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ABSTRACT
Physical design process commonly consumes hours to days for large
designs, and routing is known as the most critical step. Demands
for accurate routing quality prediction raise to a new level to accel-
erate hardware innovation with advanced technology nodes. This
work presents an approach that forecasts the density of all routing
channels over the entire floorplan, with features collected up to
placement, using conditional GANs. Specifically, forecasting the
routing congestion is constructed as an image translation (coloriza-
tion) problem. The proposed approach is applied to a) placement
exploration for minimum congestion, b) constrained placement
exploration and c) forecasting congestion in real-time during in-
cremental placement, using eight designs targeting a fixed FPGA
architecture.
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1 INTRODUCTION
As technology continues scaling, the complexity of physical design
rules that are a series of parameters provided by manufacturers
has been significantly increased. Physical design, the most runtime-
critical design stage of Electronic Design Automation (EDA) flow,
becomes more challenging with advanced technology nodes. Mod-
ern design closure process mostly requires many design iterations
through full placement & route (PnR) process, which is evidently
expensive for large designs. Due to the long runtime and the lack
of predictability of the physical design process, the challenges of
design closure within short time-to-market raise to a new level. To
overcome such barriers, predictive flow-level modeling and fast
and accurate prediction techniques have very high value.

Recent years have seen an increasing employment of machine
learning (ML) that target both front-end [1–4] and back-end [5–9]
design tools. For example, Xu [5] proposed a supervised learning
based sub-resolution assist feature (SRAF) generator that is used
to improve yield in the manufacturing process. Hotspot detection
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using has been studied using SVM-Kernels [8] and deep learning
[10]. Specifically, for improving the quality of routing estimation at
early stages, the most recent works mainly focus on a) forecasting
routing congestion map [6] and b) routability prediction [9, 11].
A machine learning based routing congestion prediction model is
used for FPGA PnR [6]. However, this approach forecast the heat
map by predicting the congestion only based on SLICEs. RouteNet
[9] predicts the number of Design Rule Violations (DRV) using
transfer learning with ResNet18 as the pre-trained model. RoutNet
also forecasts the locations of hotspots using a fully convolutional
network (FCN). However, both works xie2018routenet[11] require
the features collected at the routing stage.

This paper presents a novel approach that estimates the de-
tailed routing congestion with a given placement solution for FPGA
PnR. The proposed approach fully forecasts the routing conges-
tion heat map using a conditional Generative Adversarial Nets
(cGANs) model. The problem is constructed as image translation
(colorization), where the input are the post-placement image, and
the output is the congestion heat map obtained after detailed rout-
ing. The main contributions include a) Unlike the existing works
that require features at routing stages, the proposed approach only
requires features collected up to placement. b) This approach es-
timates the utilization of all routing channels by forecasting the
full congestion heat map, instead of hotspots only. c) The analysis
of training with L1 loss and skip connections cGANs are included
in Section 5.3. d) The proposed approach is applied to constrained
placement exploration and real-time routing forecast while the de-
sign is being placed. To the best of our knowledge, this is the first
approach that forecasts the routing utilization (density) of all rout-
ing channels. This is also the first approach that estimates detailed
routing congestion without any routing results.
2 BACKGROUND
2.1 CNNs and FCNs
Convolutional neural network is a class of deep artificial neural
networks, which has been widely used in image classification [12],
language processing [13], decision making [14], etc. The hidden
layers of a CNN typically consist of convolutional layers, pooling
layers, fully connected layers. Convolutional layers compute the
local regions of the input and connected to local regions in the input,
pooling layers perform downsampling over the spatial blocks, and
the fully connected layer will finally compute the class scores that
are used to produce the labels during inference.

In contrast to CNNs, fully convolutional networks (FCNs) are
built only with locally connected layers, which was proposed for
semantic segmentation [15], without using any dense and pooling
layer. FCN consists of downsampling path and upsampling path,
where downsampling path captures semantic information and up-
sampling path recover the spatial information. To better upsample
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the spatial information produced by the downsampling layers, skip
connections, i.e., bypass-connections that concatenate one layer in
the downsampling path and one layer in the upsampling path, are
used for transferring the local information cross different layers
[16]. In this work, our deep neural network model leverages both
CNNs and FCNs. The details of the model and discussions of skip
connections are included in Section 4.
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Figure 1: Physical design flow and the concept of forecasting
routing utilization using image translation.

2.2 Physical design
Physical design is the process of transforming a circuit description
into the physical layout, which describes the locations of the cells
and the routs of the interconnections of the elements with respect
to a floor plan. It includes design, verification, and validation at the
layout level, and is known to be the most time-consuming process
in the modern electronic design flow. In particular, routing is the
slowest PnR stage and becomes more unpredictable as the tech-
nology advances [17]. Hence, developing an accurate congestion
prediction technique becomes critical.

One of the inputs for physical design process is a technology-
mapped netlist, which is represented using directed graphs such
that the cells are nodes V and interconnects are edges E (Figure
1). Specifically for FPGA placement, it is a packed netlist where
each cluster-based logic block (CLB) could contain one or more
basic logic elements (BLEs). In Figure 1, Graph(V ,E) refers to the
packed netlist. Floorplanning is the process that allocates space for
placement and routing by identifying the structures of the input
netlist in order to meet the required performance and design rules.
All the elements in V are then placed within the floor plan. After
placement, the nodes and edges in the graphs have a specific 2-D
location on the floor plan, denoted as Graph(V ,E ′,дrids), where
дrids represent the 2-D locations of V . Meanwhile, the edges are
updated with locations E → E ′. Finally, routing connects all the
elements with respect to Graph(V ,E ′,дrids).

The intermediate results, i.e., floor planning, post-placement
and post-routing results, can be visualized as images ∈ Rw×w×3,
denoted as imдf loor , imдplace and imдroute , respectively. An im-
portant observation is that these images are incrementally changed
while PnR proceeds: Graph(V ,E), imдf loor −→ imдplace or from
post-placement to post-routing: Graph(V ,E ′,дrids), imдplace −→

imдroute Based on this observation, the problem of forecasting
routing heat map can be formulated as an image to image trans-
lation problem. Specifically, the proposed approach generates the
estimated routing heat map imдroute from imдplace . To this end,

we present a conditional generative adversarial networks (cGANs)
based approach (Section 4) such that the generator learns a dif-
ferentiable function G such that maps Graph(V ,E), imдplace →

imдroute .

3 ROUTING FORECAST BY "PAINTING"
PLACEMENT

We illustrate the concept of forecasting routing congestion as image
translation using an example shown in Figure 2. These images are
generated by modifying VTR 8.0 [18]. Figure 2a shows the floor
plan imдf loor . There are three types of elements in imдf loor : a)
I/O pads. The elements on each of the four sides of the floor plan,
which are used for placing the inputs and outputs. For this specific
FPGA architecture, each element includes eight ports that each
of them can be used to place one input/output pad. b) CLB spots.
The six columns (1,3,4,5,7,8 columns) of elements surrounded by
the input/output pads, which are used to place CLBs, i.e., V in
Graph(V ,E ′,дrids). c) Memory and multiplier blocks. The yellow
element in the third column indicates the memory block and the
pink bars in the seventh column indicate the multiplier block. Note
that there could be more types of elements shown in the floor plan
image for other FPGA architectures.

Figure 2b represents the post-placement result imдplace . Com-
pared to imдf loor , the image has been updated by changing the
pixels where CLBs and I/O pads are placed. Specifically, the corre-
sponding pixels are filled with black pixels and the rest of the image
remains the same. For example, in the second column, there is one
CLB placed in the third row. The I/O pads may not be fully filled
with black pixels since each of them contains eight ports. Similarly,
the routing result imдroute can be represented on top of imдplace
(Figure 2c). Figure 2d shows the congestion heat map which is used
to visualize routing congestion by measuring the utilization of the
routing channels. Compared to imдplace , imдroute is updated by
colorizing the routing channels pixels only, with respect to the uti-
lization color bar. The pixel-to-pixel differences between imдroute
and imдplace are shown in Figure 2e.

One of the conditions required for a high-quality image to image
translation is that the input and output images should have the
same underlying structure, and mostly differ in the surface appear-
ance [19]. In other words, this requires that the structure of the
input should be well aligned with the structure of the output. In
this work, imдplace is the input image (other input features will be
introduced in next section), and imдroute is the output image. The
underlying image structures of these two images are almost identi-
cal. This offers the main motivation for leveraging image-to-image
translation model for routing forecast.

4 APPROACH
4.1 GANs and cGANs
Generative adversarial networks (GANs) are neural networkmodels
that are used in unsupervised machine learning tasks. GANs learn a
transformation from random noise vector z to a corresponding map-
ping д, denoted asG(z), which implements a differentiable function
that maps z → y[20]. GANs include two multilayer perceptrons,
namely generatorG and discriminator D. The goal of discriminator
D is to distinguish between samples generated from the generator
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Figure 2: Motivating example of forecasting routing heat map as image colorization. a) floor plan image imдf loor ; b) post-
placement image imдplace ; c) routing result; d) routing heat map image imдroute (ground truth); e) exact difference between
imдplace and imдroute .

and samples from the training dataset. The goal of generator G is
to generate a mapping of input that cannot be distinguished to be
true or false by the discriminator D. The network is trained in two
parts and the loss function L(G,D) is shown in Equation 1.

• train D to maximize the probability of assigning the correct
label to both training examples and samples from G.

• train G to minimize loд(1 − D(G(z))).

L(G,D) = min
D

min
G

(Ex loдD(x ) + Ez loд(1 − D(G(z)))) (1)

In contrast to GANs, conditional GANs (also known as cGANs)
[21] learn a mapping by observing both input vector x and random
noise vector z, denoted as G(x , z), which maps the input x and
the noise vector z to д, (x , z) → д (Figure 3). The main difference
compared to GANs is that the generator and discriminator observe
the input vector x . Accordingly, the loss function cL(G,D) (Equation
2) and training objectives will be the follows:

cL(G,D) = min
D

min
G

(
Ex,д loдD(x, д) + Ex,z loд(1 − D(G(x, z)))

)
(2)

• train D to maximize the probability of assigning the correct
label to both training examples and samples from G.

• train G to minimize loд(1 − D(G(x , z))).
In addition, the GAN objective could be further improved with a

combined loss function according to [19], such as adding L1 or L2
distance to the objective, where the discriminator’s loss remains
unchanged. The objective with L1 distance is

cL(G,D) + λ · Ex,д,z [| |д −G(x , z)| |]

Generator
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Input
x

Truth
t
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Figure 3: Model Overview

In an unconditioned GANs, the data is generated without any
constrains. With conditional settings, the model is trained with
additional information that directly constrains the data generation
process, which has been proven to be crucial for image painting and

inpainting tasks [22]. Conditional settings are particularly impor-
tant in our context since the input and output images have absolute
identical structures.

4.2 Features
In this section, we define the input used for training and inference.
The input x includes two parts, i.e., post-placement image imдplace
and connectivity image that represents Graph(V ,E ′,дrids) (see
Section 2.2). The image imдplace is generated using the generator
implemented based on VPR’s interactive mode, where imдplace ∈

Rw×w×3.
Color Scheme: First, a color scheme is used to differentiate the
elements in placement and routing. Specifically, the color scheme
used in this work is shown in Table 1, which is the default setting
used in VPR’s interactive mode. Note that other color schemes could
be used as well while different elements can be well differentiated
using RGB euclidean distance. We show the importance of the color
scheme by comparing to using a grayscale image as input in the
result section.

Table 1: Color scheme used in post-placement and post-
routing images.

Color imдplace imдroute
White Routing channels Out of floor plan
Lightblue CLB spots Remaining CLB spots
Pink Multiplier Multiplier
Lightyellow Memory Memory
Black Used CLB and IO spots Used CLB and IO spots
Yellow2purple gradient - Routing utilization

Connectivity Image: In order to use the connectivities of features
Graph(V ,E ′,дrids) in the neural network, we convertGraph(V ,E ′,дrids)
into connectivity image, namely imдconnect . Each edge in E ′ con-
nects two nodes in V , which have specific 2-D locations. Drawing
edges in E ′ according to these locations constructs imдconnect . For
example, the connectivity images of two different placement re-
sults are shown in Figure 4. Moreover, the connectivity image has
the same dimensions as imдplace but with only one channel, i.e.,
Rw×w×1. Note that both imдplace and imдconnect are first gener-
ated in vector images, and will be converted to bitmap images for
training and inference.



Resolution: Finally, the dimensionw of the input images imдplace
and imдconnect , have to be adjusted based on the size of the floor
plan. The goal is to maintain the actual placement structure of
imдplace , and differentiates all the elements in the netlist. Specif-
ically, we adjust the resolution of imдplace such that the dimen-
sion of each placement element ≥2×2. Note that imдplace and
imдconnect are vector graphics that can be converted to arbitrary
resolution bitmap images. In this work,w is set to be 256.

Hence, the input feature x :
x = stack(imдplace , λ · imдconnect ),x ∈ R256×256×4

Figure 4: Connectivity images of based on two different
placements results.

4.3 Architecture
The conditional GANs architecture used in this work is shown
in Figure 5. The generator takes input x and produces output д
that includes convolutional and deconvolutional layers only. The
discriminator detects whether the output of generator is true or
fake, which includes six layers convolutional layers (with batch
normlization) followed by sigmoid function for binary classification.
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Figure 5: Architecture of our conditional GAN model with
skip connections.

Skips in FCNs: The skip connections in the FCN are shown to
important to passing the image structure from the input to the
output [19][9]. The main idea behind is that the network for trans-
lating images requires that the information of the input image
passes through all the layers. Specifically, in the case of translating
imдplace to imдroute , the input and output share the location of
all the image structure edges. The skip connections are shown in
Figure 5.

4.4 Training
The discriminator is trained with the output images produced by
the generator to distinguish the input-truth and input-output pairs.
The weights of the discriminator are updated by back-propagation
based on the classification error between the input-truth and input-
output pairs. The generator is trained by updating its weights based

on the difference between input and truth images while the weights
of the generator are updated by the output of the discriminator as
well (Figure 6).

Generator
G(x,z)

Discriminator               D(x,g)

0 (fake)

Discriminator               D(x,t)

1 (true)

Figure 6: Discriminator is trained learns to classify between
fake and true combinations (x ,д) where x is the input and д
is the output. Generator is trained to generate images that
discriminator cannot distinguish true/fake images.

5 RESULTS
We evaluate the proposed approach using eight designs listed in
Table 2, obtained from VTR 8.0 [18]. The image generator is im-
plemented in C++ based on VPR [18]. The input images are first
generated as vector graphics and are converted to JPEG withw=256.
The training and inference of cGAN are implemented in Python3
using Tensorflow. The experimental results are obtained using a
machine with a 10-core Intel Xeon operating at 2.5 GHz, 1 TB RAM,
and one Nvidia 1080Ti GPU. The learning rate is 0.0002 using Adam
optimizer, where the momentum term β1=0.5 and β2=0.999 with
ϵ=10−8. The L1 weight is 50 and λ is set to 0.1. The number of
training epochs is 250 with bath size 1. The training time is 2-3
hours and inference takes about 0.09 second per image.
Datasets: The placement results are generated by sweeping the
VPR placement options, including seed, ALPHA_T, INNER_NUM
and place_algorithm. The ground truth images are collected with
these placement options with default VPR settings.

5.1 Quality of Routing Forecasts
Our dataset includes 1500 input-output image pairs. The input
images include post-placement image imдplace and connectivity
image imдconnect . The ground truth images are imдroute gener-
ated after VPR default routing. The speedup is measured using
the magnitude of routing runtime divided by inference time since
the routing runtime varies based on different placement. Two ac-
curacy metrics are used to evaluate our approach. First, per-pixel
accuracy between the generated image and ground truth image is
used to evaluate the generated image quality (Acc.1 and Acc.2 in
Table 2). Second, Top10 indicates the top-10 accuracy for finding
min-congestion placements within the testing set. For example,
Top10=80% means that there are eight placements are truly top 10
among the ten selected ones.

The quality of the routing forecasts is evaluated using eight
designs, shown in Table 2. Two training strategies are applied in this



Table 2: Experimental results obtained using eight designs.
Acc.1 and Acc.2 are per-pixel accuracy obtained using two
training strategies. #P(# placements) indicates the number
of input and output image pairs.

Design #LUTs #FF #Nets # P Acc.1 Acc.2 Top10
diffeq1 563 193 2,059 200 67.2% 68.9% 50%
diffeq2 419 96 1,560 200 65.3% 65.9% 40%
raygentop 1,920 1,047 5,023 200 68.1% 77.1% 70%
SHA 2,501 911 10,910 200 43.3% 61.0% 40%
OR1200 2,823 670 12,336 200 64.6% 67.6% 90%
ode 5,488 1,316 20,981 200 74.9% 75.9% 80%
dcsg 9,088 1,618 36,912 200 71.4% 85.4% 80%
bfly 9,503 1,748 38,582 200 71.5% 76.5 % 70%

work. 1) The training set includes all the images except the testing
design. Thismakes sure that the training dataset has no overlapwith
the testing dataset. In other words, this applies inference on unseen
designs. The accuracy is shown in Acc.1. 2) To further improve
the robustness of our approach, we update the model trained with
the first training strategy using only ten input-output image pairs
from the testing design, which takes the advantages of transfer
learning. The testing accuracy improved, particularly for the SHA
design. One observation is that forecasting for the smallest designs
(i.e., diffeq1 and diffeq2) is less accurate than the larger designs.
The reason could be that the placement and routing algorithms can
find the near-optimal solution(s) with most tool options for small
designs, which makes the dataset very unbalanced. Top10 results
in Table 2 are obtained using the second strategy.
5.2 Color Scheme vs. Grayscale
One of the key input of our cGAN model, imдplace , is an RGB im-
age. While imдplace is generated, a specific color scheme is used
to differentiate the elements for placement. To evaluate the impor-
tance of the color scheme, we compare the performance of RGB
imдplace with its grayscale version. The images are converted to
grayscale using tf.image.rgb_to_grayscale1. The average per-
pixel accuracy drops 3-5%, and the inference images are mostly
"brighter" than the ground truth images. This makes it less accurate
for the inputs that their outputs are less congested. This also saves
∼20% training time and ∼50% for inference. While the training and
inference runtime is not critical in this context, we always choose
colored placement image as inputs.

5.3 Analysis of L1 and skip connections
We analyze the effectiveness of using L1 in the loss function and
the skip connections in the generator using OR1200 design. First,
we compare the inference results by forecasting routing utilization
of one placement, shown in Figure 7. The ground truth image and
the inference image with full skip connections and L1 are shown
in Figures 7a and 7b, where two images are almost identical. Using
the same architecture but without L1 for training, a mispredicted
region is clearly found in Figure 7b. Xie et al. demonstrated that
using a single skip connection in the FCN is sufficient for hotspot
prediction [9]. However, we observe that it is necessary to connect
all the convolutional and deconvolutional layers (see Figure 5) for
forecasting the entire routing heat map. As shown in Figure 7d,
we can clearly see the mispredicted regions and a large number
of noises over the inference image. We further analyze the effects
1https://www.tensorflow.org/api_docs/python/tf/image/rgb_to_grayscale

of L1 and skip connections by measuring the training loss of gen-
erator and discriminator. The results are included in Figure 8. We
observe that loss functions are optimized smoothly if both L1 and
skip connections are used, and the training losses are aggressively
optimized with relative large noises. These mostly lead to over- or
under-fitting problem. In addition, there are more training noise
if the model has a single skip connection compared to without L1.
This explains why the model without skip connections generates
worse routing heat map compared to without L1; and why L1+skip
generates the best results among these three options.

(a) Truth (b) L1+all skip

(c) w/o L1+all skip (d) L1+Single skip

Figure 7: Comparing the ground truth image with generated
images using three different models using OR1200.
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Figure 8: Evaluating the effects of L1 and skip connections
by comparing a) generator training loss and b) discriminator
training loss.

5.4 Applications
While in Table 2 column Top10, it is demonstrated that the proposed
approach can effectively explore the placement solutions and find
the placements with lowest routing congestion. To further demon-
strate the advantages of fully forecasting routing heat map, the
proposed approach is leveraged to solve the following problems:
Constrained placement exploration: The goal is to search for
placement solutions in the dataset of ode design that have the
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Figure 9: Constrained placement exploration by inference usingODE –Obtained placement solutionswith objectives a) overall
max-congestion, b) overall min-congestion, c) min-congestion at the upper side, d) min-congestion at the lower side, and e)
min-congestion at the right-hand side of the floor plan.

highest congestion, lowest congestion, high congested at the top,
bottom, and right regions of the floor plan, shown from left to
right in Figure 9, respectively. Moreover, the routing density of
less congested regions also well correct to the ground truth. This
demonstrates that our approach can accurately predict the routing
density of all the channels.
Visualizing the simulated annealing placement algorithm:
The proposed approach is applied to visualize the routing utilization
on-the-fly during placement. This allows us to visualize how the
density of routing channels are changed while the design is ”being
placed”. Here, we apply to the classic simulation annealing based
placement algorithm implemented in VPR. The real-time forecast
results (GIF videos) are included2.
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