Panel Data Analysis Using Stata

Sebastian T. Braun University of St Andrews

Course Objectives

- To provide a concise introduction to applied panel data analysis.
- To review core theoretical methods of panel data analysis and apply these methods hands-on.
- To learn how to analyze (microeconometric) panel data using the statistical software Stata.

Recommended Readings

The applied part of the course will draw heavily on Chapter 8 of

Cameron, A. Colin and Pravin K. Trivedi (2010). *Applied Microeconometrics Using Stata*. Stata Press.

Recommended introductory textbooks that provide an introduction to panel data analysis are:

- Wooldridge, Jeffrey M. (2015). Introductory Econometrics. Cengage Learning Services, 5th edition.
- Kennedy, Peter (2008). A Guide to Econometrics. John Wiley & Sons, 6th edition.

Course Material

You find the slides on my homepage:

□ https://sebastiantillbraun.wordpress.com/teaching/

Overview

- 1. Course Outline \checkmark
- 2. Introduction
- 3. Panel Data Management
- 4. Regression Analysis
- 5. Hypothesis Testing
- 6. Extensions
- 7. Outlook: Advanced Panel Data Analysis

2-1

What is Panel Data?

- A cross-section (of people, firms, countries, etc.) is observed over time.
- Panel data provides observations on the same units in several time periods (unlike independently pooled cross sections).
- Panel data often consist of a very large number of cross-sections over a small number of time periods.

What Advantages Do Panel Data Offer?

Panel data allows us to...

- ...examine issues that cannot be studied using either time series or cross-sectional data.
- ...deal with unobserved heterogeneity in the micro units.
- ...analyze dynamics with only a short time series.
- □ …increase the efficiency of estimation.

What Advantages Do Panel Data Offer?

Panel data allows us to...

- ...examine issues that cannot be studied using either time series or cross-sectional data
- ...deal with unobserved heterogeneity in the micro units.
- ...analyze dynamics with only a short time series.
- □ …increase the efficiency of estimation.

Getting Started...

We now consider data from the Panel Study of Income Dynamics.

- ☑ You can install the relevant files from within *Stata*. Type:
 - . net from http://www.stata-press.com/data/mus
 - . net install mus
 - . net get mus
- You can also download the data from www.stata-press.com/data/mus.html.

4-1

The Dataset

Open the data set:

. use "mus08psidextract.dta", clear

- The data set contains information on 595 individuals (the cross-sectional units) over 7 years (1976-1982).
- : The total number of observations is thus $595 \times 7 = 4165$.
- There are no missing observations (so the data set is balanced).

4-2

describe the Data

. use "mus08psidextract.dta", clear (PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990))

. describe

Contains obs:	data f	rom mus 4,165	08psidextract	t.dta	PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990)
vars:		22			26 Nov 2008 17:15
size:	29	5,715 (99.7% of memo	ory free)	(_dta has notes)
variable	s name	torage type	display format	value label	variable label
exp		float	%9.0g		years of full-time work experience
wks		float	%9.0g		weeks worked
occ		float	%9.0g		occupation; occ==1 if in a blue-collar occupation
ind		float	%9.0g		industry; ind==1 if working in a manufacturing industry
fem		float	%9.0g		female or male
union		float	%9.0g		if wage set be a union contract
ed		float	%9.0g		years of education
lwage		float	%9.0g		log wage
id		float	%9.0g		
t		float	%9.0g		
tduml		byte	%8.0g		t== 1.0000
exp2		float	%9.0g		

Panel Data Organization

- Panel data is usually organised in the so-called long form, with each observation a distinct individual-time pair.
- In our case, the cross-section (panel) and time variables are *id* and *t*, respectively.

4-4

Panel Data Organization (ctd.)

- . * Organization of dataset
- . list id t lwage exp union occ in 1/14, clean

	id	t	lwage	exp	union	occ
1.	1	1	5.56068	3	0	0
2.	1	2	5.72031	4	0	0
З.	1	3	5.99645	5	0	0
4.	1	4	5.99645	6	0	0
5.	1	5	6.06146	7	0	0
6.	1	6	6.17379	8	0	0
7.	1	7	6.24417	9	0	0
8.	2	1	6.16331	30	0	1
9.	2	2	6.21461	31	0	1
10.	2	3	6.2634	32	1	1
11.	2	4	6.54391	33	0	1
12.	2	5	6.69703	34	0	1
13.	2	6	6.79122	35	0	1
14.	2	7	6.81564	36	0	1

Panel Data Organization (ctd.)

- Inform Stata about the panel and time variables id and t by typing:
 - . xtset id t
- You can now use the time-series operators of *Stata* (*L.*, *D.*,...) and all the *xt* commands.

4-6

xtdescribe the data

```
. * Panel description of dataset
. xtdescribe
    id: 1, 2, ..., 595
                                                  595
                                            n =
    t: 1, 2, ..., 7
                                            Т =
                                                     7
       Delta(t) = 1 unit
       Span(t) = 7 periods
        (id*t uniquely identifies each observation)
                                         75% 95%
Distribution of T i:
                min 5% 25% 50%
7 7 7 7 7
                                                      max
                                           7
                                                7
                                                        7
   Freq. Percent Cum. | Pattern
595 100.00 100.00 | 1111111
595 100.00 |
                     XXXXXXX
```


Panel Data -

- 4-7

Estimating the Union Wage Premium

- We now use the panel data to estimate the union wage premium.
- In our case, the premium measures the degree to which wages are higher if set by a union contract.
- In general, the vast empirical literature on the issue finds that union bargaining increase wages above the market rate.
- We will see how panel data can be used to overcome some of the difficulties associated with estimating the wage premium.
- \odot We restrict the analysis to men (*drop if fem* == 1)!

The Basic Linear Panel Model

$$y_{it} = \alpha + x_{it}\beta + a_i + \epsilon_{it} \tag{1}$$

- i denotes the cross-sectional unit and t the time period.
- \therefore y_{it} is the dependent variable.
- \therefore x_{it} are explanatory variables.
- \Box *a_i* are unobserved individual-specific (fixed) effects.

The Basic Linear Panel Model

$$w_{it} = \alpha + x_{it}\beta + \gamma Union_{it} + a_i + \epsilon_{it}$$
(2)

- \Box *i* denotes the cross-sectional unit and *t* the time period.
- \therefore *w*_{*it*} is the log of the hourly wage.
- \boxdot α is a common intercept.
- Union_{it} indicates whether wage is set by a union contract.
- \Box *a_i* are unobserved individual-specific (fixed) effects.

The Unobserved Fixed Effect

$$w_{it} = \alpha + x_{it}\beta + \gamma Union_{it} + a_i + \epsilon_{it}$$
(3)

- The a_i captures all **unobserved**, time constant factors that affect w_{it} .
- The unobserved fixed effect is specific to an individual and does not vary over time.
- □ The unobserved fixed effect is unknown to the researcher.
- Examples: ability, ambition...

Pooled OLS

$$w_{it} = \alpha + x_{it}\beta + \gamma Union_{it} + a_i + \epsilon_{it}.$$
 (4)

- How should one estimate the parameter of interest, γ , given our seven years of panel data?
- One possibility is just to 'pool' the data and use OLS.
- □ Do this in Stata using exp, exp2, wks, ed, ind and occ as additional controls.

Pooled OLS Estimates

****** 2. POOLED OLS

. * Pooled OLS with incorrect default standard errors . regress lwage exp exp2 wks ed union ind occ

Source	SS .	df	MS		Number of obs F(7, 3688)	= 3696 = 229.48
Model	215.291596	7 30.7	7559423		Prob > F	= 0.0000
Residual	494.284928	3688 .134	1025197		R-squared	= 0.3034
	+		0000040		Adj R-squared	= 0.3021
Total	/09.5/6524	3695 .192	2036948		ROOT MSE	= .36609
lwage	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
exp	.0384824	.002442	15.76	0.000	.0336945	.0432703
exp2	0006084	.0000539	-11.29	0.000	000714	0005027
wks	.0047247	.0012331	3.83	0.000	.0023071	.0071422
ed	.0635993	.0028509	22.31	0.000	.0580098	.0691887
union	.1204051	.0138341	8.70	0.000	.0932818	.1475284
ind	.0431938	.0126986	3.40	0.001	.0182968	.0680908
occ	150339	.016286	-9.23	0.000	1822695	1184086
_cons	5.24959	.0780379	67.27	0.000	5.096589	5.402592

Panel Data -

5-6

What is Wrong with Pooled OLS?

Let us re-write the linear basic panel model as follows:

$$w_{it} = \alpha + x_{it}\beta + \gamma Union_{it} + (a_i + \epsilon_{it})$$
(5)

$$= \alpha + x_{it}\beta + \gamma Union_{it} + v_{it}.$$
 (6)

where $v_{it} = a_i + \epsilon_{it}$ is referred to as the **composite error term**.

Problem 1: Serially Correlated Errors

- \Box If *w* is overpredicted in one year for a given person, then it is likely to be overpredicted in other years.
- ∴ The composite error $v_{it} = a_i + \epsilon_{it}$ is serially correlated even if ϵ_{it} is *i.i.d.* with a variance of σ_{ϵ}^2 .
- A worker that is more able today will be more able tomorrow and we thus have:

$$Cor(v_{it}, v_{is}) \neq 0$$
 for $t \neq s$ if $a_i \neq 0$. (7)

□ We can easily show this in *Stata*...

Problem 1: Serially Correlated Errors (ctd.)

Problem 1: Serially Correlated Errors (ctd.)

- Each additional observation for a given person provides less than an independent piece of new information.
- ⊡ With serially correlated errors, standard errors are thus biased.

Solution: Cluster-Robust Standard Errors

- Calculate cluster-robust standard errors that allow for correlation within clusters (cross-sections).
- Cluster-robust standard errors only require that errors are independent between cross-sections.
- □ Use the vce(cluster) option in Stata...

OLS with Cluster-Robust Standard Errors

* Pooled OLS with cluster-robust standard errors

. regress lwage exp exp2 wks ed union ind occ, vce(cluster id)

Linear regression

regress	sion	Number of obs	= 3696			
					F(7, 527)	= 46.65
					Prob > F	= 0.0000
					R-squared	= 0.3034
					Root MSE	= .36609
		(Sto	l. Err.	adjusted	for 528 clust	ers in id)
		Robust				
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
exp	.0384824	.0047986	8.02	0.000	.0290556	.0479092
exp2	0006084	.0001087	-5.60	0.000	0008219	0003948
wks	.0047247	.0018448	2.56	0.011	.0011005	.0083488
ed	.0635993	.0062134	10.24	0.000	.0513931	.0758054
union	.1204051	.027477	4.38	0.000	.0664272	.174383
ind	.0431938	.0254036	1.70	0.090	006711	.0930986
occ	150339	.0321478	-4.68	0.000	2134925	0871856
cons	5.24959	.1434456	36.60	0.000	4,967795	5.531386

Problem 2: Omitted Variable Bias

$$w_{it} = \alpha + x_{it}\beta + \gamma Union_{it} + v_{it}$$
(8)

- We must assume that $v_{it} = a_i + \epsilon_{it}$ is uncorrelated with *Union_{it}* for OLS to consistently estimate γ .
- So even if ϵ_{it} is uncorrelated with $Union_{it}$, pooled OLS is biased and inconsistent if a_i and $Union_{it}$ are correlated.
- The resulting heterogeneity bias is caused from omitting a time-constant variable.

Problem 2: Omitted Variable Bias (ctd.)

Why should a_i and $Union_{it}$ be correlated?

- Unobserved factors that affect wages may also affect workers' selection into the covered sector.
- Wage standardization policy of unions might be most appealing to workers with low underlying earnings potential.
- Unionised employers might pick workers from the queue, as not all workers who desire union employment can find union jobs.
- \Rightarrow Union_{it} might be positively or negatively correlated with ability.

The Fixed Effects Model

- The fixed effects model allows the unobserved effects to be correlated with the explanatory variables.
- In fact, it uses a transformation to remove the unobserved effect prior to estimation.

The Fixed Effects Transformation

Consider our basic linear panel model:

$$y_{it} = \alpha + x_{it}\beta + a_i + \epsilon_{it}.$$
 (9)

For each cross-section, average this equation over time:

$$\overline{y_i} = \alpha + \overline{x}_i \beta + a_i + \overline{\epsilon}_i, \tag{10}$$

where the average of some variable z is given by $\overline{z}_i = T^{-1} \sum_{t=1}^{T} y_{it}$.

The Fixed Effects Transformation (ctd.)

Now subtract equation (10) from (9) to get rid of the fixed effect:

$$\begin{aligned} (y_{it} - \overline{y_i}) &= (\alpha - \alpha) + (x_{it} - \overline{x}_i)\beta + (a_i - a_i) + (\epsilon_{it} - \overline{\epsilon}_i) \\ &= (x_{it} - \overline{x}_i)\beta + (\epsilon_{it} - \overline{\epsilon}_i). \end{aligned}$$
(11)

Because a_i has been eliminated, OLS leads to consistent estimates of β even if x_{it} is correlated with a_i !

Re-Estimate the Union Wage Premium...

Use *xtreg*, *fe* in *STATA* to re-estimate the union wage premium using the fixed effects model:

$$(w_{it} - \overline{w_i}) = (x_{it} - \overline{x}_i)\beta + \gamma(Union_{it} - \overline{Union_i}) + (\epsilon_{it} - \overline{\epsilon}_i).$$
(12)

What does your estimate of γ suggests about the correlation between Union and ability?

Fixed Effects Estimates

. ******* 3. FIXED EFFECTS ESTIMATOR (WITHIN ESTIMATOR)

. * Within or FE estimator . xtreg lwage exp exp2 wks ed union ind occ, fe note: ed omitted because of collinearity

Fixed-effects	(within) reg	ression		Number	of obs	= 3696
Group variable	e: id			Number	of groups	= 528
R-sq: within	= 0.6558			Obs per	group: min	= 7
between	n = 0.0228				avg	= 7.0
overal	1 = 0.0427				max	= 7
				F(6,316	2)	= 1004.25
corr(u_i, Xb)	= -0.9223			Prob >	F	= 0.0000
lwage	Coef	etd Frr	+	DS F	[95% Conf	Intervall
Iwage				=> c	[558 CONL	. Incervarj
exp	.1149389	.0026801	42.89	0.000	.1096841	.1201938
exp2	0004347	.0000584	-7.44	0.000	0005491	0003202
wks	.0004693	.0006576	0.71	0.476	0008201	.0017587
ed	(omitted)					
union	.0316998	.0159769	1.98	0.047	.0003736	.063026
ind	.0182395	.0160431	1.14	0.256	0132165	.0496954
occ	0113013	.0146455	-0.77	0.440	0400169	.0174144
_cons	4.600501	.044283	103.89	0.000	4.513675	4.687328
	+					
sigma_u	1.047369					
sigma_e	.1534777					
rho	.97897847	(fraction	of varia	nce due t	o u_i)	
F test that a	11 u_i=0:	F(527, 3162	2) = 33	3.82	Prob >	F = 0.0000
Panel Data						

- 5-19

Caveats of the Fixed-Effects Estimator

The fixed effects estimator uses the time variation in y and x within cross-sectional units only.

- □ It discards variation across cross-sections (*between* variation).
- It does not allow us to estimate the coefficients of time-invariant regressors (gender, education...).
- Differenced regressors may be more susceptible to measurement error.
- Does not solve the problem of time-varying omitted variables.

Fixed Effects Estimator (by David Bell)

Within- and Between-Variation

The STATA command *xtsum* decomposes the overall variation in a variable as follows (where $s_O^2 \approx s_W^2 + s_B^2$):

Within:
$$s_W^2 = \frac{1}{NT - 1} \sum_i \sum_t (x_{it} - \overline{x}_i)^2$$
, (13)

Between:
$$s_B^2 = \frac{1}{N-1} \sum_i (\overline{x_i} - \overline{\overline{x}})^2$$
, (14)

Overall:
$$s_O^2 = \frac{1}{NT - 1} \sum_i \sum_t (x_{it} - \overline{x})^2.$$
 (15)

Use *xtsum* (and possibly *xttrans*) to assess the relative importance of between and within variation in the data.

xtsum the Data

. * Panel summary statistics: within and between variation

. * Notice: The min and max columns give the min and max of x_it for overall, x^bar_i for

> between and x_it-x^bar_i+x^bar for within

. xtsum id t lwage exp wks ed union tduml

Variable	2	Mean	Std. Dev.	Min	Max	Observ	ations
id	overall between within	297.7292	171.7455 171.8851 0	1 1 297.7292	594 594 297.7292	N = n = T =	3696 528 7
t	overall between within	4	2.000271 0 2.000271	1 4 1	7 4 7	N = n = T =	3696 528 7
lwage	overall between within	6.729774	.4382202 .3656286 .2420119	5.01728 5.518704 4.835235	8.537 7.813596 8.674519	N = n = T =	3696 528 7
exp	overall between within	20.21402	10.99381 10.81909 2.000271	1 4 17.21402	51 48 23.21402	N = n = T =	3696 528 7
wks	overall between within	46.96374	4.983413 3.165729 3.850824	5 31.57143 12.39232	52 51.57143 63.82089	N = n = T =	3696 528 7
ed	overall between within	12.84659	2.822298 2.824592 0	4 4 12.84659	17 17 12.84659	N = n = T =	3696 528 7
union	overall between within	.3833874	.4862772 .4597488 .1594985	0 0 4737554	1 1 1.24053	N = n = T =	3696 528 7
tduml	overall between within	.1428571	.3499745 0 .3499745	0 .1428571 0	.1428571 1	N = n = T =	3696 528 7

xttrans union

. xttrans union, freq

if wage set be a union contract	if wage se union con 0	if wage set be a union contract 0 1				
0	1,890	66	1,956			
	96.63	3.37	100.00			
1	63	1,149	1,212			
	5.20	94.80	100.00			
Total	1,953	1,215	3,168			
	61.65	38.35	100.00			

Panel Data -----

xttrans ed

. * Transition probabilities for a variable

. xttrans ed if ed>=12, freq

			education	years of	years of			
Total	17	16	15	14	13	12	education	
1,116 100.00	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	1,116 100.00	12	
144 100.00	0 0.00	0 0.00	0 0.00	0 0.00	144 100.00	0.00	13	
264	0 0.00	0 0.00	0 0.00	264 100.00	0 0.00	0.00	14	
66 100.00	0 0.00	0 0.00	66 100.00	0 0.00	0 0.00	0.00	15	
480	0 0.00	480 100.00	0 0.00	0 0.00	0 0.00	0.00	16	
396 100.00	396 100.00	0 0.00	0 0.00	0 0.00	0 0.00	0.00	17	
2,466	396 16.06	480 19.46	66 2.68	264 10.71	144 5.84	1,116	Total	

Within and Between R^2

Stata's xtreg command calculates the following three R^2 measures:

Within
$$R^2$$
: $\rho^2 \left\{ (y_{it} - \overline{y}_i), (x_{it} - \overline{x}_i)\hat{\beta} \right\},$ (16)

Between
$$R^2$$
: $\rho^2 \left\{ \overline{y}_i, \overline{x}_i \hat{\beta} \right\},$ (17)

Overall
$$R^2$$
: $\rho^2 \left\{ y_{it}, x_{it} \hat{\beta} \right\},$ (18)

where $\rho^2(x, y)$ denotes the squared correlation between x and y.

- 5-26

LSDV and First-Difference Estimators

There are two other estimators that also allow the unobserved fixed-effect to be correlated with the regressors:

- 1. Least-squares dummy variables (LSDV) estimator
- 2. First-difference (FD) estimator

Both estimators are also widely used in practice but share the caveats of the fixed effects estimator.

The Dummy Variables Regression

- The LSDV regression considers the unobserved effects a_i as parameters to be estimated.
- □ It directly estimates $y_{it} = \alpha + x_{it}\beta + a_i + \epsilon_{it}$ adding a dummy for each cross-sectional unit *i*.

The Dummy Variables Regression

- \boxdot The LSDV regression gives us exactly the same estimate of β as the fixed-effects estimator.
- It does not allow us to estimate the coefficients of time-invariant regressors (why?).

Use *areg* or *reg* to estimate the union wage premium using the LSDV regression!

The LSDV Estimates

* LSDV model fitted using areg
 areg lwage exp exp2 wks ed union ind occ, absorb(id)
 note: ed omitted because of collinearity

Linear regression, absorbing indicators Number of obs = 3696							
F(6, 3162)							
					Prob > F	=	0.0000
					R-squared	=	0.8950
					Adj R-square	d =	0.8773
					Root MSE	=	.15348
lwage	Coef.	Std. Err.	t	P> t	[95% Conf	. Ir	nterval]
	+						
exp	.1149389	.0026801	42.89	0.000	.1096841		1201938
exp2	0004347	.0000584	-7.44	0.000	0005491		0003202
wks	.0004693	.0006576	0.71	0.476	0008201		0017587
ed	(omitted)						
union	.0316998	.0159769	1.98	0.047	.0003736		.063026
ind	.0182395	.0160431	1.14	0.256	0132165		0496954
occ	0113013	.0146455	-0.77	0.440	0400169		0174144
_cons	4.600501	.044283	103.89	0.000	4.513675	4	1.687328
	+						
id	F(527,	3162) =	39.191	0.000	(528	cate	gories)

First-difference Estimator

Consider again our basic linear panel model

$$y_{it} = \alpha + x_{it}\beta + a_i + \epsilon_{it}.$$
 (19)

and lag it one period:

$$y_{i,t-1} = \alpha + x_{i,t-1}\beta + a_i + \epsilon_{i,t-1}.$$
(20)

First-difference Estimator (ctd.)

Now subtract equation (20) from (19) to obtain the first-differenced equation...

$$(y_{it} - y_{i,t-1}) = (\alpha - \alpha) + (x_{it} - x_{i,t-1})\beta + (a_i - a_i) + (\epsilon_{it} - \epsilon_{i,t-1}) = (x_{it} - x_{i,t-1})\beta + (\epsilon_{it} - \epsilon_{i,t-1})$$
(21)

Because a_i has been eliminated, OLS leads to consistent estimates of β even if x_{it} is correlated with a_i !

Re-Estimate the Union Wage Premium...

Now use *Stata* to re-estimate the union wage premium using the model in first differences:

$$(w_{it} - \overline{w_i}) = (x_{it} - x_{i,t-1})\beta + \gamma(Union_{it} - Union_{i,t-1}) + (\epsilon_{it} - \epsilon_{i,t-1}).$$
(22)

You should use the time-series operator for differences D...

The First-difference Estimates

. ******* 5. FIRST DIFFERENCE ESTIMATOR

. sort id t

. * First-differences estimator . regress D.(lwage exp exp2 wks ed union ind occ), noconstant note: delete omitted because of collinearity

Source	SS	df	MS		Number of obs	= 3168
Model Residual	30.2606538 106.438928	6 5.0 3162 .	4344229 0336619		Prob > F R-squared	= 0.0000 = 0.2214
Total	136.699582	3168 .0	4315012		Adj R-squared Root MSE	= 0.2199 = .18347
D.lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exp Dl.	.1192783	.006853	17.41	0.000	.1058416	.1327151
exp2 D1.	0005583	.0001491	-3.75	0.000	0008506	000266
wks Dl.	0003622	.0006187	-0.59	0.558	0015752	.0008508
ed Dl.	(omitted)					
union Dl.	.0162718	.0162282	1.00	0.316	0155471	.0480907
ind Dl.	.0144281	.0168265	0.86	0.391	0185639	.0474201
occ D1.	0158051	.0147561	-1.07	0.284	0447376	.0131274

Excursion: The Between Estimator

- □ The antipode to the within estimator is the between estimator.
- The between estimator uses only the cross-section variation in the data.
- To obtain the between model, average the basic linear panel model:

$$\overline{y}_i = \alpha + \overline{x}_i \beta + a_i + \overline{\epsilon}_i. \tag{23}$$

⊡ The between estimator is simply the OLS estimator in this model (*xtreg*, *be* in *Stata*).

Excursion: The Between Estimator (ctd.)

- ⊡ The between estimator is only consistent if the error $a_i + \overline{\epsilon}_i$ is uncorrelated with \overline{x}_i .
- ☑ Even if the between estimator is consistent, we have more efficient estimators at hand (pooled OLS and RE).
- ⊡ The between estimator is rarely used in practice but is actually an input into the RE estimator that we study now...

The Random Effects Estimator

- The FE / LSDV / FD estimators wipe out *between variation* (i.e., variation across cross-sections).
- If we believe that the a_i's are not correlated with the regressors, we should resort to more efficient estimators.
- One possibility is pooled OLS with clustered-robust standard errors.
- A more efficient estimator is the Random Effects (RE) estimator.

Consider again our basic linear panel model:

$$y_{it} = \alpha + x_{it}\beta + a_i + \epsilon_{it}.$$
 (24)

- Now suppose that a_i is *purely random* with mean 0 and variance σ_{α}^2 .
- \Box Thus, a_i is assumed to be **uncorrelated** with the regressors.

- \Box Yet, the composite error $v_{it} = a_i + \epsilon_{it}$ is still serially correlated.
- □ Under the random effects assumption, $Var(v_{it}) = \sigma_{\alpha}^2 + \sigma_{\epsilon}^2$ and $Cov(u_{it}, u_{is}) = \sigma_{\alpha}^2$, $s \neq t$.
- The intraclass correlation of the error is thus given by

$$\rho_{v} = Cor(v_{it}, v_{is}) = \frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}}.$$
(25)

- The Random Effects Model is the OLS estimator in a model transformed to have serially uncorrelated errors.
- ⊡ The transformed model is given by (see Wooldridge, 2002):

$$\begin{aligned} (y_{it} - \hat{\theta}_i \overline{y_i}) &= (1 - \hat{\theta}_i) \alpha + (x_{it} - \hat{\theta}_i \overline{x}_i) \beta + (1 - \hat{\theta}_i) a_i \\ &+ (\epsilon_{it} - \hat{\theta}_i \overline{\epsilon}_i) \end{aligned}$$
(26)

where $\hat{\theta}_i$ is a consistent estimator of

$$\theta = 1 - \sqrt{\sigma_{\alpha}^2 / (T \sigma_{\alpha}^2 + \sigma_{\epsilon}^2)}, \qquad (27)$$

which is bounded by 0 and 1.

It is worth noting that the RE model is a *weighted* average of the within and the between model:

$$(y_{it} - \overline{y_i}) + (1 - \hat{\theta}_i)\overline{y}_i = (x_{it} - \overline{x}_i)\beta + (\epsilon_{it} - \overline{\epsilon}_i) + (1 - \hat{\theta}_i)(\alpha + \overline{x}_i\beta + a_i + \overline{\epsilon}_i). (28)$$

Before you apply the RE estimator in Stata using $\mathit{xtreg}, \ \mathit{re}$ notice that...

...for $\theta = 0$, we obtain pooled OLS (which is an *unweighted* average of the between and within model):

$$y_{it} = \alpha + x_{it}\beta + a_i + \epsilon_{it}.$$
 (29)

 \boxdot ...for $\theta = 1$, we obtain the within model:

$$(y_{it} - \overline{y_i}) = (x_{it} - \overline{x}_i)\beta + (\epsilon_{it} - \overline{\epsilon}_i).$$
(30)

Random Effects Estimates

. ******* 6. RANDOM EFFECTS ESTIMATORS

. * Random-effects estimator . xtreg lwage exp exp2 wks ed union ind occ, re theta Random-effects GLS regression Number of obs = 3696 Number of groups = 528 Group variable: id 7 R-sg: within = 0.6259 Obs per group: min = between = 0.1823avg = 7.0 overall = 0.1887max = 7 Random effects u i ~ Gaussian Wald chi2(7) = 2332.16 corr(u i, X) = 0 (assumed) Prob > chi2 = 0.0000 = .80072752 theta lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ exp .0825226 .0030822 26.77 0.000 .0764816 .0885636 exp2 -.0007411 .0000676 -10.96 0.000 -.0008737 -.0006086 .0006109 .0008368 0.73 0.465 -.0010292 .002251 wks ed .1057496 .0062768 16.85 0.000 .0934474 .1180518 union .0646388 .0181938 3.55 0.000 .0289796 .100298 ind .0013936 .0179769 0.08 0.938 -.0338405 .0366276 .0176442 -1.98 0.048 -.0694806 occ -.0348985 -.0003165 .1030828 39.38 0.000 cons 4.059829 3.857791 4.261868 sigma u | .28526616 sigma e | .1534777 (fraction of variance due to u i) rho .77551783

Estimates of Variance Components

- ⊡ The composite error $a_i + \epsilon_{it}$ is referred to as $u_i + e_{it}$ in the *Stata* output.
- Stata provides estimates of the std. dev. of a_i (denoted sigma_u) and ϵ_{it} (denoted sigma_e).
- The output *rho* is an estimate of the intraclass correlation $\rho_{v} = Cor(v_{it}, v_{is}) = \frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}}.$
- For the RE model, the estimated $\hat{\theta}_i$ can be obtained using the *theta* option.

Comparison of Estimates

□ Now recap and store the different estimates by typing:

. quietly regress lwage exp exp2 wks ed union ind occ, vce(cluster id)

- . estimates store OLS_rob
- . quietly xtreg lwage exp exp2 wks ed union ind occ, fe
- . estimates store FE
- . quietly xtreg lwage exp exp2 wks ed union ind occ, re
- . estimates store RE
- . estimates table OLS_rob FE RE, b se stats (N r2 $r2_o\ r2_b\ r2_w)$

Comparison of Estimates (ctd.)

Variable	OLS rob	 FE	RE
exp	0.0415	0.1135	0.0869
-	0.0050	0.0025	0.0028
exp2	-0.0007	-0.0004	-0.0008
-	0.0001	0.0001	0.0001
wks	0.0076	0.0008	0.0010
	0.0018	0.0006	0.0008
ed	0.0704	(omitted)	0.1086
	0.0060		0.0062
union	0.1517	0.0321	0.0615
	0.0275	0.0149	0.0170
ind	0.0966	0.0182	0.0124
	0.0259	0.0155	0.0172
occ	-0.1447	-0.0214	-0.0411
	0.0318	0.0137	0.0164
_cons	4.9149	4.5930	3.9015
	0.1413	0.0400	0.0983
N	4165	4165	4165
r2	0.3205	0.6574	1105
r2 o		0 0491	0 1933
r2_0		0.0289	0.1833
r2 w		0.6574	0.6287
			legend: b/se

Hypothesis Testing

In applied work, you may want to test whether...

- ...the cross-sectional intercepts differ at all.
- ...to use the random or fixed effects estimators in case intercepts differ.

RE/FE or Pooled OLS?

- ⊡ There is an easy way to test whether the cross-sectional intercepts are different from each other.
- Just run *xtreg*, *fe* and calculate the corresponding dummy variable estimates.
- Do a simple F test to test whether the coefficients are identical.
- □ *Stata* actually reports this test below the regression output of *xtreg*, *fe*.
- □ If the coefficients do not differ, you can use pooled OLS.

Panel Data

RE/FE or Pooled OLS? (ctd.)

* Within or FE estimator . xtreg lwage exp exp2 wks ed union ind occ, fe note: ed omitted because of collinearity Fixed-effects (within) regression Number of obs 3696 Group variable: id Number of groups = 528 R-sq: within = 0.6558 Obs per group: min = 7 between = 0.0228avg = 7.0 overall = 0.04277 max = F(6,3162) = 1004.25 corr(u i, Xb) = -0.9223 Prob > F = 0.0000 Std. Err. t P>|t| lwage | Coef. [95% Conf. Interval] .1149389 .0026801 42.89 0.000 .1096841 .1201938 exp .0000584 -7.44 0.000 -.0005491 -.0003202 exp2 -.0004347 wks .0004693 .0006576 0.71 0.476 -.0008201 .0017587 ed (omitted) union .0316998 .0159769 1.98 0.047 .0003736 .063026 ind .0182395 .0160431 1.14 0.256 -.0132165 .0496954 000 -.0113013 .0146455 -0.77 0.440 -.0400169 .0174144 4.600501 4.513675 cons .044283 103.89 0.000 4.687328 sigma u | 1.047369 sigma e | .1534777 97897847 (fraction of variance due F test that all u i=0: F(527, 3162) = 33.82 Prob > F = 0.0000Panel Data

Random Effects or Fixed Effects?

- If the *a_i*'s are correlated with the regressors, only the FE estimator is consistent.
- If the *a_i*'s are uncorrelated with the regressors, both the FE and the RE estimators are consistent but the RE estimator is more efficient.
- The reason is simply that the RE estimator uses both the within and the between variation of the data.

Random Effects or Fixed Effects?

- The Hausman test uses the fact that both estimators are consistent under the null hypothesis of no correlation.
- \boxdot Under the null hypothesis, the two estimates of β should thus not differ systematically.
- We can implement the test in *Stata* using *hausman*.
- For the technical details of the test, you may consult Greene (2008).

Random Effects or Fixed Effects? (ctd.)

a.

. ******* 8. HAUSMAN TEST . . * Hausman test assuming RE estimator is fully efficient under null hypothesis . hausman FE RE, sigmamore

COEFFICIENTS									
	(b) (B)		(b-B)	sqrt(diag(V_b-V_B))					
	FE	RE	Difference	S.E.					
	+								
exp	.1134669	.086851	.026616	.0013417					
exp2	0004198	0007766	.0003567	.0000299					
wks	.0008245	.0010262	0002017	.00012					
union	.0321123	.0615498	0294375	.0084284					
ind	.0182378	.0124311	.0058066	.0093685					
occ	0214375	0410889	.0196515	.0059918					
	b = consistent under Ho and Ha; obtained from xtree								
В	= inconsistent	under Ha, eff	icient under Ho	; obtained from xtreg					
Test: Ho	Test: Ho: difference in coefficients not systematic								
	$chi2(6) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)$								
	=	1578.13							
	Prob>chi2 = 0.0000								

Fixed Effects or First Differencing?

- \odot For T = 2, the two estimators are the same.
- For $T \ge 2$, the estimators are not the same but both are unbiased and consistent.
- For large *N*, and small *T*, FE is more efficient **if** the idiosyncratic error ϵ_{it} is serially uncorrelated.
- Yet, there is no easy way to choose between the two estimators and both are widely used in practice.

Extension: Two-way-effects Model

A standard extension of the basic linear panel model is to allow the intercept to vary not only over individuals but also over time:

$$y_{it} = \alpha + x_{it}\beta + \lambda_t + a_i + \epsilon_{it}.$$
 (31)

- The time effects λ_t shift the intercept over time and affect all micro-units uniformly.
- Examples: business cycle movements, common trend in wages...
- In short panels, we usually include a full set of time dummies among the x_{it} 's.

Extension: Two-way-effects Model (ctd.)

- Re-estimate the wage equation including a full set of time dummies.
- You can either generate the dummies by hand or use the *i*. option of *Stata*.

FE Estimates with Time Dummies

. ******* 9. TWO-WAY-EFFECTS MODEL

. * Within or FE estimator with time dummies . xtreg lwage exp exp2 wks ed union ind occ i.t, fe note: ed omitted because of collinearity note: 7.t omitted because of collinearity Fixed-effects (within) regression Number of obs = 4165 Group variable: id Number of groups = 595 R-sg: within = 0.6605 Obs per group: min = 7 between = 0.0287avg = 7.0 overall = 0.0493max = F(11,3559) = 629.58 corr(u i, Xb) = -0.9089Prob > F = 0.0000 lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] .1117254 .0026174 42.69 0.000 .1065936 exp | 1168571 -.000401 .0000546 -7.35 0.000 -.000508 exp2 | - 000294 wks .0006692 .0005994 1.12 0.264 -.000506 .0018444 ed (omitted) .0288605 .0148838 1.94 0.053 -.0003212 union 0580422 ind 0198261 0154044 1 29 0 198 - 0103763 0500285 occ -.0193217 .0137094 -1.41 0.159 -.0462008 .0075574 ÷ 2 -.0081074 .0081694 -0.99 0.321 -.0241246 0079098 3 .0258101 .0077694 3.32 0.001 .0105772 .041043 .0286159 .0076429 4 3.74 0.000 .013631 .0436009 5 .0235754 .0077717 3.03 0.002 .0083381 0388128 6 007083 0081633 0 87 0 386 - 0089221 0230881 (omitted) _cons 4.613659 .0431638 106.89 0.000 4.52903 4.698287 sigma u | 1.0261585 sigma e | .15150311 rho .97866713 (fraction of variance due to u_i) F test that all u i=0: F(594, 3559) = 29.82 Prob > F = 0.0000

RE Estimates with Time Dummies

. * RE estimator with time dummies

. xtreg lwage exp exp2 wks ed union ind occ i.t, re

Random-effects Group variable	GLS regression: id	Number o	of obs = of groups =	4165 595		
R-sq: within between overal:	= 0.6600 h = 0.3420 l = 0.4279	Obs per	group: min = avg = max =	7.0 7		
Random effects corr(u_i, X)	i2(13) = chi2 =	7163.49 0.0000				
lwage	Coef.	Std. Err.	z	₽> z	[95% Conf.	Interval]
exp exp2 wks ed union ind occ t 2 3 4 5 6 7	.0289861 -0004355 0009559 0735711 0500422 0409469 -0339167 .0756715 1931833 .279892 3588786 4269871 .5040351	.0025233 .00005 .0005954 .0049521 .0134164 .0136322 .0129552 .0089433 .0092131 .0096431 .0101782 .0108193 .0115335	$11.49 \\ -8.72 \\ 1.61 \\ 14.86 \\ 3.73 \\ 3.00 \\ -2.62 \\ \\ 8.46 \\ 20.97 \\ 29.03 \\ 35.26 \\ 39.47 \\ 43.70 \\ \end{array}$	0.000 0.000 0.107 0.000 0.000 0.003 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000	.0240404 -0005334 -0002072 .0638651 .0237465 .0142283 -0593084 .058143 .175126 .260992 .389297 .4057817 .4814297	.0339317 -0003375 .0021269 .0832771 .0763379 .0676656 -0085249 .0931999 .2112406 .2987921 .3788275 .4481926 .5266404
_cons	5.055152	.0812668	62.20	0.000	4.895871	5.214432
sigma_u sigma_e rho	.30410708 .15150311 .80115798	(fraction o	of varian	ce due to	5 u_i)	

Outlook: Advanced Panel Data Analysis

Two major topics in applied panel data analysis were not covered:

- 1. Panel IV estimation
- 2. Dynamic panel estimation

Panel IV estimation

The fixed effects estimator (and related estimators) has some major shortcomings:

- It does not allow us to estimate the coefficients of time-invariant regressors.
- It does not solve the problem of time-varying omitted variables.

Panel IV estimation (ctd.)

Suppose you want to estimate the effect of job training on worker productivity:

$$lscrap_{it} = \alpha + \gamma hrsemp_{it} + a_i + \epsilon_{it}, \qquad (32)$$

using the dataset *scrap.dta*.

- \therefore *i* now refers to a single firm.
- Iscrap is the log of the scrap rate of a firm (a productivity measure).
- □ *hrsemp* is hours of job training per employee.

Panel IV estimation (ctd.)

- The unobserved fixed effect may capture, e.g., the (average) ability of a firm's workforce.
- As *hrsemp_{it}* may well be correlated with *a_i* (why?), we estimate the fixed effects model:

$$(Iscrap_{it} - \overline{Iscrap}_i) = \gamma(hrsemp_{it} - \overline{hrsemp}_i) + (\epsilon_{it} - \overline{\epsilon}_i).$$
 (33)

8-4

xtset and xtdescribe the Data

```
. use "scrap.dta", clear
. xtset fcode year
     panel variable: fcode (unbalanced)
      time variable: year, 1987 to 1988
             delta: 1 unit
xtdescribe
  fcode: 410523, 410563, ..., 419483
                                                   n =
                                                             47
   year: 1987, 1988, ..., 1988
                                                   т =
                                                              2
         Delta(year) = 1 unit
         Span(year) = 2 periods
         (fcode*vear uniquely identifies each observation)
Distribution of T i:
                   min
                           5%
                                 25%
                                         50%
                                                  75%
                                                        95%
                                                               max
                          2
                                  2
                                         2
                                                 2
                                                          2
                                                                 2
    Freg. Percent
                 Cum.
                          Pattern
 45
          95.74 95.74 | 11
          2.13 97.87
                         . 1
          2.13 100.00 | 1.
     47
         100.00 XX
```


FE Estimates

. xtreg lscrap hrsemp, fe Number of obs = 92 Fixed-effects (within) regression Group variable: fcode Number of groups = 47 Obs per group: min = 1 R-sq: within = 0.1193 avg = 2.0 between = 0.0160overall = 0.0243max = 2 F(1,44) = 5.96 Prob > F = 0.0187 corr(u i, Xb) = 0.0294 lscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ hrsemp -.0097174 .0039812 -2.44 0.019 -.017741 -.0016937 _cons .6737459 .064658 10.42 0.000 .5434363 .8040555 _____ sigma u | 1.4400308 sigma e .43425379 rho .91664268 (fraction of variance due to u_i) F test that all u_i=0: F(46, 44) = 20.80 Prob > F = 0.0000

Panel IV estimation (ctd.)

- The fixed effects estimator will still be biased if $hrsemp_{it} \overline{hrsemp}_t$ is correlated with the time-varying error ϵ_{it} .
- A firm might, for instance, increase productivity by hiring more skilled workers and simultaneously reduce job training.
- □ In that case, we have to resort to Panel IV estimation...

The IV Idea

We have to find an instrument z that is...

- 1. ...correlated with the endogenous variable x($hrsemp_{it} - \overline{hrsemp}_i$).
- 2. ...uncorrelated with the error term ϵ (ϵ_{it}).

Panel IV Estimation in Stata

- In our data, the dummy *grant* that indicates whether a firm received a job training grant by the state may provide a valid instrument (under which assumptions?).
- The *xtivreg* command allows us to combine the fixed effect transformation with IV estimation.
- Replace *hrsempl* with (*hrsempl* = grant) to instruct Stata that *hrsempl* should be instrumented by grant.

Correlation between grant and hrsemp

. xtreg hrsemp grant, fe					
Fixed-effects (within) reg Group variable: fcode	ression		Number of o Number of g	bs = roups =	92 47
R-sq: within = 0.4836 between = 0.0801 overall = 0.2143			Obs per gro	up: min = avg = max =	2.0 2
corr(u_i, Xb) = -0.0875			F(1,44) Prob > F	=	41.21 0.0000
hrsemp Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
grant 26.01751 _cons 6.787258	4.053008 1.441732	6.42 4.71	0.000 1 0.000 3	7.84921 .881638	34.18581 9.692877
sigma_u 14.822833 sigma_e 11.816449 rho .61143602	(fraction of	variand	ce due to u_	i)	
F test that all u_i=0:	F(46, 44) =	3.11		Prob > 1	F = 0.0001

Panel IV Estimation Using *xtivreg*

. xtivreg lscrap (hrsemp=g	grant), fe		
Fixed-effects (within) IV r Group variable: fcode	egression	Number of obs Number of groups	= 92 = 47
R-sq: within = 0.0783 between = 0.0160 overall = 0.0243		Obs per group: mir avg max	
corr(u_i, Xb) = -0.0202		Wald chi2(1) Prob > chi2	= 153.69 = 0.0000
lscrap Coef.	Std. Err. z	P> z [95%	Conf. Interval]
hrsemp 0154088 _cons .7397372	.0058563 -2.6 .0821938 9.0	3 0.009026 0 0.000 .5786	8870039306 403 .9008341
sigma_u 1.4405516 sigma_e .44422418 rho .91316478	(fraction of var	iance due to u_i)	
F test that all u_i=0:	F(46,44) = 19	.87 Prob	> F = 0.0000
Instrumented: hrsemp Instruments: grant			

Dynamic panel estimation

Panel data enables us to estimate parameters of dynamic models with lagged dependent variables such as:

$$y_{it} = \alpha + v y_{i,t-1} + x_{it}\beta + a_i + \epsilon_{it}.$$
(34)

Dynamic panel estimation (ctd.)

Dynamic models are usually estimated in first-differences so as to erase the unobserved effect a_i :

$$(y_{it} - y_{i,t-1}) = (x_{it} - x_{i,t-1})\beta + \upsilon(y_{i,t-1} - y_{i,t-2}) + (\epsilon_{it} - \epsilon_{i,t-1}).$$
(35)

As the lagged dependent variable is still correlated with the error term, IV estimation is required to obtain consistent estimates.

Dynamic panel estimation (ctd.)

- In practice, appropriate lags of the dependent variable are used as instruments.
- ⊡ In our example, $y_{i,t-2} y_{i,t-3}$ might be an appropriate instrument for $y_{i,t-1} y_{i,t-2}$.
- A widely used estimator for dynamic panel models is the Arellano-Bond estimator (*xtabond* in *Stata*).

Omitted Variable Bias: An Example

Suppose that a person's wage w_i is a function of his education ed_i and his IQ a_i :

$$w_i = \alpha + \beta_1 e d_i + \beta_2 a_i + u_i. \tag{36}$$

As you do not have on IQ, you instead estimate:

$$w_i = \alpha + \beta_1 e d_i + \tilde{u}_i. \tag{37}$$

Omitted Variable Bias: An Example (ctd.)

Now suppose that IQ is related to education through the following model:

$$a_i = \gamma + \delta_1 e d_i + \epsilon_i. \tag{38}$$

Then the regression that you actually run can be written as:

$$w_{i} = \alpha + \beta_{1}ed_{i} + \beta_{2}(\gamma + \delta_{1}ed_{i} + \epsilon_{i}) + \tilde{u}_{i}$$

= $(\alpha + \beta_{2}\gamma) + (\beta_{1} + \beta_{2}\delta_{1})ed_{i} + (\tilde{u}_{i} + \beta_{2}\epsilon_{i})$ (39)

Omitted Variable Bias: An Example (ctd.)

- \square The estimated effect of education on wages is thus $\beta_1 + \beta_2 \delta_1$.
- \boxdot Education and IQ are usually positively correlated, i.e., $\delta_1 > 0$.
- \boxdot IQ should also have a positive effect on wages, i.e., $\beta_2 > 0$.
- □ It thus follows that our estimated effect of education is too large as $β_1 + β_2 δ_1 > β_1$.

Why does *xtreg*, *fe* Report an Intercept?

Stata actually fits the model:

$$(y_{it} - \overline{y_i} + \overline{\overline{y}}) = \alpha + (x_{it} - \overline{x}_i + \overline{\overline{x}})\beta + (\epsilon_{it} - \overline{\epsilon}_i + \overline{\overline{a}} + \overline{\overline{\epsilon}}), \quad (40)$$

where $\overline{\overline{z}} = N^{-1}\overline{z}$ is the 'grand' mean of some variable z and Stata imposes the constraint $\overline{a} = \frac{1}{N} \sum_{i=1}^{N} a_i = 0$.

Notice that the slope estimate β is not affected by the 'transformation'.

