
University of Florida EEL 3744 – Summer 2017 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 0 3-Jul-17

Page 1/5 Lab 5: EBI and ADC: Digital Voltmeter

YOU WILL NOT BE ALLOWED INTO YOUR LAB

SECTION WITHOUT THE REQUIRED PRE-LAB.

OBJECTIVES
 Learn how to use C (as an alternative to Assembly) in

your programs.

 Learn how to use an analog-to-digital conversion (ADC,

also known as A/D) system on a microcontroller.

 Use the ADC on your XMEGA to sample an analog

input, convert the binary value to decimal, and display

the value on a console (You are creating a simple voltage

meter.)

 Explore and understand how the External Bus Interface

works by storing ADC values into external SRAM

memory.

REQUIRED MATERIALS
 uPAD 1.4 Board and Analog Backpack v1.2

 NAD/DAD (NI/Diligent Analog Discovery) kit

 You WILL need the following documentation:

o Analog Backpack v1.2 documentation

o uPAD 1.4 Memory Base v1.2

 XMEGA documents

o doc8331: XMEGA Manual

o doc8385

o doc8032: Analog to Digital (ADC)

o doc8075: Writing C-code for XMEGA

 Notes for A-to-D pertaining to uPAD

o uPAD 1.4 documentation

PRELAB REQUIREMENTS
You must adhere to the Lab Rules and Policies document for

every lab.

NOTE: All software in this lab should be written in C. If you

cannot get your programs working in C, you can write it in

Assembly for partial credit.

NOTE: Although the C language has a multitude of built-in

functions, you are NOT permitted to use any of them in EEL

3744. For example, you are NOT allowed to use the
_delay_ms or _delay_us functions. Also, do not use

sprintf, printf, or any similar functions.

NOTE: Convert the 32 MHz clock configuration code that

you previously used in Assembly to C.

PART A: External Bus Interface (EBI)

The EBI is crucial to the microcontroller in allowing data

transfer between external peripherals and accessing external

memory outside the processor. It’s important to understand

which ports/pins have access to the EBI, look at doc8385

Section 33 and note which ports we will be using for this

section. The XMEGA’s External Bus Interface (EBI) system

gives access to the XMEGA’s address, data, and control

busses. The external memory is part of the Data Memory

section for the processor and happens right after the internal

SRAM memory (0x2000-0x3FFF) ends.

1. Carefully read through the EBI section in the XMEGA

AU Manual (doc8331, section 27). Make sure you

understand the configuration registers, the chip select

register, and how it generates the appropriate chip selects.

In this lab we will configure XMEGA’s CS0 (chip select

0) to enable external memory spaces at addresses that

will be specified later.

2. Take a look at the Memory Base Board and you will

notice you only have access to 8 bits of the address

location. Figure 27-4 in doc 8331 shows the

configuration assumed on your uPAD 1.4 board, i.e., the

XMEAGA in SRAM 3-PORT ALE1 EBI configuration.

Look at the Memory Base schematic to see the latch and

SRAM devices on the Memory Base. In this

configuration, the XMEGA needs the latch to hold

addresses A15:A8 so that they are available (along with

A7:0) when needed to access an external device, in this

case an external SRAM that needs A14:0. These address

pins are time multiplexed on one particular XMEGA

port.

3. See the bottom two timing diagram in section 36.1 of

doc8331, the write and read timing diagrams in the

SRAM 3-PORT ALE1 EBI configuration.

In this lab you will write a C program (Lab5a.c) that

configures the EBI at a memory location of $8000 to $9FFF

(How many addresses is this?). You must setup the EBI for

SRAM 3-PORT ALE1 configuration, and properly configure

the chip select and base address to accomplish the

specifications. (You must also setup the direction of the

specified ports pins for the various EBI signals.)

If you are trying to read or write to a specified EBI address

ABOVE 0xFFFF in C, you will need dedicated software to

accomplish this high-address access. There is a header file on

the examples page of the class website called

ebi_driver.h. There is an output function in this file

called __far_mem_write(address,data) that is

needed to write to addresses above 0xFFFF. There is also and

input function in the same file that is needed to read form

addresses above 0xFFFF called

__far_mem_read(address). To access these functions

you will need to copy it you’re your project and also include

it in your program, i.e., include the following: #include

"ebi_driver.h".

However, since in the example specified earlier in this

section, we are dealing with a 16-bit addresses, we do NOT

need to use these “far” functions.

University of Florida EEL 3744 – Summer 2017 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 0 3-Jul-17

Page 2/5 Lab 5: EBI and ADC: Digital Voltmeter

Figure 1: CdS cell configuration on Analog Backpack

(on page 3 of Analog Backpack schematic).

To access the external memory location you will need to

initialize a signed pointer to read/write values into the

location. A pointer is a variable that holds the address of

another variable. To initialize a pointer you will need to use

the “*” in front of the pointer variable name. For example:

 volatile int8_t *ptr = 0x4000;

Placing the volatile keyword in front of the variable tells the

optimizer that the variable can change at any time.

This points to the external memory address 0x4000 in Data

Memory. To read in data from memory you’ll need to

dereference the pointer by:

 (some variable) = *ptr; //contents of

address

To write to memory:

 *ptr = (some data);

Once you initialize the pointer, set up an infinite loop and

constantly write 0x37 into the memory location 0x8500 and

0x73 into memory location 0x8501. Use the pinouts on the

bottom of the memory board, to view the signals (A3:0, D7:0,

ALE, CS0, WE) using the LSA tool on your DAD/NAD. You

won’t have enough wires for all the signals (this is why A7:4

were left out above). Save a screenshot of the DAD/NAD

LSA output, annotate the output describing the various things

happening during each of the two write cycles.

It will be helpful for you to just create a function to set up

EBI since you will need this setup later on for the lab.

PART B: USING AN ADC TO SENSE LIGHT

In this part of the lab, you will use XMEGA’s ADC to detect

light conditions using a CdS cell. CdS (Cadmium Sulfide)

cells are a type of photoresistors, electronic components

sensitive to incident light. You will write program

Lab5b.c.

Properly install the Analog Backpack onto the uPAD. Read

the Analog Backpack schematic sheet before you continue to

determine the ports and pins that will be used with this

device.

In this part of the lab you will be using the XMEGA’s ADC

(Analog to Digital converter) to detect light conditions using a

CdS cell. CdS cells are a type of photo-resistors, electronic

components sensitive to incident light. The CdS cell is wired

(see Figure 1) in a Wheatstone bridge configuration. (You

can learn how a Wheatstone bridge circuit works at

https://en.wikipedia.org/wiki/Wheatstone_bridge. EEL 3111C

has a lab that explores this circuit.) The output voltage is

measured between CdS+ and CdS-. (See the Analog

Backpack schematic for pin outputs.) When the light on the

CdS cell increases, the voltage increases; as the light

decreases, the voltage decreases. In a balanced Wheatstone

bridge, the resistance of the CdS cell would be approximately

the same as that of R4, R3, and R1; this would result in a 0 V

output. Because the resistance of the CdS in complete

darkness is NOT the same as the other resistors in the bridge,

the differential voltage between the pins will be

approximately -0.6 V. You can measure this with your

multimeter or DAD/NAD (before creating your XMEGA

program) to verify the values and also, later, to compare your

XMEGA program to what you measure with these other

devices.

Write a C program, Lab5b.c, that reads in the differential

output of CdS+ and CdS-. Use the ADC on Port A for the

pins of the CdS cell.

Cover and uncover the CdS cell and observe the changes in

voltages across CDS+ and CDS-; this will give you an idea of

the values to be expected with your board. To get the

maximum voltage shine a light (perhaps from your cell

phone) directly at the CdS cell. To obtain the minimum

voltage completely cover the CdS cell.

Carefully read Section 28 of doc8331 of the XMEGA manual

to learn about how to configure and start a conversion of the

ADC. You will also need to look at the Analog backpack

documentation to see which Port/Pins are connected to the

analog pins on the XMEGA to properly configure them as

input pins. Below are the basic guidelines needed to set up the

ADC:

1. Use the external reference of AREFB in your ADC

register initializations. This will set your ADC voltage

span to be between -2.5 V and +2.5 V.

2. Configure the ADC system for signed 8-bit (or signed

12-bit, right-adjusted), differential mode, with a gain

of 1. Use Channel 0 for this measurement! You must

set the direction of the ADC pin that you are as an input

and also enable the ADC module.

https://en.wikipedia.org/wiki/Wheatstone_bridge

University of Florida EEL 3744 – Summer 2017 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 0 3-Jul-17

Page 3/5 Lab 5: EBI and ADC: Digital Voltmeter

3. Test the voltage at the ADC input with your multimeter

(or DAD/NAD) and then compare it with the values you

get from your ADC system. Include breakpoints at the

end of each analog conversion to compare the results to

your multimeter/DAD/NAD reading.

a. Find the equation ,VANALOG = f(VDIGITAL), of a line in

order to convert the digital value (between -128 and

127 for eight bits or -2048 and 2047 for 12 bits) to

an analog value (2.5 V to +2.5 V). Put this

equation in your lab report. For example if the

voltage is 1V, the digital representation should be

about 0x33 (for 8-bit) or 0x333 (for 12-bit). If the

voltage is 1.5V the digital representation should be

about 0x4C (for 8-bits) or 0x4CC (for 12-bits).

b. Now compare multimeter/DAD/NAD readings to the

values calculated by using the formula determined

above with the digital readings. The values may

differ by as much as 10%.

PART C: CREATING A VOLTMETER

1. In this part of the lab you will take the ADC value from

Part B into a voltmeter. Add the program you did in Part

B to this part, call this program Lab5c.c. Setup the

UART for 8 data bits, a baud rate of 28,800 Hz, no

parity bit, and 1 stop bit. If you haven’t already done

so, translate the assembly program you did in Lab 4 to C.

You will be outputting both the decimal and hexadecimal

representations of the voltage from the CdS cell to your

PC’s screen using the Atmel Terminal.

2. You must display the voltage of the ADC input pins as

both a decimal number, e.g., 4.37 V, and as a hex

number, e.g., 0x6FD in signed 12-bit or 0xDF in

unsigned 8-bit. You can use either signed 12-bit or

signed 8-bit. An example output for a signed 8-bit ADC

with a range of -5 V to 5 V is +4.37 V (0x6F), i.e.,

the format for the voltage output is the decimal voltage

with three digits, two to the right of the decimal point and

then the hex value in either eight or 12 bits.

3. The ASCII characters of digits 0 through 9 are 0x30

through 0x39, i.e., just add 0x30 to the digit to find the

ASCII representation of the digit. You will also need the

hex values for the ASCII equivalents of the decimal

point, a space, the letters “V” and “x,” and both the left

and right parenthesis.

4. If we assume that the input voltage calculated in part B

was +3.14 V, the below algorithm describes how to send

that value to the terminal, one character at a time. Note

that using the type casting operation in C is very helpful

for this algorithm. Type casting converts a value of one

type to a value in another type. For example, if I is an

integer equal to 3 and F is a floating point number, then

F = (float) 3; will result in F = 3.0. Similarly, if

Pi = 3.14159, then I = (int) Pi, with result in I = 3.

First send the sign, either ‘+’ or ‘+’ out of the XMEGA’s

serial port, i.e., transmit it to your PC.

The below algorithm describes how you could output the

digits of a decimal number. (Remember that you are not

allowed to use library functions like sprint or

printf in this course.)

 Pi = 3.14159…//variable holds original value

 Int1 = (int) Pi = 3 3 is the first digit of Pi

 Transmit Int1 and then “.”

 Pi2 = 10*(Pi - Int1) = 1.4159…

 Int2 = (int) Pi2 = 1 1 is the second digit of Pi

 Transmit the Int2 digit

 Pi3 = 10*(Pi2 – Int2) = 4.159…

 Int3 = (int) Pi3 = 4 4 is the third digit of Pi

 Transmit the Int2 digit, then a space, and then a ‘V’

Then transmit another blank, a starting parenthesis, the

three hex digits (for 12-bit ADC) or two hex digits (for 8-

bit ADC) corresponding to the ADC value, and then a

ending parenthesis. Another example output for signed 8-

bit (-5 V to 5 V) ADC is 3.14 V (0x50). You will also

need to transmit a new line character at the end of each

result.

PART D: ADC Channel 1 with DAD/NAD

In this part of the lab, you will set up ADC Channel 1 to read

voltages from your DAD/NAD. To start, you need to place

the GND and waveform generator 1 pins to AIN- and AIN+

respectively. See Figure 2 for proper wiring. Keep the same

set up as Part B. All you have to do is configure Channel 1 for

ADCA. You will also need to display the hex and analog

values as done in Part C. Name this file Lab5d.c.

Figure 2: Connection to AIN+/AIN-.

View the Analog Backpack schematic to see where the

AIN+/AIN- signal drive into. You don’t need to know how

to analyze the Differential Op amps that drive those two

signals.

Using the DAD/NAD Board

1. In the Waveform’s software, go to the “Wavegen” tab.

2. Switch the “Simple” menu to “Basic”.

3. Click on DC now (See Figure 3).

University of Florida EEL 3744 – Summer 2017 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 0 3-Jul-17

Page 4/5 Lab 5: EBI and ADC: Digital Voltmeter

Figure 3: DAD/NAD Waveforms configuration

NOTE: To measure the voltage across soldered pins, use

your multi-meter from EEL3701.

For this part, you’re going to test the maximum/minimum

constraints of your analog values. Move the marker up to 5

V. Measure the voltage on IN0+ and IN0-. (These are the

outputs of the differential op amps you drove AIN- and AIN+

to). Now move, the marker to -5 V and measure the same

pins.

Now that you have an idea of your analog value constraints,

configure channel 1 to read in the values and print both the

hex and analog values onto the terminal. You’ll be scrolling

through all voltage ranges from -5 to +5 to see how the output

voltage changes by viewing the Hex/Analog values on the

Atmel Terminal.

PART E: Toggle Menu

In this part of the lab, you will be integrating multiple

peripherals together using interrupts, Timer Counters, and the

UART system. Make sure, you’re able to use channel 1 and 0

of the ADC system for both the DAD/NAD input and CdS

cell. You’ll be creating a menu that displays onto the

terminal. When the program runs you need to display the

following below onto the terminal:

Function

Keyboard

Keys Functionality

1 ‘a’ or ‘A’
Start conversion on CdS Cell and

displays on Terminal

2 ‘b’ or ‘B’
Start conversion on DAD/NAD

channel and displays on Terminal

3 ‘c’ or ‘C’

Start Timer Counter, after every 1 s

the CdS starts a conversion

(Interrupt Driven)

4 ‘d’ or ‘D’ Turn off Timer Counter

5 ‘e’ or ‘E’

Start CdS cell conversion, write

this value into external SRAM

location $8000.

6 ‘f’ or ‘F’

Read the external memory Location

at $8000 and prints the value onto

the Terminal

You will also need to set up the ADC compare interrupt for

both channel 0 and 1. For channel 0, set up the interrupt to

trigger for below threshold. For channel 1, set up the interrupt

to trigger for above threshold. You will also need to

ADCx_CMP register to 0 as well for this to work. Anytime

you cover your hand fully on the CdS cell, the voltage should

be negative and your program should go to the ISR. If you

move the voltage marker on your DAD/NAD board to

negative voltages, the value should be above 0, and trigger the

ISR for channel 1. In the ISR you should do the following:

Channel 0 ISR: Turn on the RED RGB led; others should be

off

Channel 1 ISR: Turn on the BLUE RGB led; others should

be off.

NOTE: ALL interrupts should be HIGH LEVEL. To enable

interrupts in C, use the function sei(). Also, you must use

the below line in your program:

 #include <avr/interrupt.h>.

 When you start the program, the terminal starts with a

menu displaying all the options you can perform

 When you press ‘a’ on your keyboard, the terminal

should display the current CdS voltage/hex values

 When you press ‘b’ on your keyboard, the terminal

should display the current DAD/NAD voltage/hex values

 When you press ‘c’, this should turn on the timer counter.

The easiest way to think about this, have the timer

counter already initialized, besides the register that

actually turns it on. Also, when the timer counter is on,

there should be a continuing ADC conversion on the CdS

cell every 1 s displaying on the terminal. Your program

should also continue polling for any of the keys to be

pressed as well.

 When you press ‘d’ the timer counter should be turned

off and the CdS cell conversion should be halted.

 When you press ‘e’, you should start a conversion on the

CdS cell and write this value into the memory location

specified. (Use memory window to see what happens)

 When you press ‘f’, you should read in the value you last

wrote to in the memory location and display it on the

terminal.

NOTE: For the first time you do the conversion the result

could be 0 until the next conversion, this is okay.

Name the file Lab5e.c, it will be helpful to create functions

to reuse for later purposes.

PRE-LAB QUESTIONS
1. What is the difference in conversion ranges between 8-bit

unsigned and signed conversion modes? List both ranges.

2. Assume you wanted a voltage reference range from -2 V

to 3 V, with an unsigned 12-bit ADC. What are the

voltages if the ADC output is 0xA92 and 0x976?

3. Write the address decode equation to put the input and

output ports at addresses 0x2000 – 0xAFFF.

University of Florida EEL 3744 – Summer 2017 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 0 3-Jul-17

Page 5/5 Lab 5: EBI and ADC: Digital Voltmeter

PRE-LAB REQUIREMENTS
1. Answer the pre-lab questions.

2. Setup the EBI for SRAM at memory locations $8000-

$9FFF.

3. Configure the ADC properly for Channel 0 and 1 (CdS

cell and DAD/NAD board).

4. Display proper voltages (in decimal and hex) on the

terminal.

5. Write an interactive program that uses the serial

communications, timer/counter, and ADC as described.

IN-LAB REQUIREMENTS
1. Demonstrate Part E.

2. If Part E does not work, demonstrate as much as you can

from Parts A, B, C, and D.

