Warm Up

Lesson Presentation

Lesson Quiz

1-4 Pairs of Angles

Warm Up
 Simplify each expression.

1. $90-(x+20) 70-x$
2. $180-(3 x-10) 190-3 x$

Write an algebraic expression for each of the following.
3. 4 more than twice a number $2 n+4$
4. 6 less than half a number $\frac{1}{2} n-6$

1-4) Pairs of Angles

Objectives

Identify adjacent, vertical, complementary, and supplementary angles.

Find measures of pairs of angles.

1-4) Pairs of Angles

Vocabulary

adjacent angles

linear pair
complementary angles
supplementary angles vertical angles

Many pairs of angles have special relationships. Some relationships are because of the measurements of the angles in the pair. Other relationships are because of the positions of the angles in the pair.

1-4) Pairs of Angles

Pairs of Angles

Adjacent angles are two angles in the same plane with a common vertex and a common side, but no common interior points. $\angle 1$ and $\angle 2$ are adjacent angles.

A linear pair of angles is a pair of adjacent angles whose noncommon sides are opposite rays. $\angle 3$ and $\angle 4$ form a linear pair.

1-4) Pairs of Angles

Example 1A: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.

$\angle A E B$ and $\angle B E D$

$\angle A E B$ and $\angle B E D$ have a common vertex, E, a common side, $\overrightarrow{E B}$, and no common interior points. Their noncommon sides, $\overrightarrow{E A}$ and $\overrightarrow{E D}$, are opposite rays. Therefore, $\angle A E B$ and $\angle B E D$ are adjacent angles and form a linear pair.

1-4) Pairs of Angles

Example 1B: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
$\angle A E B$ and $\angle B E C$

$\angle A E B$ and $\angle B E C$ have a common vertex, E, a common side, $\overrightarrow{E B}$, and no common interior points. Therefore, $\angle A E B$ and $\angle B E C$ are only adjacent angles.

1-4) Pairs of Angles

Example 1C: Identifying Angle Pairs

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
$\angle D E C$ and $\angle A E B$

$\angle D E C$ and $\angle A E B$ share E but do not have a common side, so $\angle D E C$ and $\angle A E B$ are not adjacent angles.

1-4) Pairs of Angles

Check It Out! Example 1a

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
 $\angle 5$ and $\angle 6$

$\angle 5$ and $\angle 6$ are adjacent angles. Their noncommon sides, $E A$ and $E D$, are opposite rays, so $\angle 5$ and $\angle 6$ also form a linear pair.

1-4) Pairs of Angles

Check It Out! Example 1b

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
 $\angle 7$ and $\angle S P U$

$\angle 7$ and $\angle S P U$ have a common vertex, P, but do not have a common side. So $\angle 7$ and $\angle S P U$ are not adjacent angles.

1-4) Pairs of Angles

Check It Out! Example 1c

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
 $\angle 7$ and $\angle 8$

$\angle 7$ and $\angle 8$ have a common vertex, P, but do not have a common side. So $\angle 7$ and $\angle 8$ are not adjacent angles.

1-4) Pairs of Angles

Complementary and Supplementary Ancles

Complementary angles are two angles whose measures have a sum of 90°. $\angle A$ and $\angle B$ are complementary.

Supplementary angles are two angles whose measures have a sum of 180°. $\angle A$ and $\angle C$ are supplementary.

1-4) Pairs of Angles

You can find the complement of an angle that measures x° by subtracting its measure from 90°, or $(90-x)^{\circ}$.

You can find the supplement of an angle that measures x° by subtracting its measure from 180°, or $(180-x)^{\circ}$.

1-4 Pairs of Angles

Example 2: Finding the Measures of Complements and Supplements
Find the measure of each of the following.
A. complement of $\angle F$

$$
\begin{aligned}
& (90-x)^{\circ} \\
& 90^{\circ}-59^{\circ}=31^{\circ}
\end{aligned}
$$

B. supplement of $\angle G$

$$
\begin{aligned}
& (180-x)^{\circ} \\
& \begin{aligned}
180-(7 x+10)^{\circ} & =180^{\circ}-7 x-10 \\
& =(170-7 x)^{\circ}
\end{aligned}
\end{aligned}
$$

1-4) Pairs of Angles

Check It Out! Example 2

Find the measure of each of the following.
a. complement of $\angle E$

$$
\begin{aligned}
& (90-x)^{\circ} \\
& \begin{aligned}
90^{\circ}-(7 x-12)^{\circ} & =90^{\circ}-7 x^{\circ}+12^{\circ} \\
& =(102-7 x)^{\circ}
\end{aligned}
\end{aligned}
$$

$$
(7 x-12)^{\circ}
$$

b. supplement of $\angle F$

$$
\begin{aligned}
& (180-x)^{\circ} \\
& 180^{\circ}-116.5^{\circ}=63 \frac{1}{2}^{\circ}
\end{aligned}
$$

1-4 Pairs of Angles

Example 3: Using Complements and Supplements to Solve Problems
An angle is 10° more than 3 times the measure of its complement. Find the measure of the complement.
Step 1 Let $\mathrm{m} \angle A=x^{\circ}$. Then $\angle B$, its complement measures $(90-x)^{\circ}$.
Step 2 Write and solve an equation.

$$
\begin{array}{rlrl}
x & =3(90-x)+10 & \text { Substitute } x \text { for } m \angle A \text { and } 90-x \text { for } m \angle B . \\
x & =270-3 x+10 & & \text { Distrib. Prop. } \\
x & =280-3 x & & \text { Combine like terms. } \\
4 x & =280 & & \text { Divide both sides by } 4 . \\
x & =70 & & \text { Simplify. }
\end{array}
$$

The measure of the complement, $\angle B$, is $(90-70)^{\circ}=20^{\circ}$.

1-4 Pairs of Angles

Check It Out! Example 3

 An angle's measure is 12° more than $\frac{1}{2}$ the measure of its supplement. Find the measure of the angle.$$
\begin{aligned}
x & =0.5(180-x)+12 & & \text { Substitute } x \text { for } m \angle A \text { and } \\
x & =90-0.5 x+12 & & \text { Distrib. Prop. } \\
x & =102-0.5 x & & \text { Combine like terms. } \\
1.5 x & =102 & & \text { Divide both sides by 1.5. } \\
x & =68 & & \text { Simplify. }
\end{aligned}
$$

The measure of the angle is 68°.

1-4 Pairs of Angles

Example 4: Problem-Solving Application
Light passing through a fiber optic cable reflects off the walls of the cable in such a way that $\angle 1 \cong \angle 2, \angle 1$ and $\angle 3$ are complementary, and $\angle 2$ and $\angle 4$ are complementary.

If $m \angle 1=47^{\circ}$, find $m \angle 2, m \angle 3$, and $m \angle 4$.

1-4 Pairs of Angles

1 Understand the Problem

The answers are the measures of $\angle 2, \angle 3$, and $\angle 4$.

List the important information:

- $\angle 1 \cong \angle 2$
- $\angle 1$ and $\angle 3$ are complementary, and $\angle 2$ and $\angle 4$ are complementary.

- $\mathrm{m} \angle 1=47^{\circ}$

2 Make a Plan

If $\angle 1 \cong \angle 2$, then $\mathrm{m} \angle 1=\mathrm{m} \angle 2$.
If $\angle 3$ and $\angle 1$ are complementary, then $\mathrm{m} \angle 3=(90-47)^{\circ}$.

If $\angle 4$ and $\angle 2$ are complementary, then $\mathrm{m} \angle 4=(90-47)^{\circ}$.

Solve

By the Transitive Property of Equality, if $\mathrm{m} \angle 1=47^{\circ}$ and $\mathrm{m} \angle 1=\mathrm{m} \angle 2$, then $\mathrm{m} \angle 2=47^{\circ}$.

Since $\angle 3$ and $\angle 1$ are complementary, $\mathrm{m} \angle 3=43^{\circ}$. Similarly, since $\angle 2$ and $\angle 4$ are complementary, $\mathrm{m} \angle 4=43^{\circ}$.

4 Look Back

The answer makes sense because $47^{\circ}+43^{\circ}=$ 90°, so $\angle 1$ and $\angle 3$ are complementary, and $\angle 2$ and $\angle 4$ are complementary.

Thus $\mathrm{m} \angle 2=47^{\circ}, \mathrm{m} \angle 3=43^{\circ}$, and $\mathrm{m} \angle 4=43^{\circ}$.

1-4) Pairs of Angles

Check It Out! Example 4

What if...? Suppose $\mathrm{m} \angle 3=27.6^{\circ}$. Find $\mathrm{m} \angle 1$, $\mathrm{m} \angle 2$, and $\mathrm{m} \angle 4$.

1-4) Pairs of Angles

1 Understand the Problem

The answers are the measures of $\angle 1, \angle 2$, and $\angle 4$.

List the important information:

- $\angle 1 \cong \angle 2$
- $\angle 1$ and $\angle 3$ are complementary, and $\angle 2$ and $\angle 4$ are complementary.
- $\mathrm{m} \angle 3=27.6^{\circ}$

Make a Plan

If $\angle 1 \cong \angle 2$, then $\mathrm{m} \angle 1=\mathrm{m} \angle 2$.
If $\angle 3$ and $\angle 1$ are complementary, then $\mathrm{m} \angle 1=(90-27.6)^{\circ}$.

If $\angle 4$ and $\angle 2$ are complementary, then $\mathrm{m} \angle 4=(90-27.6)^{\circ}$.

Solve

By the Transitive Property of Equality, if $\mathrm{m} \angle 1=62.4^{\circ}$ and $\mathrm{m} \angle 1=\mathrm{m} \angle 2$, then $\mathrm{m} \angle 2=62.4^{\circ}$.

Since $\angle 3$ and $\angle 1$ are complementary, $\mathrm{m} \angle 3$
$=27.6^{\circ}$. Similarly, since $\angle 2$ and $\angle 4$ are complementary, $\mathrm{m} \angle 4=27.6^{\circ}$.

4 Look Back

The answer makes sense because $27.6^{\circ}+62.4^{\circ}$ $=90^{\circ}$, so $\angle 1$ and $\angle 3$ are complementary, and $\angle 2$ and $\angle 4$ are complementary.

Thus $\mathrm{m} \angle 1=\mathrm{m} \angle 2=62.4^{\circ} ; \mathrm{m} \angle 4=27.6^{\circ}$.

Another angle pair relationship exists between two angles whose sides form two pairs of opposite rays. Vertical angles are two nonadjacent angles formed by two intersecting lines. $\angle 1$ and $\angle 3$ are vertical angles, as are $\angle 2$ and $\angle 4$.

1-4) Pairs of Angles

Example 5: Identifying Vertical Angles

Name the pairs of vertical angles.

$\angle H M L$ and $\angle J M K$ are vertical angles.
$\angle H M J$ and $\angle L M K$ are vertical angles.

Check $\mathrm{m} \angle H M L \approx \mathrm{~m} \angle J M K \approx 60^{\circ}$.

$$
\mathrm{m} \angle H M J \approx \mathrm{~m} \angle L M K \approx 120^{\circ} .
$$

1-4) Pairs of Angles

Check It Out! Example 5

Name a pair of vertical angles. Do they appear to have the same measure? Check by measuring with a protractor.

$\angle E D G$ and $\angle F D H$ are vertical angles and appear to have the same measure.

Check $\mathrm{m} \angle E D G \approx \mathrm{~m} \angle F D H \approx 45^{\circ}$

1-4 Pairs of Angles

Lesson Quiz: Part I

$m \angle A=64.1^{\circ}$, and $m \angle B=(4 x-30)^{\circ}$. Find the measure of each of the following.

1. supplement of $\angle A 115.9^{\circ}$
2. complement of $\angle B(120-4 x)^{\circ}$
3. Determine whether this statement is true or false. If false, explain why. If two angles are complementary and congruent, then the measure of each is 90°.

False; each is 45°.

1-4 Pairs of Angles

Lesson Quiz: Part |I

$\mathrm{m} \angle X Y Z=2 x^{\circ}$ and $m \angle P Q R=(8 x-20)^{\circ}$.
4. If $\angle X Y Z$ and $\angle P Q R$ are supplementary, find the measure of each angle. 40ㅇ 140°
5. If $\angle X Y Z$ and $\angle P Q R$ are complementary, find the measure of each angle.
22°; 68°

