Pairwise Sequence Alignment

> Stuart M. Brown NYU School of Medicine

w/ slides byFourie Joubert

Protein Evolution

"For many protein sequences, evolutionary history can be traced back 1-2 billion years"

-William Pearson

 When we align sequences, we assume that they share a common ancestor

They are then homologous

• Protein fold is much more conserved than protein sequence

DNA sequences tend to be less informative than protein sequences

Homology: related by descent

Homologous sequence positions

Orthologous and paralogous

- Orthologous sequences differ because they are found in different species (a speciation event)
- Paralogous sequences differ due to a gene duplication event
- Sequences may be both orthologous and paralogous

Pairwise Alignment

- The alignment of two sequences (DNA or protein) is a relatively straightforward computational problem.
 - There are lots of possible alignments.
- ♦ Two sequences can <u>always</u> be aligned.
- Sequence alignments have to be <u>scored</u>.
- Often there is **more than one** solution with the same score.

Methods of Alignment

- By hand slide sequences on two lines of a word processor
- Dot plot
 - with windows
- Rigorous mathematical approach
 - Dynamic programming (slow, optimal)
- Heuristic methods (fast, approximate)
 - BLAST and FASTA
 - Word matching and hash tables0

Align by Hand

GATCGCCTA_TTACGTCCTGGAC <----> AGGCATACGTA_GCCCTTTCGC

You still need some kind of scoring system to find the best alignment

Percent Sequence Identity

 The extent to which two nucleotide or amino acid sequences are invariant

Dotplot:

A dotplot gives an overview of all possible alignments

Sequence 2

Dotplot:

In a dotplot each diagonal corresponds to a possible (ungapped) alignment

Insertions / Deletions in a Dotplot

Hemoglobin α -chain

Word Size Algorithm

Word Size = 3

Window / Stringency

Scoring Matrix Filtering

Matrix: PAM250 Window = 12 Stringency = 9

Hemoglobin α -chain

Considerations

- The window/stringency method is more sensitive than the wordsize method (ambiguities are permitted).
- The smaller the window, the larger the weight of statistical (unspecific) matches.
- With large windows the sensitivity for short sequences is reduced.
- Insertions/deletions are not treated explicitly.

Alignment methods

A Rigorous algorithms = Dynamic Programming – Needleman-Wunsch (global) -Smith-Waterman (local) ♦ Heuristic algorithms (faster but approximate) • BLAST

Basic principles of dynamic programming

- Creation of an **alignment path matrix**
- **Stepwise** calculation of score values
- **Backtracking** (evaluation of the optimal path)

Dynamic Programming

- Dynamic Programming is a very general programming technique.
- It is applicable when a large search space can be structured into a succession of stages, such that:
 - the initial stage contains trivial solutions to subproblems
 - each partial solution in a later stage can be calculated by recurring a fixed number of partial solutions in an earlier stage
 - the final stage contains the overall solution

Creation of an alignment path matrix

Idea:

Build up an optimal alignment using previous solutions for optimal alignments of smaller subsequences

- Construct matrix *F* indexed by *i* and *j* (one index for each sequence)
- F(i,j) is the score of the best alignment between the initial segment x_{1...i} of x up to x_i and the initial segment y_{1...j} of y up to y_j
- Build F(i,j) recursively beginning with F(0,0) = 0

s: A G C A C A C - At: A - C A C A C T A or A G - C A C A C A C AA C A C A C T - A

Creation of an alignment path matrix

- If F(i-1,j-1), F(i-1,j) and F(i,j-1) are known we can calculate F(i,j)
- Three possibilities:
 - x_i and y_j are aligned, $F(i,j) = F(i-1,j-1) + s(x_i,y_j)$
 - x_i is aligned to a gap, F(i,j) = F(i-1,j) d
 - y_j is aligned to a gap, F(i,j) = F(i,j-1) d
- The best score up to (*i*,*j*) will be the **largest** of the three options

Backtracking

Global vs. Local Alignments

- Global alignment algorithms start at the beginning of two sequences and add gaps to each until the end of one is reached.
- Local alignment algorithms finds the region (or regions) of highest similarity between two sequences and build the alignment outward from there.

Global Alignment

Local Alignment

Global Alignment

Two closely related sequences:

needle (Needleman & Wunsch) creates an end-to-end alignment.

Global Alignment

Two sequences sharing several regions of local similarity:

- 1 AGGATTGGAATGCTCAGAAGCAGCTAAAGCGTGTATGCAGGATTGGAATTAAAGAGGAGGTAGACCG.... 67
- 1 AGGATTGGAATGCTAGGCTTGATTGCCTACCTGTAGCCACATCAGAAGCACTAAAGCGTCAGCGAGACCG 70

Global Alignment (Needleman - Wunsch)

- The the Needleman-Wunsch algorithm creates a global alignment over the length of both sequences (needle)
- Global algorithms are often not effective for highly diverged sequences - do not reflect the biological reality that two sequences may only share limited regions of conserved sequence.
 - Sometimes two sequences may be derived from ancient recombination events where only a single functional domain is shared.
- Global methods are useful when you want to force two sequences to align over their entire length

Local Alignment (Smith-Waterman)

Local alignment

- Identify the most similar sub-region shared between two sequences
- Smith-Waterman
- EMBOSS: water

Parameters of Sequence Alignment

Scoring Systems:

 Each symbol pairing is assigned a numerical value, based on a symbol comparison table.

Gap Penalties:

- Opening: The cost to introduce a gap
- Extension: The cost to elongate a gap

DNA Scoring Systems -very simple

Sequence 1 Sequence 2

actaccagttcatttgatacttctcaaa | | | | | taccattaccgtgttaactgaaaggacttaaagact

	Α	G	С	Т
Α	1	0	0	0
G	0	1	0	0
С	0	0	1	0
т	0	0	0	1

Match: 1 Mismatch: 0 Score = 5

Protein Scoring Systems

Protein Scoring Systems

• Amino acids have different biochemical and physical properties that influence their relative replaceability in evolution.

Protein Scoring Systems

- Scoring matrices reflect:
 - # of mutations to convert one to another
 - chemical similarity
 - observed mutation frequencies
 - the probability of occurrence of each amino acid
- Widely used scoring matrices:
 - PAM
 - BLOSUM

PAM matrices

Family of matrices PAM 80, PAM 120, PAM 250

The number with a PAM matrix represents the evolutionary distance between the sequences on which the matrix is based

Greater numbers denote greater distances

PAM (Percent Accepted Mutations) matrices

- The numbers of replacements were used to compute a so-called PAM-1 matrix.
- The PAM-1 matrix reflects an average change of 1% of all amino acid positions. PAM matrices for larger evolutionary distances can be extrapolated from the PAM-1 matrix.
- PAM250 = 250 mutations per 100 residues.
- Greater numbers mean bigger evolutionary distance

PAM (Percent Accepted Mutations) matrices

• Derived from global alignments of **protein families**. Family members share at least 85% identity (Dayhoff *et al.*, 1978).

- Construction of phylogenetic tree and ancestral sequences of each protein family
- Computation of number of replacements for each pair of amino acids

	A	R	N	D		Q	D	G	H	I	L	K	M	F	P	S	т	W	Y	V	В	Z
A	2	-2	0	0	-2	0	0	1	-1	-1	-2	-1	-1	-3	1	1	1	-6	-3	0	2	1
R	-2	6	0	-1	-4	1	-1	-3	2	-2	-3	3	0	-4	0	0	-1	2	-4	-2	1	2
N	0	0	2	2	-4	1	1	0	2	-2	-3	1	-2	-3	0	1	0	-4	-2	-2	4	3
D	0	-1	2	4	-5	2	3	1	1	-2	-4	0	-3	-6	-1	0	0	-7	-4	-2	5	4
С	-2	-4	-4	-5	12	-5	-5	-3	-3	-2	-6	-5	-5	-4	-3	0	-2	-8	0	-2	-3	-4
Q	0	1	1	2	-5	4	2	-1	3	-2	-2	1	-1	-5	0	-1	-1	-5	-4	-2	3	5
Е	0	-1	1	3	-5	2	4	0	1	-2	-3	0	-2	-5	-1	0	0	-7	-4	-2	4	5
G	1	-3	0	1	-3	-1	0	5	-2	-3	-4	-2	-3	-5	0	1	0	-7	-5	-1	2	1
н	-1	2	2	1	-3	3	1	-2	6	-2	-2	0	-2	-2	0	-1	-1	-3	0	-2	3	3
I	-1	-2	-2	-2	-2	-2	-2	-3	-2	5	2	-2	2	1	-2	-1	0	-5	-1	4	-1	-1
L	-2	-3	-3	-4	-6	-2	-3	-4	-2	2	6	-3	4	2	-3	-3	-2	-2	-1	2	-2	-1
к	-1	3	1	0	-5	1	0	-2	0	-2	-3	5	0	-5	-1	0	0	-3	-4	-2	2	2
М	-1	0	-2	-3	-5	-1	-2	-3	-2	2	4	0	6	0	-2	-2	-1	-4	-2	2	-1	0
F	-3	-4	-3	-6	-4	-5	-5	-5	-2	1	2	-5	0	9	-5	-3	-3	0	7	-1	-3	-4
Р	1	0	0	-1	-3	0	-1	0	0	-2	-3	-1	-2	-5	6	1	0	-6	-5	-1	1	1
S	1	0	1	0	0	-1	0	1	-1	-1	-3	0	-2	-3	1	2	1	-2	۲3	-1	2	1
	1	-1	0	0		1	0	0	-1	0	-2	0	-1	-3	0	1	3	1	7	0	2	1
W	-6	2	-4	-7	-	8 5	_7	-7	-3	-5	-2	-3	-4	0	-6	-2	-5	1	7	-6	-4	-4
Y	-3	-4	-2	-4	0	-4	-4	-5	0	-1	-1	-4	-2	7	-5	-3	-3	U	TO	-2	-2	-3
v	0	-2	-2	-2	-2	-2	-2	-1	-2	4	2	-2	2	-1	-1	-1	0	-6	-2	4	0	0
в	2	1	4	5	-3	3	4	2	3	-1	-2	2	-1	-3	1	2	2	-4	-2	0	6	5
Z	1	2	3	4	-4	5	5	1	3	-1	-1	2	0	-4	1	1	1	-4	-3	0	5	6

PAM - limitations

Based on only one original dataset

Examines proteins with few differences (85% identity)

Based mainly on small globular proteins so the matrix is biased

BLOSUM matrices

 Different BLOSUMn matrices are calculated independently from BLOCKS (ungapped local alignments)

BLOSUMn is based on a cluster of BLOCKS of sequences that share at least n percent identity

BLOSUM62 represents closer sequences than BLOSUM45

BLOSUM (Blocks Substitution Matrix)

• Derived from alignments of domains of **distantly** related proteins (Henikoff & Henikoff, 1992).

- Occurrences of each amino acid pair in each column of each block alignment is counted.
- The numbers derived from all blocks were used to compute the BLOSUM matrices.

An Introduction to Bioinformatics Algorithms

www.bioalgorithms.info

The Blosum50 Scoring Matrix

	A	R	N	D	С	Q	E	G	H	Ι	L	K	М	F	P	S	T	W	Y	V	B	Z	X	*
А	5	-2	-1	-2	-1	-1	-1	0	-2	-1	-2	-1	-1	-3	-1	1	0	-3	-2	0	-2	-1	-1	-5
R	-2	7	-1	-2	-4	1	0	-3	0	-4	-3	3	-2	-3	-3	-1	-1	-3	-1	-3	-1	0	-1	-5
Ν	-1	-1	7	2	-2	0	0	0	1	-3	-4	0	-2	-4	-2	1	0	-4	-2	-3	4	0	-1	-5
D	-2	-2	2	8	-4	0	2	-1	-1	-4	-4	-1	-4	-5	-1	0	-1	-5	-3	-4	5	1	-1	-5
С	-1	-4	-2	-4	13	-3	-3	-3	-3	-2	-2	-3	-2	-2	-4	-1	-1	-5	-3	-1	-3	-3	-2	-5
Q	-1	1	0	0	-3	7	2	-2	1	-3	-2	2	0	-4	-1	0	-1	-1	-1	-3	0	4	-1	-5
E	-1	0	0	2	-3	2	6	-3	0	-4	-3	1	-2	-3	-1	-1	-1	-3	-2	-3	1	5	-1	-5
G	0	-3	0	-1	-3	-2	-3	8	-2	-4	-4	-2	-3	-4	-2	0	-2	-3	-3	-4	-1	-2	-2	-5
H	-2	0	1	-1	-3	1	0	-2	10	-4	-3	0	-1	-1	-2	-1	-2	-3	2	-4	0	0	-1	-5
Ι	-1	-4	-3	-4	-2	-3	-4	-4	-4	5	2	-3	2	0	-3	-3	-1	-3	-1	4	-4	-3	-1	-5
L	-2	-3	-4	-4	-2	-2	-3	-4	-3	2	5	-3	3	1	-4	-3	-1	-2	-1	1	-4	-3	-1	-5
K	-1	3	0	-1	-3	2	1	-2	0	-3	-3	6	-2	-4	-1	0	-1	-3	-2	-3	0	1	-1	-5
М	-1	-2	-2	-4	-2	0	-2	-3	-1	2	3	-2	7	0	-3	-2	-1	-1	0	1	-3	-1	-1	-5
F	-3	-3	-4	-5	-2	-4	-3	-4	-1	0	1	-4	0	8	-4	-3	-2	1	4	-1	-4	-4	-2	-5
P	-1	-3	-2	-1	-4	-1	-1	-2	-2	-3	-4	-1	-3	-4	10	-1	-1	-4	-3	-3	-2	-1	-2	-5
S	1	-1	1	0	-1	0	-1	0	-1	-3	-3	0	-2	-3	-1	5	2	-4	-2	-2	0	0	-1	-5
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	2	5	-3	-2	0	0	-1	0	-5
W	-3	-3	-4	-5	-5	-1	-3	-3	-3	-3	-2	-3	-1	1	-4	-4	-3	15	2	-3	-5	-2	-3	-5
Y	-2	-1	-2	-3	-3	-1	-2	-3	2	-1	-1	-2	0	4	-3	-2	-2	2	8	-1	-3	-2	-1	-5
V	0	-3	-3	-4	-1	-3	-3	-4	-4	4	1	-3	1	-1	-3	-2	0	-3	-1	5	-4	-3	-1	-5
B	-2	-1	4	5	-3	0	1	-1	0	-4	-4	0	-3	-4	-2	0	0	-5	-3	-4	5	2	-1	-5
Ζ	-1	0	0	1	-3	4	5	-2	0	-3	-3	1	-1	-4	-1	0	-1	-2	-2	-3	2	5	-1	-5
X	-1	-1	-1	-1	-2	-1	-1	-2	-1	-1	-1	-1	-1	-2	-2	-1	0	-3	-1	-1	-1	-1	-1	-5
*	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	1

BLOSUM (Blocks Substitution Matrix)

- Sequences within blocks are clustered according to their level of identity.
- Clusters are counted as a single sequence.
- Different BLOSUM matrices differ in the percentage of sequence identity used in clustering.
- The number in the matrix name (e.g. 62 in BLOSUM62) refers to the percentage of sequence identity used to build the matrix.
- Greater numbers mean smaller evolutionary distance.

PAM Vs. BLOSUM PAM100 = BLOSUM90 PAM120 = BLOSUM80 PAM160 = BLOSUM60 PAM200 = BLOSUM52 PAM250 = BLOSUM45

More distant sequences

PAM120 for general use
PAM60 for close relations
PAM250 for distant relations

BLOSUM62 for general use
BLOSUM80 for close relations
BLOSUM45 for distant relations

TIPS on choosing a scoring matrix

- Generally, BLOSUM matrices perform better than PAM matrices for local similarity searches (Henikoff & Henikoff, 1993).
- When comparing closely related proteins one should use lower PAM or higher BLOSUM matrices, for distantly related proteins higher PAM or lower BLOSUM matrices.
- For database searching the commonly used matrix is BLOSUM62.

Scoring Insertions and Deletions

The creation of a gap is **penalized** with a negative score value.

Why Gap Penalties?

Gaps allowed but not penalized Score: 88

1 GTG.ATAG.ACACAGA..CCGGT..GGCATTGTGG 29 ||| || || || || || || || || || || || 1 GTGTAT.GGA.AGAGATACC..TCCG..ATGGTTG 29

Why Gap Penalties?

 The optimal alignment of two similar sequences is usually that which

- maximizes the number of matches and
- minimizes the number of gaps.
- •There is a tradeoff between these two
 - adding gaps reduces mismatches
- Permitting the insertion of arbitrarily many gaps can lead to high scoring alignments of **non-homologous** sequences.
- Penalizing gaps forces alignments to have relatively few gaps.

Gap Penalties

•How to balance gaps with mismatches?

•Gaps must get a steep penalty, or else you'll end up with nonsense alignments.

•In real sequences, muti-base (or amino acid) gaps are quit common

•genetic insertion/deletion events

• "Affine" gap penalties give a big penalty for each new gap, but a much smaller "gap extension" penalty.

Scoring Insertions and Deletions

match = 1mismatch = 0

Total Score: 4

Total Score: 8 - 3.2 = 4.8

<u>Gap parameters:</u> d = 3 (gap opening) e = 0.1 (gap extension) g = 3 (gap lenght) $\gamma(g) = -3 - (3 - 1) 0.1 = -3.2$

insertion / deletion

Modification of Gap Penalties

Score Matrix: BLOSUM62

gap opening penalty= 31gap extension penalty= 0.1score= 6.3

0

= 0.1

= 11.3

=

1VLSPADKFLTNV 12 |||| 1 VFTELSPAKTV.... 11

gap opening penalty gap extension penalty score 1 V...LSPADKFLTNV 12 | |||| | | 1 VFTELSPA.K..T.V 11