resistor).  

2. Determine the notch frequency  for this circuit using circuit analysis. 
3. Using Multisim, build this circuit in and measure and take a screenshot of the Bode magnitude and 

phase plots. Use the cursor to measure ω2 and ω1. Determine the bandwidth of this band pass filter. 
 
LAB PROCEDURE AND QUESTIONS 
Low Pass Filter: 
1. Build the circuit in Fig. 1. Set R = 2.2 k and C = 0.1 uF . Use a 4-Vpeak sinusoidal voltage for Vin. 
2. Determine the cutoff frequency o for this circuit using (7). 
3. Measure Vout (using the AC setting) at the cutoff frequency o.  Take 5 data points each above and 

below the cutoff frequency. Make sure to spread out your frequency values. 
4. Draw a plot of HdB vs. frequency for this circuit using the values obtained in step (3). Use Excel or 

MATLAB to plot the measured values. (Remember that your frequency axis should be logarithmic.) 
Compare this plot to the theoretical Bode magnitude plot of the circuit. From the plot, estimate the 
value of o. Does this value agree with that of step (2)? Comment on any differences.  

 
High Pass Filter: 
1. Using the same circuit in Figure 1 monitor the voltage across the resistor (R) instead of the 

capacitance (C). 
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2. Repeat steps 2-4 from the low pass exercise above. 
 
Band Pass Filter: 
1. Build the circuit in Fig. 17.  Set R = 10 k C = 1 uF, and L = 2.2 mH. Use a 4-Vpeak sinusoidal 

voltage for Vin. 
2. Determine the resonant frequency o for this circuit. 
3. Measure Vout (using the AC setting) at the resonant frequency o.  Take 5 data points each above and 

below the resonant frequency o. Make sure to spread out your frequency values. 
4. Using MATLAB or Excel, draw a plot of HdB vs. frequency for this circuit using the values obtained 

in step (3). Compare this plot to the theoretical Bode magnitude plot of the circuit.  From the plot, 
estimate the value of . Does this value agree with that of step (2)? Comment on any differences. 

5. From your plot, estimate the bandwidth of this filter. 
 
Band Stop Filter: 
1. Using the same circuit from the band-pass case, monitor the voltage across the resistor (R) instead of 

the LC branch.  
2. Determine the notch frequency  for this circuit using circuit analysis. 
3. Measure Vout  (using the AC setting)  at the notch frequency o.  Take 5 data points each above and 

below the notch frequency o. Make sure to spread out your frequency values. 
4. Draw a plot of HdB vs. frequency for this circuit using the values obtained in step (3). Compare this 

plot to the theoretical Bode magnitude plot of the circuit.  From the plot determine the value of . 
Does this value agree with that of step (2)?  Comment on any differences. 

 


