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YOU WILL NOT BE ALLOWED INTO YOUR LAB 

SECTION WITHOUT THE REQUIRED PRE-LAB. 

OBJECTIVES 
 Learn how to use C (as an alternative to Assembly) in 

your programs. 

 Learn how to use an analog-to-digital conversion (ADC, 

also known as A/D) system on a microcontroller. 

 Use the ADC on your XMEGA to sample an analog 

input, convert the binary value to decimal, and display 

the value on a console (You are creating a simple voltage 

meter.)  

 Explore and understand how the External Bus Interface 

works by storing ADC values into external SRAM 

memory. 

REQUIRED MATERIALS 
 uPAD 1.4 Board and Analog Backpack v1.2 

 NAD/DAD (NI/Diligent Analog Discovery) kit 

 You WILL need the following documentation: 

o Analog Backpack v1.2 documentation 

o uPAD 1.4 Memory Base v1.2 

 XMEGA documents 

o doc8331: XMEGA Manual 

o doc8385 

o doc8032: Analog to Digital (ADC) 

o doc8075: Writing C-code for XMEGA 

 Notes for A-to-D pertaining to uPAD 

o uPAD 1.4 documentation 

PRELAB REQUIREMENTS 
You must adhere to the Lab Rules and Policies document for 

every lab.  

NOTE: All software in this lab should be written in C.  If you 

cannot get your programs working in C, you can write it in 

Assembly for partial credit. 

NOTE: Although the C language has a multitude of built-in 

functions, you are NOT permitted to use any of them in EEL 

3744.  For example, you are NOT allowed to use the 
_delay_ms or _delay_us functions.  Also, do not use 

sprintf, printf, or any similar functions. 

NOTE: Convert the 32 MHz clock configuration code that 

you previously used in Assembly to C. 

PART A: External Bus Interface (EBI) 

The EBI is crucial to the microcontroller in allowing data 

transfer between external peripherals and accessing external 

memory outside the processor. It’s important to understand 

which ports/pins have access to the EBI, look at doc8385 

Section 33 and note which ports we will be using for this 

section. The XMEGA’s External Bus Interface (EBI) system 

gives access to the XMEGA’s address, data, and control 

busses. The external memory is part of the Data Memory 

section for the processor and happens right after the internal 

SRAM memory (0x2000-0x3FFF) ends.  

 

1. Carefully read through the EBI section in the XMEGA 

AU Manual (doc8331, section 27). Make sure you 

understand the configuration registers, the chip select 

register, and how it generates the appropriate chip selects. 

In this lab we will configure XMEGA’s CS0 (chip select 

0) to enable external memory spaces at addresses that 

will be specified later. 

2. Take a look at the Memory Base Board and you will 

notice you only have access to 8 bits of the address 

location.  Figure 27-4 in doc 8331 shows the 

configuration assumed on your uPAD 1.4 board, i.e., the 

XMEAGA in SRAM 3-PORT ALE1 EBI configuration.  

Look at the Memory Base schematic to see the latch and 

SRAM devices on the Memory Base. In this 

configuration, the XMEGA needs the latch to hold 

addresses A15:A8 so that they are available (along with 

A7:0) when needed to access an external device, in this 

case an external SRAM that needs A14:0.  These address 

pins are time multiplexed on one particular XMEGA 

port.  

3. See the bottom two timing diagram in section 36.1 of 

doc8331, the write and read timing diagrams in the 

SRAM 3-PORT ALE1 EBI configuration.  

In this lab you will write a C program (Lab5a.c) that 

configures the EBI at a memory location of $8000 to $9FFF 

(How many addresses is this?). You must setup the EBI for 

SRAM 3-PORT ALE1 configuration, and properly configure 

the chip select and base address to accomplish the 

specifications.  (You must also setup the direction of the 

specified ports pins for the various EBI signals.)  

 

If you are trying to read or write to a specified EBI address 

ABOVE 0xFFFF in C, you will need dedicated software to 

accomplish this high-address access.  There is a header file on 

the examples page of the class website called 

ebi_driver.h. There is an output function in this file 

called __far_mem_write(address,data) that is 

needed to write to addresses above 0xFFFF.  There is also and 

input function in the same file that is needed to read form 

addresses above 0xFFFF called 

__far_mem_read(address).  To access these functions 

you will need to copy it you’re your project and also include 

it in your program, i.e., include the following: #include 

"ebi_driver.h". 

 

However, since in the example specified earlier in this 

section, we are dealing with a 16-bit addresses, we do NOT 

need to use these “far” functions.  
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Figure 1: CdS cell configuration on Analog Backpack 

(on page 3 of Analog Backpack schematic). 

 

To access the external memory location you will need to 

initialize a signed pointer to read/write values into the 

location.  A pointer is a variable that holds the address of 

another variable. To initialize a pointer you will need to use 

the “*” in front of the pointer variable name. For example:  

 
  volatile int8_t *ptr = 0x4000;  

 

Placing the volatile keyword in front of the variable tells the 

optimizer that the variable can change at any time. 

  

This points to the external memory address 0x4000 in Data 

Memory.  To read in data from memory you’ll need to 

dereference the pointer by: 

 
  (some variable) = *ptr; //contents of 

address 

 

To write to memory: 

 
  *ptr = (some data);  

 

Once you initialize the pointer, set up an infinite loop and 

constantly write 0x37 into the memory location 0x8500 and 

0x73 into memory location 0x8501. Use the pinouts on the 

bottom of the memory board, to view the signals (A3:0, D7:0, 

ALE, CS0, WE) using the LSA tool on your DAD/NAD. You 

won’t have enough wires for all the signals (this is why A7:4 

were left out above).  Save a screenshot of the DAD/NAD 

LSA output, annotate the output describing the various things 

happening during each of the two write cycles. 

 

It will be helpful for you to just create a function to set up 

EBI since you will need this setup later on for the lab. 

 
PART B: USING AN ADC TO SENSE LIGHT 

In this part of the lab, you will use XMEGA’s ADC to detect 

light conditions using a CdS cell. CdS (Cadmium Sulfide) 

cells are a type of photoresistors, electronic components 

sensitive to incident light.   You will write program 

Lab5b.c. 

Properly install the Analog Backpack onto the uPAD.  Read 

the Analog Backpack schematic sheet before you continue to 

determine the ports and pins that will be used with this 

device. 

 

In this part of the lab you will be using the XMEGA’s ADC 

(Analog to Digital converter) to detect light conditions using a 

CdS cell. CdS cells are a type of photo-resistors, electronic 

components sensitive to incident light. The CdS cell is wired 

(see Figure 1) in a Wheatstone bridge configuration.  (You 

can learn how a Wheatstone bridge circuit works at 

https://en.wikipedia.org/wiki/Wheatstone_bridge. EEL 3111C 

has a lab that explores this circuit.)  The output voltage is 

measured between CdS+ and CdS-. (See the Analog 

Backpack schematic for pin outputs.)  When the light on the 

CdS cell increases, the voltage increases; as the light 

decreases, the voltage decreases.  In a balanced Wheatstone 

bridge, the resistance of the CdS cell would be approximately 

the same as that of R4, R3, and R1; this would result in a 0 V 

output.  Because the resistance of the CdS in complete 

darkness is NOT the same as the other resistors in the bridge, 

the differential voltage between the pins will be 

approximately -0.6 V.  You can measure this with your 

multimeter or DAD/NAD (before creating your XMEGA 

program) to verify the values and also, later, to compare your 

XMEGA program to what you measure with these other 

devices. 

 

Write a C program, Lab5b.c, that reads in the differential 

output of CdS+ and CdS-.  Use the ADC on Port A for the 

pins of the CdS cell.  

 

Cover and uncover the CdS cell and observe the changes in 

voltages across CDS+ and CDS-; this will give you an idea of 

the values to be expected with your board. To get the 

maximum voltage shine a light (perhaps from your cell 

phone) directly at the CdS cell. To obtain the minimum 

voltage completely cover the CdS cell.  

 

Carefully read Section 28 of doc8331 of the XMEGA manual 

to learn about how to configure and start a conversion of the 

ADC. You will also need to look at the Analog backpack 

documentation to see which Port/Pins are connected to the 

analog pins on the XMEGA to properly configure them as 

input pins. Below are the basic guidelines needed to set up the 

ADC: 

1. Use the external reference of AREFB in your ADC 

register initializations. This will set your ADC voltage 

span to be between -2.5 V and +2.5 V.  

2. Configure the ADC system for signed 8-bit (or signed 

12-bit, right-adjusted), differential mode, with a gain 

of 1.  Use Channel 0 for this measurement!  You must 

set the direction of the ADC pin that you are as an input 

and also enable the ADC module. 

https://en.wikipedia.org/wiki/Wheatstone_bridge
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3. Test the voltage at the ADC input with your multimeter 

(or DAD/NAD) and then compare it with the values you 

get from your ADC system. Include breakpoints at the 

end of each analog conversion to compare the results to 

your multimeter/DAD/NAD reading.  

a. Find the equation ,VANALOG = f(VDIGITAL), of a line in 

order to convert the digital value (between -128 and 

127 for eight bits or -2048 and 2047 for 12 bits) to 

an analog value (2.5 V to +2.5 V).  Put this 

equation in your lab report.  For example if the 

voltage is 1V, the digital representation should be 

about 0x33 (for 8-bit) or 0x333 (for 12-bit). If the 

voltage is 1.5V the digital representation should be 

about 0x4C (for 8-bits) or 0x4CC (for 12-bits). 

b. Now compare multimeter/DAD/NAD readings to the 

values calculated by using the formula determined 

above with the digital readings.  The values may 

differ by as much as 10%. 

PART C: CREATING A VOLTMETER 

1. In this part of the lab you will take the ADC value from 

Part B into a voltmeter. Add the program you did in Part 

B to this part, call this program Lab5c.c.  Setup the 

UART for 8 data bits, a baud rate of 28,800 Hz, no 

parity bit, and 1 stop bit. If you haven’t already done 

so, translate the assembly program you did in Lab 4 to C. 

You will be outputting both the decimal and hexadecimal 

representations of the voltage from the CdS cell to your 

PC’s screen using the Atmel Terminal.  

2. You must display the voltage of the ADC input pins as 

both a decimal number, e.g., 4.37 V, and as a hex 

number, e.g., 0x6FD in signed 12-bit or 0xDF in 

unsigned 8-bit.  You can use either signed 12-bit or 

signed 8-bit.  An example output for a signed 8-bit ADC 

with a range of -5 V to 5 V is +4.37 V (0x6F), i.e., 

the format for the voltage output is the decimal voltage 

with three digits, two to the right of the decimal point and 

then the hex value in either eight or 12 bits. 

3. The ASCII characters of digits 0 through 9 are 0x30 

through 0x39, i.e., just add 0x30 to the digit to find the 

ASCII representation of the digit.  You will also need the 

hex values for the ASCII equivalents of the decimal 

point, a space, the letters “V” and “x,” and both the left 

and right parenthesis.  

4. If we assume that the input voltage calculated in part B 

was +3.14 V, the below algorithm describes how to send 

that value to the terminal, one character at a time.  Note 

that using the type casting operation in C is very helpful 

for this algorithm.  Type casting converts a value of one 

type to a value in another type.  For example, if I is an 

integer equal to 3 and F is a floating point number, then 

F = (float) 3; will result in F = 3.0. Similarly, if 

Pi = 3.14159, then I = (int) Pi, with result in I = 3.  

First send the sign, either ‘+’ or ‘+’ out of the XMEGA’s 

serial port, i.e., transmit it to your PC.   

The below algorithm describes how you could output the 

digits of a decimal number.  (Remember that you are not 

allowed to use library functions like sprint or 

printf in this course.) 

 Pi = 3.14159…//variable holds original value 

 Int1 = (int) Pi = 3  3 is the first digit of Pi 

 Transmit Int1 and then “.”  

 Pi2 = 10*(Pi - Int1) = 1.4159…  

 Int2 = (int) Pi2 = 1  1 is the second digit of Pi 

 Transmit the Int2 digit 

 Pi3 = 10*(Pi2 – Int2) = 4.159…  

 Int3 = (int) Pi3 = 4  4 is the third digit of Pi 

 Transmit the Int2 digit, then a space, and then a ‘V’ 

Then transmit another blank, a starting parenthesis, the 

three hex digits (for 12-bit ADC) or two hex digits (for 8-

bit ADC) corresponding to the ADC value, and then a 

ending parenthesis. Another example output for signed 8-

bit (-5 V to 5 V) ADC is 3.14 V (0x50).  You will also 

need to transmit a new line character at the end of each 

result. 

PART D: ADC Channel 1 with DAD/NAD 

In this part of the lab, you will set up ADC Channel 1 to read 

voltages from your DAD/NAD. To start, you need to place 

the GND and waveform generator 1 pins to AIN- and AIN+ 

respectively. See Figure 2 for proper wiring. Keep the same 

set up as Part B. All you have to do is configure Channel 1 for 

ADCA. You will also need to display the hex and analog 

values as done in Part C. Name this file Lab5d.c. 

 

Figure 2: Connection to AIN+/AIN-. 

View the Analog Backpack schematic to see where the 

AIN+/AIN- signal drive into. You don’t need to know how 

to analyze the Differential Op amps that drive those two 

signals. 

Using the DAD/NAD Board 

1. In the Waveform’s software, go to the “Wavegen” tab.  

2. Switch the “Simple” menu to “Basic”.  

3. Click on DC now (See Figure 3). 
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Figure 3: DAD/NAD Waveforms configuration 

NOTE: To measure the voltage across soldered pins, use 

your multi-meter from EEL3701. 

For this part, you’re going to test the maximum/minimum 

constraints of your analog values.  Move the marker up to 5 

V. Measure the voltage on IN0+ and IN0-. (These are the 

outputs of the differential op amps you drove AIN- and AIN+ 

to). Now move, the marker to -5 V and measure the same 

pins.  

Now that you have an idea of your analog value constraints, 

configure channel 1 to read in the values and print both the 

hex and analog values onto the terminal. You’ll be scrolling 

through all voltage ranges from -5 to +5 to see how the output 

voltage changes by viewing the Hex/Analog values on the 

Atmel Terminal. 

PART E: Toggle Menu 

In this part of the lab, you will be integrating multiple 

peripherals together using interrupts, Timer Counters, and the 

UART system. Make sure, you’re able to use channel 1 and 0 

of the ADC system for both the DAD/NAD input and CdS 

cell. You’ll be creating a menu that displays onto the 

terminal. When the program runs you need to display the 

following below onto the terminal:  

 

Function 

Keyboard 

Keys  Functionality  

1 ‘a’ or ‘A’ 
Start conversion on CdS Cell and 

displays on Terminal 

2 ‘b’ or ‘B’ 
Start conversion on DAD/NAD 

channel and displays on Terminal 

3 ‘c’ or ‘C’ 

Start Timer Counter, after every 1 s 

the CdS starts a conversion 

(Interrupt Driven) 

4 ‘d’ or ‘D’ Turn off Timer Counter 

5 ‘e’ or ‘E’ 

Start CdS cell conversion, write 

this value into external SRAM 

location $8000. 

6 ‘f’ or ‘F’ 

Read the external memory Location 

at $8000 and prints the value onto 

the Terminal 

 

You will also need to set up the ADC compare interrupt for 

both channel 0 and 1. For channel 0, set up the interrupt to 

trigger for below threshold. For channel 1, set up the interrupt 

to trigger for above threshold. You will also need to 

ADCx_CMP register to 0 as well for this to work. Anytime 

you cover your hand fully on the CdS cell, the voltage should 

be negative and your program should go to the ISR. If you 

move the voltage marker on your DAD/NAD board to 

negative voltages, the value should be above 0, and trigger the 

ISR for channel 1. In the ISR you should do the following: 

 

Channel 0 ISR: Turn on the RED RGB led; others should be 

off 

 

Channel 1 ISR:  Turn on the BLUE RGB led; others should 

be off.  

 

NOTE: ALL interrupts should be HIGH LEVEL. To enable 

interrupts in C, use the function sei(). Also, you must use 

the below line in your program: 

 

  #include <avr/interrupt.h>. 

 

 When you start the program, the terminal starts with a 

menu displaying all the options you can perform  

 When you press ‘a’ on your keyboard, the terminal 

should display the current CdS voltage/hex values 

 When you press ‘b’ on your keyboard, the terminal 

should display the current DAD/NAD voltage/hex values 

 When you press ‘c’, this should turn on the timer counter. 

The easiest way to think about this, have the timer 

counter already initialized, besides the register that 

actually turns it on. Also, when the timer counter is on, 

there should be a continuing ADC conversion on the CdS 

cell every 1 s displaying on the terminal. Your program 

should also continue polling for any of the keys to be 

pressed as well.  

 When you press ‘d’ the timer counter should be turned 

off and the CdS cell conversion should be halted. 

 When you press ‘e’, you should start a conversion on the 

CdS cell and write this value into the memory location 

specified. (Use memory window to see what happens) 

 When you press ‘f’, you should read in the value you last 

wrote to in the memory location and display it on the 

terminal. 

 

NOTE: For the first time you do the conversion the result 

could be 0 until the next conversion, this is okay. 

 

Name the file Lab5e.c, it will be helpful to create functions 

to reuse for later purposes.  

PRE-LAB QUESTIONS 
1. What is the difference in conversion ranges between 8-bit 

unsigned and signed conversion modes? List both ranges.  

2. Assume you wanted a voltage reference range from -2 V 

to 3 V, with an unsigned 12-bit ADC. What are the 

voltages if the ADC output is 0xA92 and 0x976? 

3. Write the address decode equation to put the input and 

output ports at addresses 0x2000 – 0xAFFF.  
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PRE-LAB REQUIREMENTS 
1. Answer the pre-lab questions. 

2. Setup the EBI for SRAM at memory locations $8000-

$9FFF. 

3. Configure the ADC properly for Channel 0 and 1 (CdS 

cell and DAD/NAD board). 

4. Display proper voltages (in decimal and hex) on the 

terminal. 

5. Write an interactive program that uses the serial 

communications, timer/counter, and ADC as described.  

IN-LAB REQUIREMENTS 
1. Demonstrate Part E. 

2. If Part E does not work, demonstrate as much as you can 

from Parts A, B, C, and D.  

 


