Errata

Instructor's Solutions Manual
Introduction to Electrodynamics, 3rd ed Author: David Griffiths
Date: September 1, 2004

- Page 4, Prob. 1.15 (b): last expression should read $y+2 z+3 x$.
- Page 4, Prob.1.16: at the beginning, insert the following figure

- Page 8, Prob. 1.26: last line should read

From Prob. 1.18: $\boldsymbol{\nabla} \times \mathbf{v}_{a}=-6 x z \hat{\mathbf{x}}+2 z \hat{\mathbf{y}}+3 z^{2} \hat{\mathbf{z}} \Rightarrow$ $\boldsymbol{\nabla} \cdot\left(\boldsymbol{\nabla} \times \mathbf{v}_{a}\right)=\frac{\partial}{\partial x}(-6 x z)+\frac{\partial}{\partial y}(2 z)+\frac{\partial}{\partial z}\left(3 z^{2}\right)=-6 z+6 z=0 . \checkmark$

- Page 8 , Prob. 1.27, in the determinant for $\nabla \times(\nabla f)$, 3rd row, 2nd column: change y^{3} to y^{2}.
- Page 8, Prob. 1.29, line 2: the number in the box should be -12 (insert minus sign).
- Page 9, Prob. 1.31, line 2: change $2 x^{3}$ to $2 z^{3}$; first line of part (c): insert comma between $d x$ and $d z$.
- Page 12, Probl 1.39, line 5: remove comma after $\cos \theta$.
- Page 13, Prob. 1.42(c), last line: insert $\hat{\mathbf{z}}$ after).
- Page 14, Prob. 1.46(b): change \mathbf{r}^{\prime} to \mathbf{a}.
- Page 14, Prob. 1.48, second line of J : change the upper limit on the r integral from ∞ to R. Fix the last line to read:

$$
=\left.4 \pi\left(-e^{-r}\right)\right|_{0} ^{R}+4 \pi e^{-R}=4 \pi\left(-e^{-R}+e^{-0}\right)+4 \pi e^{-R}=4 \pi . \checkmark
$$

- Page 15 , Prob. 1.49(a), line 3: in the box, change x^{2} to x^{3}.
- Page 15, Prob. 1.49(b), last integration "constant" should be $l(x, z)$, not $l(x, y)$.
- Page 17, Prob. 1.53, first expression in (4): insert θ, so $d \mathbf{a}=r \sin \theta d r d \phi \hat{\boldsymbol{\theta}}$.
- Page 17, Prob. 1.55: Solution should read as follows:

Problem 1.55

(1) $x=z=0 ; d x=d z=0 ; y: 0 \rightarrow 1 . \quad \mathbf{v} \cdot d \mathbf{l}=\left(y z^{2}\right) d y=0 ; \int \mathbf{v} \cdot d \mathbf{l}=0$.
(2) $x=0 ; z=2-2 y ; d z=-2 d y ; y: 1 \rightarrow 0$.
$\mathbf{v} \cdot d \mathbf{l}=\left(y z^{2}\right) d y+(3 y+z) d z=y(2-2 y)^{2} d y-(3 y+2-2 y) 2 d y ;$
$\int \mathbf{v} \cdot d \mathbf{l}=2 \int_{1}^{0}\left(2 y^{3}-4 y^{2}+y-2\right) d y=\left.2\left[\frac{y^{4}}{2}-\frac{4 y^{3}}{3}+\frac{y^{2}}{2}-2 y\right]\right|_{1} ^{0}=\frac{14}{3}$.
(3) $x=y=0 ; d x=d y=0 ; z: 2 \rightarrow 0 . \quad \mathbf{v} \cdot d \mathbf{l}=(3 y+z) d z=z d z$.

$$
\int \mathbf{v} \cdot d \mathbf{l}=\int_{2}^{0} z d z=\left.\frac{z^{2}}{2}\right|_{2} ^{0}=-2
$$

Total: $\oint \mathbf{v} \cdot d \mathbf{l}=0+\frac{14}{3}-2=\frac{8}{3}$.
Meanwhile, Stokes' thereom says $\oint \mathbf{v} \cdot d \mathbf{l}=\int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}$. Here $d \mathbf{a}=$ $d y d z \hat{\mathbf{x}}$, so all we need is
$(\boldsymbol{\nabla} \times \mathbf{v})_{x}=\frac{\partial}{\partial y}(3 y+z)-\frac{\partial}{\partial z}\left(y z^{2}\right)=3-2 y z$. Therefore

$$
\begin{aligned}
\int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a} & =\iint(3-2 y z) d y d z=\int_{0}^{1}\left\{\int_{0}^{2-2 y}(3-2 y z) d z\right\} d y \\
& =\int_{0}^{1}\left[3(2-2 y)-2 y \frac{1}{2}(2-2 y)^{2}\right] d y=\int_{0}^{1}\left(-4 y^{3}+8 y^{2}-10 y+6\right) d y \\
& =\left.\left[-y^{4}+\frac{8}{3} y^{3}-5 y^{2}+6 y\right]\right|_{0} ^{1}=-1+\frac{8}{3}-5+6=\frac{8}{3} .
\end{aligned}
$$

- Page 18, Prob. 1.56: change (3) and (4) to read as follows:
(3) $\phi=\frac{\pi}{2} ; r \sin \theta=y=1$, so $r=\frac{1}{\sin \theta}, d r=\frac{-1}{\sin ^{2} \theta} \cos \theta d \theta, \theta: \frac{\pi}{2} \rightarrow \theta_{0} \equiv$ $\tan ^{-1}\left(\frac{1}{2}\right)$.

$$
\begin{aligned}
\mathbf{v} \cdot d \mathbf{l} & =\left(r \cos ^{2} \theta\right)(d r)-(r \cos \theta \sin \theta)(r d \theta)=\frac{\cos ^{2} \theta}{\sin \theta}\left(-\frac{\cos \theta}{\sin ^{2} \theta}\right) d \theta-\frac{\cos \theta \sin \theta}{\sin ^{2} \theta} d \theta \\
& =-\left(\frac{\cos ^{3} \theta}{\sin ^{3} \theta}+\frac{\cos \theta}{\sin \theta}\right) d \theta=-\frac{\cos \theta}{\sin \theta}\left(\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin ^{2} \theta}\right) d \theta=-\frac{\cos \theta}{\sin ^{3} \theta} d \theta
\end{aligned}
$$

Therefore

$$
\int \mathbf{v} \cdot d \mathbf{l}=-\int_{\pi / 2}^{\theta_{0}} \frac{\cos \theta}{\sin ^{3} \theta} d \theta=\left.\frac{1}{2 \sin ^{2} \theta}\right|_{\pi / 2} ^{\theta_{0}}=\frac{1}{2 \cdot(1 / 5)}-\frac{1}{2 \cdot(1)}=\frac{5}{2}-\frac{1}{2}=2
$$

(4) $\theta=\theta_{0}, \phi=\frac{\pi}{2} ; r: \sqrt{5} \rightarrow 0 . \quad \mathbf{v} \cdot d \mathbf{l}=\left(r \cos ^{2} \theta\right)(d r)=\frac{4}{5} r d r$.

$$
\int \mathbf{v} \cdot d \mathbf{l}=\frac{4}{5} \int_{\sqrt{5}}^{0} r d r=\left.\frac{4}{5} \frac{r^{2}}{2}\right|_{\sqrt{5}} ^{0}=-\frac{4}{5} \cdot \frac{5}{2}=-2
$$

Total:

$$
\oint \mathbf{v} \cdot d \mathbf{l}=0+\frac{3 \pi}{2}+2-2=\frac{3 \pi}{2}
$$

- Page 21, Probl 1.61(e), line 2: change $=z \hat{\mathbf{z}}$ to $+z \hat{\mathbf{z}}$.
- Page 25, Prob. 2.12: last line should read

Since $Q_{\mathrm{tot}}=\frac{4}{3} \pi R^{3} \rho, \mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{R^{3}} \mathbf{r}$ (as in Prob. 2.8).

- Page 26, Prob. 2.15: last expression in first line of (ii) should be $d \phi$, not d phi.
- Page 28, Prob. 2.21, at the end, insert the following figure

In the figure, r is in units of R, and $V(r)$ is in units of $\frac{q}{4 \pi \epsilon_{0} R}$.

- Page 30, Prob. 2.28: remove right angle sign in the figure.
- Page 42, Prob. 3.5: subscript on V in last integral should be 3 , not 2 .
- Page 45, Prob. 3.10: after the first box, add:

$$
\mathbf{F}=\frac{q^{2}}{4 \pi \epsilon_{0}}\left\{-\frac{1}{(2 a)^{2}} \hat{\mathbf{x}}-\frac{1}{(2 b)^{2}} \hat{\mathbf{y}}+\frac{1}{\left(2 \sqrt{a^{2}+b^{2}}\right)^{2}}[\cos \theta \hat{\mathbf{x}}+\sin \theta \hat{\mathbf{y}}]\right\}
$$

where $\cos \theta=a / \sqrt{a^{2}+b^{2}}, \quad \sin \theta=b / \sqrt{a^{2}+b^{2}}$.

$$
\mathbf{F}=\frac{q^{2}}{16 \pi \epsilon_{0}}\left\{\left[\frac{a}{\left(a^{2}+b^{2}\right)^{3 / 2}}-\frac{1}{a^{2}}\right] \hat{\mathbf{x}}+\left[\frac{b}{\left(a^{2}+b^{2}\right)^{3 / 2}}-\frac{1}{b^{2}}\right] \hat{\mathbf{y}}\right\}
$$

$$
W=\frac{1}{4} \frac{1}{4 \pi \epsilon_{0}}\left[\frac{-q^{2}}{(2 a)}+\frac{-q^{2}}{(2 b)}+\frac{q^{2}}{\left(2 \sqrt{a^{2}+b^{2}}\right)}\right]=\frac{q^{2}}{32 \pi \epsilon_{0}}\left[\frac{1}{\sqrt{a^{2}+b^{2}}}-\frac{1}{a}-\frac{1}{b}\right] .
$$

- Page 45 , Prob. 3.10: in the second box, change "and" to "an".
- Page 46, Probl 3.13, at the end, insert the following: "[Comment: Technically, the series solution for σ is defective, since term-by-term differentiation has produced a (naively) non-convergent sum. More sophisticated definitions of convergence permit one to work with series of this form, but it is better to sum the series first and then differentiate (the second method).]"
- Page 51 , Prob. 3.18, midpage: the reference to Eq. 3.71 should be 3.72.
- Page 53, Prob. 3.21(b), line 5: A_{2} should be $\frac{\sigma}{4 \epsilon_{0} R}$; next line, insert r^{2} after $\frac{1}{2 R}$.
- Page 55 , Prob. 3.23, third displayed equation: remove the first Φ.
- Page 58, Prob. 3.28(a), second line, first integral: R^{3} should read R^{2}.
- Page 59, Prob. 3.31(c): change first V to W.
- Page 64, Prob. 3.41(a), lines 2 and 3: remove ϵ_{0} in the first factor in the expressions for $\mathbf{E}_{\text {ave }}$; in the second expression change " ρ " to " q ".
- Page 69, Prob. 3.47, at the end add the following:

Alternatively, start with the separable solution

$$
V(x, y)=(C \sin k x+D \cos k x)\left(A e^{k y}+B e^{-k y}\right) .
$$

Note that the configuration is symmetric in x, so $C=0$, and $V(x, 0)=$ $0 \Rightarrow B=-A$, so (combining the constants)

$$
V(x, y)=A \cos k x \sinh k y .
$$

But $V(b, y)=0$, so $\cos k b=0$, which means that $k b= \pm \pi / 2, \pm 3 \pi / 2, \cdots$, or $k=(2 n-1) \pi / 2 b \equiv \alpha_{n}$, with $n=1,2,3, \ldots$ (negative k does not yield a different solution-the sign can be absorbed into A). The general linear combination is

$$
V(x, y)=\sum_{n=1}^{\infty} A_{n} \cos \alpha_{n} x \sinh \alpha_{n} y
$$

and it remains to fit the final boundary condition:

$$
V(x, a)=V_{0}=\sum_{n=1}^{\infty} A_{n} \cos \alpha_{n} x \sinh \alpha_{n} a .
$$

Use Fourier's trick, multiplying by $\cos \alpha_{n^{\prime}} x$ and integrating:

$$
\begin{gathered}
V_{0} \int_{-b}^{b} \cos \alpha_{n^{\prime}} x d x=\sum_{n=1}^{\infty} A_{n} \sinh \alpha_{n} a \int_{-b}^{b} \cos \alpha_{n^{\prime}} x \cos \alpha_{n} x d x \\
V_{0} \frac{2 \sin \alpha_{n^{\prime}} b}{\alpha_{n^{\prime}}}=\sum_{n=1}^{\infty} A_{n} \sinh \alpha_{n} a\left(b \delta_{n^{\prime} n}\right)=b A_{n^{\prime}} \sinh \alpha_{n^{\prime}} a \\
\text { So } A_{n}=\frac{2 V_{0}}{b} \frac{\sin \alpha_{n} b}{\alpha_{n} \sinh \alpha_{n} a} . \text { But } \sin \alpha_{n} b=\sin \left(\frac{2 n-1}{2} \pi\right)=-(-1)^{n}, \text { so } \\
V(x, y)=-\frac{2 V_{0}}{b} \sum_{n=1}^{\infty}(-1)^{n} \frac{\sinh \alpha_{n} y}{\alpha_{n} \sinh \alpha_{n} a} \cos \alpha_{n} x
\end{gathered}
$$

- Page 74, Prob. 4.4: exponent on r in boxed equation should be 5 , not 3 .
- Page 75, Prob. 4.7: replace the (defective) solution with the following:

If the potential is zero at infinity, the energy of a point charge Q is (Eq. 2.39) $W=Q V(\mathbf{r})$. For a physical dipole, with $-q$ at \mathbf{r} and $+q$ at $\mathbf{r}+\mathbf{d}$,

$$
U=q V(\mathbf{r}+\mathbf{d})-q V(\mathbf{r})=q[V(\mathbf{r}+\mathbf{d})-V(\mathbf{r})]=q\left[-\int_{\mathbf{r}}^{\mathbf{r}+\mathbf{d}} \mathbf{E} \cdot d \mathbf{l}\right]
$$

For an ideal dipole the integral reduces to $\mathbf{E} \cdot \mathbf{d}$, and

$$
U=-q \mathbf{E} \cdot \mathbf{d}=-\mathbf{p} \cdot \mathbf{E}, \text { since } \mathbf{p}=q \mathbf{d}
$$

If you do not (or cannot) use infinity as the reference point, the result still holds, as long as you bring the two charges in from the same point, \mathbf{r}_{0} (or two points at the same potential). In that case $W=Q\left[V(\mathbf{r})-V\left(\mathbf{r}_{0}\right)\right]$, and

$$
U=q\left[V(\mathbf{r}+\mathbf{d})-V\left(\mathbf{r}_{0}\right)\right]-q\left[V(\mathbf{r})-V\left(\mathbf{r}_{0}\right)\right]=q[V(\mathbf{r}+\mathbf{d})-V(\mathbf{r})]
$$

as before.

- Page 75, Prob. 4.10(a): $\frac{1}{r^{3}}$ should be $\frac{1}{r^{2}}$.
- Page 79, Prob. 4.19: in the upper right box of the Table (σ_{f} for air) there is a missing factor of ϵ_{0}.
- Page 91, Problem 5.10(b): in the first line $\mu_{0} I^{2} / 2 \pi$ should read $\mu_{0} I^{2} a / 2 \pi s$; in the final boxed equation the first " 1 " should be $\frac{a}{s}$.
- Page 92, Prob. 5.15: the signs are all wrong. The end of line 1 should read "right $(\hat{\mathbf{z}})$," the middle of the next line should read "left $(-\hat{\mathbf{z}})$." In the first box it should be " $\left(n_{2}-n_{1}\right)$ ", and in the second box the minus sign does not belong.
- Page 114, Prob. 6.4: last term in second expression for \mathbf{F} should be $+\hat{\mathbf{z}} \frac{\partial B_{x}}{\partial z}$ (plus, not minus).
- Page 119, Prob. 6.21(a): replace with the following:

The magnetic force on the dipole is given by Eq. 6.3; to move the dipole in from infinity we must exert an opposite force, so the work done is

$$
U=-\int_{\infty}^{\mathbf{r}} \mathbf{F} \cdot d \mathbf{l}=-\int_{\infty}^{\mathbf{r}} \nabla(\mathbf{m} \cdot \mathbf{B}) \cdot d \mathbf{l}=-\mathbf{m} \cdot \mathbf{B}(\mathbf{r})+\mathbf{m} \cdot \mathbf{B}(\infty)
$$

(I used the gradient theorem, Eq. 1.55). As long as the magnetic field goes to zero at infinity, then, $U=-\mathbf{m} \cdot \mathbf{B}$. If the magnetic field does not go to zero at infinity, one must stipulate that the dipole starts out oriented perpendicular to the field.

- Page 125, Prob. 7.2(b): in the box, c should be C.
- Page 129, Prob. 7.18: change first two lines to read:

$$
\begin{gathered}
\Phi=\int \mathbf{B} \cdot d \mathbf{a} ; \mathbf{B}=\frac{\mu_{0} I}{2 \pi s} \hat{\boldsymbol{\phi}} ; \Phi=\frac{\mu_{0} I a}{2 \pi} \int_{s}^{s+a} \frac{d s^{\prime}}{s^{\prime}}=\frac{\mu_{0} I a}{2 \pi} \ln \left(\frac{s+a}{s}\right) ; \\
\mathcal{E}=I_{\mathrm{loop}} R=\frac{d Q}{d t} R=-\frac{d \Phi}{d t}=-\frac{\mu_{0} a}{2 \pi} \ln (1+a / s) \frac{d I}{d t} . \\
d Q=-\frac{\mu_{0} a}{2 \pi R} \ln (1+a / s) d I \Rightarrow Q=\frac{\mu_{0} a I}{2 \pi R} \ln (1+a / s) .
\end{gathered}
$$

- Page 131, Prob. 7.27: in the second integral, r should be s.
- Page 132, Prob. 7.32(c), last line: in the final two equations, insert an I immediately after μ_{0}.
- Page 140, Prob. 7.47: in the box, the top equation should have a minus sign in front, and in the bottom equation the plus sign should be minus.
- Page 141, Prob. 7.50, final answer: R^{2} should read R_{2}.
- Page 143 , Prob. 7.55 , penultimate displayed equation: $t p$ should be \cdot.
- Page 147, Prob. 8.2, top line, penultimate expression: change a^{2} to a^{4}; in (c), in the first box, change 16 to 8 .
- Page 149, Prob. 8.5(c): there should be a minus sign in front of σ^{2} in the box.
- Page 149, Prob. 8.7: almost all the r 's here should be s 's. In line 1 change " $a<r<R$ " to " $s<R$ "; in the same line change $d r$ to $d s$; in the next line change $d r$ to $d s$ (twice), and change $\hat{\mathbf{r}}$ to $\hat{\mathbf{s}}$; in the last line change r to $s, d r$ to $d s$, and $\hat{\mathbf{r}}$ to $\hat{\mathbf{s}}$ (but leave \mathbf{r} as is).
- Page 153 , Prob. 8.11, last line of equations: in the numerator of the expression for R change 2.01 to 2.10 .
- Page 175 , Prob. 9.34 , penultimate line: $\alpha=n_{3} / n_{2}$ (not n_{3} / n_{3}).
- Page 177, Prob. 9.38: half-way down, remove minus sign in $k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=$ $-(\omega / c)^{2}$.
- Page 181, Prob. 10.8: first line: remove i.
- Page 184, Prob. 10.14: in the first line, change (9.98) to (10.42).
- Page 203, Prob. 11.14: at beginning of second paragraph, remove i.
- Page 222, Prob. 12.15, end of first sentence: change comma to period.
- Page 225, Prob. 12.23. The figure contains two errors: the slopes are for $v / c=1 / 2$ (not $3 / 2$), and the intervals are incorrect. The correct solution is as follows:

Problem 12.23.
(a)

(b) $\frac{c}{v}=$ slope $=\frac{9.25}{8.75}$
$\Rightarrow v=\frac{8.75}{9.25} c=\frac{35}{37} c$
(c) $v^{\prime}=\frac{4}{5} c$, so $v=\frac{\frac{4}{\frac{3}{2}} c+\frac{3}{5} c}{1+\frac{4}{5} \cdot \frac{2}{5}}$
$=\frac{(7 / 5) c}{(37 / 25)}=\frac{35}{37} c$

- Page 227, Prob. 12.33: first expression in third line, change c^{2} to c.

