
Panopticon: Reaping the Benefits of Partial SDN
Deployment in Enterprise Networks

Dan Levin
Marco Canini

Stefan Schmid
Anja Feldmann

Technische Universität Berlin /
 Deutsche Telekom Laboratories

Bericht-Nummer: 2013-04
ISSN-Nummer: 1436-9915

Panopticon: Reaping the Benefits of Partial SDN
Deployment in Enterprise Networks

Dan Levin Marco Canini Stefan Schmid Anja Feldman
TU Berlin / T-Labs

<first name>@net.t-labs.tu-berlin.de

ABSTRACT
The operational challenges posed in enterprise networks,
present an appealing opportunity for the software-defined
orchestration of the network (SDN). However, the primary
challenge to realizing solutions built on SDN in the enter-
prise is the deployment problem. Unlike in the data-center,
network upgrades in the enterprise start with the existing de-
ployment and are budget and resource-constrained.

In this work, we investigate the prospect for partial Soft-
ware Defined Network (SDN) deployment. We present Pan-
opticon, an architecture and methodology for planning and
operating networks that combine legacy and upgraded SDN
switches. Panopticon exposes an abstraction of a logical
SDN in a partially upgraded legacy network, where the SDN
benefits extend potentially over the entire network.

We evaluate the feasibility of our approach through sim-
ulation on real enterprise campus network topologies entail-
ing over 1500 switches and routers. Our results suggest that
with only a handful of upgraded switches, it becomes possi-
ble to operate most of an enterprise network as a single SDN
while meeting key resource constraints.

1. INTRODUCTION
Mid to large enterprise campus networks present com-

plex operational requirements: The network must oper-
ate reliably and provide high-performance connectivity
while enforcing organizational policy. It must also pro-
vide isolation across complex boundaries, yet remain
easy to manage. All the while, operational and capital
costs must be kept low.

In the face of these requirements, numerous opera-
tional challenges threaten high availability and lead to
increased costs: Policy changes and resource realloca-
tions lead to reconfigurations, often scattered across
the network. This demands coordination among mul-
tiple human operators to avoid inconsistencies and hu-
man reasoning to ensure correctness of the resulting up-
date. In personal correspondence, a network operator
remarked that “for the fear of breaking policy, human
operators are reluctant to ever remove existing rules.”
Troubleshooting is an expensive, time-consuming activ-
ity for network operators. A recent survey [32] shows

that 56.2% of reported network tickets take over 30 min-
utes to resolve, and 35% of surveyed operators receive
more than 100 tickets per month. Scheduled mainte-
nance poses an additional challenge: The network pro-
vides no means for the operator to express that certain
devices will be unavailable for a period of time. There-
fore, he must reason about the consequences of reconfig-
uring the network for device removal, the correctness of
the order in which he performs the actions, and manu-
ally introduce the correct configuration changes to mit-
igate the impact of service.

Software Defined Networking (SDN) has the poten-
tial to provide a principled solution to the orchestration
of these challenging tasks. SDN is a paradigm that of-
fers a programmatic, logically-centralized interface for
specifying network behavior via direct control of the
switch hardware forwarding state. Through this inter-
face, a software program acts as a network controller by
writing forwarding rules into switch tables and reacting
to topology and traffic changes. Therefore, SDN rep-
resents a clear opportunity over manual, error-prone,
ad-hoc approaches to handling the above tasks.

However, most of the existing work leveraging SDN
(e.g., [4,9,13,27]) has so far assumed a full deployment
of SDN switches. Rather than a green field, network
upgrade starts with the existing deployment and is typ-
ically a staged process —budgets are constrained, and
only a part of the network can be upgraded at a time.
SDN deployment in the enterprise is no exception.

The realities of network upgrade and the operational
challenges facing existing networks lead us to question:
(i) What are the benefits of upgrading to a partial SDN
deployment? (ii) How do the benefits of principled
network orchestration depend on the location of SDN
switches? (iii) Given budget constraints, what subset
of legacy switches should be SDN upgraded to maximize
benefits?

To answer these, we present Panopticon, an ar-
chitecture and methodology for aiding operators in
planning and operating networks that combine legacy
switches and routers and SDN switches. We call such
networks transitional networks. Panopticon overcomes

1

Panopticon
SDN +
Legacy

SDN Platform

App
1

App
2

App
3

SDN Platform

Legacy
Mgmt

App
1

App
2

App
3

(b) Access edge	

SDN
Platform

Legacy
Mgmt ?

(a) Dual-stack	
 (c) Panopticon	

SDN switches:

End-point ports: Hybrid SDN switches:

Switches:

Figure 1: Current transitional network approaches vs.
Panopticon: (a) Dual-stack ignores legacy and SDN in-
tegration. (b) Full edge SDN deployment enables end-
to-end control. (c) Panopticon partially-deployed SDN
yields an interface that acts like a full SDN deployment.

the limitations of current approaches for transitional
networks, which we now briefly review.

1.1 Current Transitional Networks
The first approach (Figure 1a) partitions the flow

space into several disjoint slices and assigns each slice
to either SDN or legacy processing [20]. Individual
traffic flows of interest may be explicitly selected for
SDN processing. This mode’s prime limitation is that
it is essentially a dual-stack approach (as with IPv6 +
IPv4) rather than a means to integrate legacy hard-
ware and expose the resulting transitional network as
SDN. Further, this approach necessitates a contiguous
deployment of hybrid programmable switches capable of
processing packets according to both legacy and SDN
mechanisms, i.e., those switches studied under the ONF
Hybrid Working Group [24].

The second approach (Figure 1b) involves deploying
SDN at the network access edge [6]. This mode has
the benefit of enabling full control over the access pol-
icy and the introduction of new network functionality
at the edge, e.g., data-center network virtualization [1].
Unlike a data-center environment where the network
edge may terminate at the VM hypervisor, the cam-
pus network edge terminates at an access switch. In an
enterprise network, this approach thus involves upgrad-
ing thousands of access switches and incurs a high cost.
SDN deployment limited to the edge additionally im-
pairs the ability to control forwarding decisions within
the core of the network (e.g., load balancing, waypoint
routing).

1.2 Panopticon
Panopticon encompasses (i) a methodology for de-

termining the cost-aware partial deployment of SDN
switches for specific operational objectives and (ii) an
architecture for operating transitional networks as SDN.

Our main insight is that the key benefits of the SDN
abstraction to enterprise networks can be realized for
every source-destination path that includes at least one
SDN switch. Thus, we do not mandate a full SDN
deployment—a relatively small subset of all switches
may suffice. Each path which traverses even just one
SDN switch, can be used to realize a programmatic,
logically-centralized interface for orchestrating e.g., the
network access control policy. Moreover, traffic which
traverses two or more SDN switches may be controlled
at even finer levels of granularity enabling further cus-
tomized forwarding decisions e.g., for load balancing.

Based on this insight, we first develop a cost-aware
optimization framework as a tool for the network opera-
tor to determine the location of the partial SDN deploy-
ment based on their objectives (e.g., capex or forward-
ing efficiency). Second, we design Panopticon which
provably guarantees that traffic destined to operator-
selected end-points passes through at least one SDN
switch. Just as enterprise networks regularly divert traf-
fic (e.g., one VLAN to reach another on the same switch
must traverse a gateway), Panopticon explicitly lever-
ages waypoints to control traffic.

As opposed to the dual-stack approach, Panopticon
(Figure 1c) fundamentally integrates legacy and SDN
switches yielding an abstraction of a logical SDN to the
control platform. As we reason later (§ 7), many SDN
control paradigms can be achieved. Panopticon enables
the expression of any end-to-end policy, as though the
network were one big, virtual switch. End-to-end poli-
cies include access control and application load balanc-
ing. Routing and path-level policy, e.g., traffic engi-
neering can be expressed too, however the fidelity of
the global network view (and path diversity) presented
to the control logic is reduced to the fidelity of the log-
ical SDN. As more of the network is upgraded to sup-
port SDN, more fine-grained path-level policy can be
expressed. In a sense, Panopticon generalizes a fabric
deployment [6], which is impractical in the enterprise
context where the edge is so large and embroiled in
legacy equipment.

The namesake of our approach is inspired by the
Panopticon prison architecture, in which prisoners are
confined to cell-blocks, observable and controlled from
strategic vantage points. Analogous to this prison, we
isolate end-hosts in the legacy network using VLANs (in
what we term Solitary Confinement Trees or SCTs) and
restrict their traffic to traverse strategically upgraded
SDN programmable switches.1 Figure 2 illustrates the
forwarding in Panopticon which we revisit in § 3.

We face the challenges of (i) the need to maintain
compatibility with legacy switches and protocols, and
(ii) scalability issues with VLAN and flow table state.
Panopticon overcomes these challenges by (i) relying

1See § 2.3 for background on OpenFlow, an SDN platform.

2

on features such as VLANs ubiquitously available on
enterprise-grade switches, as confirmed through our op-
erator survey (§ 2), and (ii) a rigorous design method-
ology that considers VLAN and flow table constraints
yielding a careful assignment of VLAN IDs that allows
us to create a spanning tree for every end-point in a
scalable fashion.

1.3 Research Contributions
In summary, Panopticon enables us to expose an in-

terface for operating a transitional network as if it were
a nearly fully deployed SDN and reap the benefits of
partial SDN deployment for most of the network, not
just the part that is upgraded. Through a rigorously de-
signed SDN deployment that takes control over the un-
derlying legacy resources, Panopticon is more than just
an ad-hoc tunneled SDN overlay. The novelty of our
architecture lies in the way we overcome the challenge
of combining existing mechanisms readily available in
legacy switches. We make the following contributions:

1. We design a network architecture for operating
a partially upgraded network as an SDN (§ 3).
Also, we study the interaction mechanisms be-
tween legacy and upgraded switches (§ 4). We also
include proofs for the correctness of our approach
(Appendix).

2. We formalize the problem of determining the opti-
mal upgrade location as a mixed-integer optimiza-
tion program (§ 5) and we devise efficient algo-
rithms to solve it (§ 5.4).

3. We evaluate our approach using real enterprise
network topologies (with over 1500 switches) and
traffic traces (§ 6). We find that with only a hand-
ful of switches, it becomes possible to operate most
of an enterprise as a single SDN while meeting all
practical resource constraints.

4. We demonstrate our system-level feasibility with a
prototype implementation in (§ 6.5).

To motivate our problem formulation we conduct a
survey of network operators, which we now present.

2. ENTERPRISE NETWORK SURVEY
Commercial deployment of SDN started within data-

centers. The next steps are enterprise and/or ISP net-
works. In this paper we focus on mid to large enter-
prise campus networks, i.e., networks serving hundreds
to thousands of users, whose infrastructure is physically
located at a campus site. We choose this environment
due to its challenging complexity as well as the impact
potential that SDN network orchestration promises.

Cell Blocks

Path(A,B)

Frontier(C)

SCT(A) SCT(C)

Inter-Switch
Mesh
Path

A
SCT(B)

Path(A,C)

B

C

Frontier(A)

Frontier(B)

Figure 2: The forwarding path between A and B goes
via the frontier shared by SCT (A) and SCT (B); the
path between A and C goes via an Inter-Switch Mesh
path connecting SCT (A) and SCT (C).

2.1 Enterprise Network Operator Survey
To support our key assumptions on the challenges and

operational objectives within enterprise campus net-
works, we conducted two on-site interviews with op-
erators from both large (≥10,000 users) and medium
(≥500 users) enterprise networks. We then solicited 60
responses via e-mail to open-answer survey questions
from a wider audience of 60 network operators.

The top three responses to, “what is the most impor-
tant technical, operational objective you must achieve
in your network” were: (1) That it “just works”, im-
plying basic, usable IP connectivity for employees to
conduct their business, (2) strict traffic filtering and
perimeter protection against intrusion prevention and
system exploit, and (3) minimize operational costs and
complexity, e.g., by maintaining homogeneous hardware
deployments with vendor-specific management tools.

The top response to“what is the most demanding op-
erational challenge faced in your network”was related to
maintaining a consistent view of the network’s physical
and configuration state. When asked whether network
capacity bottlenecks present problems, no operator in-
dicated that his or her network experienced such issues.

2.2 Legacy Network Assumptions
Consequently, based on our operator conversations,

and in conjunction with several design guidelines (e.g.,
see [7, 15]), we make the following assumptions about
medium to large enterprise campus networks and hard-
ware capabilities. Enterprise network hardware consists
primarily of Ethernet bridges, namely, switches that
implement standard L2 mechanisms (i.e., MAC-based
learning and forwarding, and STP) and support VLAN
(specifically, 802.1Q and per VLAN STP). Routers or
L3 switches are used as gateways to route between
VLANs-isolated IP subnets. For our purposes, we as-
sume an L3 switch is also capable of functioning as a L2
switch. In addition, we assume that no enterprise in-
tentionally operates“flood-only”hub devices for general
packet forwarding.

3

2.3 Background on OpenFlow
The current de-facto standard SDN platform is Open-

Flow [20]: it defines a switch model and an API to its
forwarding tables, as well as a protocol that exposes the
API to a controller program. OpenFlow provides us a
reference model to reason about the types of forward-
ing behaviors that an upgraded switch may practically
implement. Henceforth, we assume that SDN switches
adhere to the OpenFlow programmable switch model,
which we now briefly review.

OpenFlow specifies that switches have flow tables
which store a list of rules for processing packets. Each
rule consists of a pattern (matching on packet header
fields), actions (such as forwarding, dropping, sending
to the controller, etc.), a priority (to distinguish be-
tween overlapping patterns), counters (to measure bytes
and packets processed so far), and a timeout (indicating
if/when the rule expires). An OpenFlow switch then
matches every incoming packet against the flow table
rules. Whenever there is a match, the switch selects
the highest-priority matching rule, updates the coun-
ters, and performs the specified action(s). If there is no
matching rule, the switch sends the packet (in full or
just its header) to the controller and awaits a response
on what actions to take.

3. PANOPTICON SDN ARCHITECTURE
This section presents our architecture for partially-

deployed software defined networks. We extend the
SDN capabilities to legacy switchports by ensuring that
every pair of SDN controlled legacy switchports are re-
stricted to communicate over an end-to-end path that
traverses at least one SDN switch. We call this property,
the Waypoint Enforcement policy. The Waypoint
Enforcement policy can however be violated if legacy
devices are allowed to make standard forwarding deci-
sions (i.e., based on destination MAC address).

To guarantee, Waypoint Enforcement we must
choose a forwarding set that constrains the space of pos-
sible forwarding decisions in such a way that the traffic
always follows safe end-to-end paths. In addition, we
must do so using only existing mechanisms and features
readily available on legacy switches, since these switches
are not being upgraded. We start by formally introduc-
ing the concepts of Waypoint Enforcement, for-
warding set and safe path.

3.1 The Transitional Network Model
We define a transitional network as G = (N , E). G is

connected, and consists of a set of nodes N which are
partitioned into end-points Π, legacy switches L and
SDN switches S, i.e., N = Π t L t S, and a set of
undirected links E between two elements of N .

We represent a end-to-end path traversed by pack-
ets from source end-point s ∈ Π to destination end-

point t ∈ Π as a list of traversed links p(s, t) =
(e1 = {s, u1}, e2 = {u1, u2}, . . . , ek = {uk−1, t}), where
u1, . . . , uk−1 ∈ LtS. To express paths between switches
rather than between end-points, we simply overload the
definition of path p(s, t) with s, t ∈ L t S.

We define the reachability matrix R where Rs,t =
1 iff end-point pair (s, t) is allowed to communicate,
otherwise 0. From all possible paths between end-points
(s, t) in G, we denote with FS(s, t) the subset of utilized
paths subject to Rs,t, which we call the forwarding set.

The set of end-points Π is further subdivided into
SDN-policed end-points Π• and non SDN-policed end-
points Π◦. We call a SDN-policed end-point a SDN port.
In Panopticon, we want to ensure that traffic from or
to a SDN port can only reach another end-point (re-
gardless of its type) via a SDN switch. To this end, we
introduce the concept of Waypoint Enforcement.

Definition 1 (Waypoint Enforcement).
Waypoint Enforcement requires that every path in the
forwarding set FS(s, t) includes at least one SDN
switch. Formally, ∀ s, t ∈ Π• ∀ p ∈ FS(s, t)
∃ u ∈ S : u ∈ p .

Henceforth, we call an end-to-end path safe iff it sat-
isfies the Waypoint Enforcement.

3.2 Selecting the Forwarding Set
We next show how to construct the forwarding set

using VLANs i.e., 802.1Q, to isolate and constrain
traffic in the legacy network to safe paths, ultimately
achieving Waypoint Enforcement. To conceptu-
ally illustrate how VLANs restrict forwarding to use
safe paths in a transitional network, we first consider a
straightforward, yet impractical scheme: For every pair
of SDN ports (i.e., end-points subject to waypoint en-
forcement), choose one SDN switch as a waypoint, and
compute the (shortest) end-to-end path that includes
the waypoint. Next, assign a unique VLAN ID to ev-
ery end-to-end path and configure the legacy switches
accordingly. This ensures that all forwarding decisions
made by every legacy switch only send packets along
safe paths.

Due to practical constraints, this simple solution is
infeasible as the VLAN ID space is limited to 4096 val-
ues. Indeed, VLAN ID space may be smaller yet, due to
switch hardware limitations. Thus, the simple solution
supports at most 64 hosts (in a full mesh) before deplet-
ing all available VLAN IDs. Moreover, end-point ports
must operate in “access mode” with a single VLAN ID
as end-host interfaces may not support or be trusted to
correctly use 802.1Q trunking.

A naive work around is to assign a single designated
SDN switch per SDN port. However, this rigid solu-
tion limits the opportunity to use the best path to the

4

6

2

7

4

3 1 5 A

B C

D

E F

2

4

A D

B C

F E

(a) Physical	
 (b) Logical	

Cell Blocks

Pseudo-wires:

SCTs:

Inter-Switch
Mesh paths:

SDN ports:

Cell Blocks

Figure 3: An example transitional network of 7 switches
(SDN switches are shaded). (a) Shows the SCTs (Soli-
tary Confinement Trees) of every SDN ports overlaid
to the physical topology. (b) Presents the correspond-
ing logical view in which all SDN ports are virtually
connected to SDN switches via pseudo-wires.

destination according to distance or load. Moreover, it
creates immense reliability concerns.

3.3 Solitary Confinement Trees (SCTs)
To construct the forwarding set in Panopticon, we

introduce the concept of Solitary Confinement Tree
(SCT) to provide end-to-end path diversity while en-
suring isolation and a parsimonious use of VLAN IDs.
We first describe the terms Cell Blocks and Frontier
and then formally define the SCT, using an example to
illustrate.

Definition 2 (Cell Blocks).
Given a transitional network G, Cell Blocks CB(G) =
{c1, . . . , ck} is defined as the set of connected compo-
nents of the network G′ obtained after removing from G
the SDN switches S and their incident links. Formally,
G′ = (Π t L, E ′), where E ′ = E \ {e = {u1, u2} | ∃u ∈
e : u ∈ S}.

Definition 3 (Frontier).
Given a cell block c ∈ CB(G), we define the Frontier
F(c) as the subset of SDN switches that are adjacent in
G to a switch in c.

Intuitively, the solitary confinement tree is a spanning
tree within a cell block, plus its frontier. The principle
role of each SCT is to provide a safe path from each
SDN port π to every SDN switch in its frontier. We
can then assign a single VLAN ID to each SCT which
ensures traffic isolation and overcomes the limitation
of binding each SDN port to a single SDN switch. We
introduce an algorithm for choosing VLAN IDs in § 4.2.
Formally we define SCT as:

Definition 4 (Solitary Confinement Tree).
Let c(π) be the cell block to which an SDN port π ∈ Π•

belongs. And let STP(c(π)) denote the STP-computed
spanning tree on c(π). Then, the Solitary Confinement
Tree SCT(π) is the network obtained by augmenting
STP(c(π)) with the upgraded frontier F(c(π)), together
with all links in G connecting a switch u ∈ F(c(π))
with a switch in SCT(π).

Example. Let us consider the example transitional
network of seven switches in Figure 3a. In this example,
SCT (A) is the tree that consists of the paths 5→ 1→ 2
and 5 → 1 → 4. Instead note that SCT (B), which
corresponds to the path 6 → 2, includes a single SDN
switch because switch 2 is the only SDN switch adjacent
to cell block c(B). Figure 3b shows the corresponding
logical view of the physical transitional network enabled
by having SCTs. In this logical view, every SDN port is
connected to at least one SDN switch via a pseudo-wire.

3.4 Packet Forwarding in Panopticon
We now illustrate Panopticon’s basic forwarding be-

havior (Figure 2). Let us first consider traffic between
a pair of SDN ports s and t. When a packet from s en-
ters SCT(s)’s VLAN, the legacy switches forward the
packet to the frontier based on MAC-learning which es-
tablishes a symmetric path. Note, that a packet from
s may use a different path within SCT(s) to the fron-
tier for each distinct destination. Once traffic toward t
reaches its designated SDN switch u ∈ F(c(s)), one of
two cases arises:
SDN switches act as VLAN gateways: This is the
case when the destination SDN port t belongs to a cell
block whose frontier F(c(t)) shares at least one switch u
with F(c(s)). Switch u acts as the designated gateway
between SCT(s) and SCT(t): That is, u rewrites the
VLAN tag and places the traffic within SCT(t). For
instance, in the example of Figure 3a, switch 2 acts as
the gateway between ports A, B and C.
Inter-Switch Mesh (ISM) and path diversity:
When no SDN switch is shared, we use an Inter-Switch
Mesh (ISM) path: point-to-point, VLAN-based tunnels
that realize a full mesh between SDN switches. In this
case, the switch u chooses one of the available paths
to forward the packet to an SDN switch w ∈ F(c(t)),
where w is the designated switch for the end-to-end
path p(s, t). In our example of Figure 3a, ISM paths
are shown in gray and are used e.g., for traffic from B
or C to E or F , and vice versa.

As in any SDN, the control platform is responsible for
installing the necessary forwarding state according to
the reachability matrix M and for reacting to topology
changes (fault tolerance is discussed in § 4.4).

We next turn to the forwarding behavior of non SDN
ports. Again, we distinguish two cases. First, when

5

there exists a path in the legacy network between two
non SDN ports, forwarding is performed as usual and
is unaffected by the partial SDN deployment. Policy
enforcement and other operational objectives must be
implemented through traditional means, e.g., ACLs.

In the second case, anytime a path between two non
SDN ports necessarily encounters an SDN switch, the
SDN mechanism can be leveraged to police the traffic.
This is also the case for all traffic between any pair of
SDN and non SDN ports. In other words, Panopticon
always guarantees safe paths for packets from or to ev-
ery SDN port. We formally prove this property in the
Appendix.

3.5 Architecture Discussion
Having described all components of the architecture,

we now highlight the key properties of SCT and ISM.
A VLAN ID per SCT is scalable. Using SCTs is
inherently more scalable than using one VLAN ID on
each end-to-end path since we parsimoniously use just
one VLAN ID per SDN port. In addition, our scheme
does not preclude using a different path within the SCT
for every destination ingress port, granting more flex-
ibility over using a single designated switch per SDN
port.
VLAN IDs are reused across Cell Blocks. In ad-
dition, we observe that SCTs allow us to reuse VLAN
IDs because any VLAN ID can be used once in each cell
block independently. This is because SDN switches ef-
fectively act as gateways between cell blocks and modify
VLAN IDs accordingly.
SCTs can be statically precomputed. We observe
that potentially, there is only a one time cost to compute
all SCTs (of course, re-computation is needed whenever
switches are added or removed). Also, it is possible to
automatically produce configuration settings to correctly
setup each legacy switch without requiring any manual,
tedious and error-prone effort.
ISM path diversity trade-offs. Within the ISM,
there may be multiple paths between any given pair of
SDN switches. We expect that some applications may
require a minimum number of paths. For example, a
minimum of two disjoint paths is necessary, to toler-
ate single link failures. On the other hand, each path
consumes a VLAN ID from the ID space of every tra-
versed cell block. Henceforth in this paper, we limit
ourselves to a single shortest path per switch pair (un-
less we specify otherwise).2 Path control over the mesh
is exercised by the logically centralized SDN controller
which we describe next.

3.6 Realizing SDN Benefits

2Readers familiar with the proposal in [6] for a fabric ab-
straction for SDN, will notice that our ISM is an instance of
such fabric, that spans over legacy devices.

By now, we have described how Panopticon shifts
the active network management burden away from the
legacy devices and onto the upgraded SDN deployment.
This conceptually reduces the network to a logical SDN
as presented in Figure 3b. The transitional network,
as an SDN, stands to benefit in all the ways as pre-
vious work has demonstrated—dynamic policy enforce-
ment [4], consistent policy updates [27], network behav-
ior customization and debugging [13,14,31], etc.

Putting it all together, Panopticon is the first archi-
tecture that realizes an approach for operating a transi-
tional network as though it were a fully deployed SDN,
yielding the benefits of partial SDN deployment for the
entire network, not just the part that is upgraded.

4. LEGACY SWITCH INTERACTION
Next, we consider the interaction of upgraded

switches with legacy switches. Accordingly, we discuss
how the interaction with STP works, as well as how
to choose VLAN IDs, cope with broadcast traffic, and
tolerate failures.

4.1 Interacting with STP
The Spanning Tree Protocol (STP) or a variant such

as Rapid STP, is commonly used to achieve loop free-
dom within L2 domains and we interact with STP in
two ways. First, to ensure network-wide loop freedom
for traffic from non SDN ports, SDN switches behave as
ordinary STP participants. That is, the SDN controller
implements STP and coordinates the computation and
distribution of STP messages on every SDN switch.

Second, within each SCT, we run a per-VLAN span-
ning tree protocol (e.g., Multiple STP) rooted at the
SCT ingress port’s switch. For this STP instance, each
SDN switch passively listens to learn the least-cost path
to the SCT’s ingress port, but does not reply with any
STP messages. Collectively, this behavior guarantees
that each SCT is loop free and fault tolerant via the
existing STP failover mechanisms.

4.2 Deploying VLANs
The configuration of VLANs and the assignment of

VLAN IDs can be computed efficiently in Panopticon:
For each cell block c ∈ CB(G), we compute all SCT(π)
(for each SDN port π ∈ Π•), and use one VLAN ID
per SCT. As noted before (§ 3.3), VLAN IDs can be
reused across different cell blocks. Subsequently, we add
the VLANs for the Inter-Switch Mesh (ISM). For each
switch pair connected in the ISM by a path p, we use
one VLAN whose ID is the smallest available identifier
in the cell blocks traversed by p.

4.3 Coping with Broadcast Traffic
Broadcast traffic can be a scalability concern. We

take advantage of the fact that each SCT limits the

6

broadcast domain size, and we rely on SDN capabilities
to enable in-network ARP and DHCP proxies as shown
in [17]. We focus on these important bootstrapping
protocols as it was empirically observed that broadcast
traffic in enterprise networks is primarily contributed
by ARP and DHCP [17,25].

Last, we note that in the general case, if broadcast
traffic must be supported, the overhead that Panopticon
produces is proportional to the number of SCTs in a cell
block which, at worst, grows linearly with the number
of SDN ports of a cell block.

4.4 Tolerating Failures
With Panopticon, we decompose fault tolerance into

three orthogonal aspects.
Reusing existing STP mechanisms. Within an
SCT, Panopticon relies on standard STP mechanisms
to survive link failures, although to do so, there must
exist sufficient physical link redundancy in the SCT.
The greater the physical connectivity underlying the
SCT, the higher the fault-tolerance. Additionally, the
coordination between SDN controller and legacy STP
mechanisms allows for more flexible fail-over behavior
than STP alone.

When an SDN switch at the frontier F of SCT notices
an STP re-convergence, the SDN controller adapts the
forwarding decisions at F ’s SDN switches to restore per-
end-point connectivity as necessary. This may involve
assigning a given end-point to a different frontier switch
to restore its connectivity, or to re-balance traffic. A
similar scheme can address link failures within the Inter
Switch Mesh (ISM).
SDN switch and link failure. When SDN switches
and/or their incident links fail, the SDN controller re-
computes the forwarding state and installs the necessary
flow table entries. Furthermore, precomputed failover
behavior can be leveraged as of OpenFlow version 1.1.
Finding an efficient and lightweight solution is part of
our ongoing work.
SDN controller robustness. Third, the SDN con-
trol platform must be robust and available. To this re-
spect, previous work [18] demonstrates that well-known
distributed systems techniques effectively achieve this
goal, although the implications of inconsistent network
views remain under-explored [19].

5. COST-AWARE SDN DEPLOYMENT
In principle, the Waypoint Enforcement policy

can be obtained with a single SDN switch by forward-
ing all traffic through this switch. However, this so-
lution is untenable for several reasons, including: (i)
many end-to-end paths may become excessively long,
(ii) bottleneck links may experience severe congestion,
(iii) the forwarding state, bandwidth, and performance
requirements of the SDN switch may be stretched be-

yond feasible limits, and (iv) it introduces a single point
of failure into the network.

Therefore, in this section we show how to upgrade to
an SDN network in stages in a cost-aware and efficient
manner. We present an upgrade planning tool that is
given an enterprise campus network topology G0 = (Πt
L0, E), where L0 denotes the set of legacy switches. The
goal of our planning tool is to select a subset of switches
S ⊆ L0 for SDN deployment and return the upgraded
network G+ = (Π t S t L, E), where L = L0 \ S.

We next describe the parameters, including a simpli-
fied switch price model and the properties of desirable
solutions. We then develop an optimal upgrade algo-
rithm Opt and devise two heuristic algorithms Deg
and Vol to solve it efficiently.

5.1 Tunable Parameters
To accommodate different designers’ needs, our tool

exposes several parameters: (i) priorities for upgrading
end-points to SDN ports, (ii) switch prices, and (iii)
several thresholds to encompass resource constraints of
VLAN IDs, link utilizations, and flow-table entries.
SDN Port Priorities. Due to practical constraints
(e.g., monetary budget or capacity) it may not be feasi-
ble to find a partial SDN deployment where all end-
points are SDN ports Π• (i.e., policed by an SDN
switch). Also, a network administrator may not even
wish to police certain end-points Π◦, as others take
precedence based on specific considerations including
budget constraints, security, and reachability (Π =
Π• t Π◦). Therefore, we allow a designer to specify (i)
the end-points that must be SDN ports (Π•1 ⊆ Π•), and
(ii) the end-points that, on a best-effort basis, should be
made SDN ports (Π•2 ⊆ Π•). Note that Π• = Π•1 t Π•2.
End-points Π◦ are ports that may violate the waypoint
enforcement policy.
Switch Price Model. The price γ(u) of an SDN
switch u ∈ S depends on features and capabilities such
as the number of switch ports Π(u), port speeds Ψ, and
switch fabric latency and capacity. Also, the price de-
pends on the number k of distinct traffic flows (e.g.,
source-destination MAC pairs or IP 5-tuples) it must
handle: A larger k implies higher TCAM, memory and
CPU requirements. Hence, we model the cost of a
switch as the function γ(u) = f(Π(u),Ψ, k). To this
end, we assume that the network designer has a price ta-
ble specifying switch prices together with their features
and capabilities. Our operator survey (cf also Section 2)
confirmed the validity of the price assumptions.
Link Utilizations. When upgrading the network any-
way, the designer may choose to ensure a certain de-
gree of link capacity over-provisioning w.r.t. the esti-
mated traffic matrix. A tunable safety margin ε can
be used to influence the individual switch upgrade and
path choices to ensure the upgraded network maintains

7

at least an ε percentage of the capacity of all links (or
per link) as slack.
VLAN IDs and Flow Table Entries. Within each
cell block, one may want to specify a certain upper
bound on the percentage of used VLAN IDs. That is,
given a maximal number of usable VLAN IDs tmax and
a percentage ν, the number of VLAN IDs t used in a
given cell block should not exceed ν · tmax. Similarly,
given a maximal flow table capacity ftmax and a thresh-
old µ, switches may be chosen for upgrade such that the
table at a new switch will not exceed µ · ftmax.

5.2 Properties of Desirable Solutions
We want the following properties:

1. Waypoint enforcement: Any end-to-end path be-
tween two communicating end-points π1, π2 ∈ Π•

must be SDN-policed if at least one end-point be-
longs to Π•1. Paths including an end-point π ∈ Π•2
should be policed too if capacity and budget allow.

2. Cost within budget: The total upgrade cost does
not exceed the given budget β.

3. Feasible: SDN switches have sufficient capacity
to support all end-to-end paths assigned to them
and expected link utilizations are within tolerable
thresholds.

4. Path stretch within limit: As a metric to capture
the impact of Waypoint Enforcement, we define
stretch as ρ(s, t) = d+(s, t)/d0(s, t), where d+(s, t)
is the length of the path p+(s, t) that satisfies Way-
point Enforcement in G+ and d0(s, t) denotes the
path in the original network G0. We require the
stretch remain below a tolerable threshold.

5.3 Optimal Upgrade Algorithm
We now formalize an optimal cost-aware upgrade al-

gorithm Opt based on mathematical programming. For
presentation sake, we first introduce a path-based for-
mulation that ensures Waypoint Enforcement, assum-
ing every end-point must be a SDN port (i.e., Π•1 ≡ Π•),
but does not take into account traffic matrix volumes
nor best-effort SDN ports Π•2 and remaining ports Π◦.
We later extend our formulation to include these.

Opt is a Mixed Integer Program (MIP) based on the
following constants and variables. Let the binary con-
stants li,j be 1 iff there exists a link {i, j} ∈ E in the
legacy network G0. The integer constants d0(s, t) de-
note the path lengths (e.g., w.r.t. hops) in G0.

We define the binary variable xs,ti,j that becomes 1 iff
link i to j lies on the path p(s, t) in the transitional net-
work G+. We also define yi, a binary decision variable
that is 1 iff switch i is to be upgraded.

One difficulty in the MIP formulation is to describe
paths: in contrast to classical programs for shortest path

or multi-commodity flow computations, we require that
a path from s ∈ Π• to t ∈ Π• goes via a SDN switch u ∈
S, where u is a variable itself. To avoid sacrificing the
linearity of the program, our approach is to introduce
a binary variable us,ti to determine whether path p(s, t)
goes through SDN switch i.
Opt can be used with different strategies, depending

on which properties of the upgrade are strictly required
and which are subject to optimization. In the following,
we seek to minimize the total path stretch, subject to
the upgrade budget β (Constraint (2)).

min
xs,t
i,j ,u

s,t
i

∑
i,j∈L0;s,t∈Π•

xs,ti,j
d0(s, t)

(1)

such that∑
i∈L0

γ(i) · yi ≤ β (2)

∀s, t ∈ Π• :

xs,ti,j ≤ li,j , ∀i, j ∈ L0 (3)

∑
j∈L0

(xs,ti,j − x
s,t
j,i) =

1, if i = s (∀i ∈ L0)

−1, if i = t (∀i ∈ L0)

0, otherwise

(4)

∑
i∈L0

us,ti = 1 (5)

us,ti ≤ yi, ∀i ∈ L0 (6)∑
j∈L0

(xs,ti,j + xs,tj,i) ≥ u
s,t
i , ∀i ∈ L0 (7)

∑
j∈L0

xs,ti,j ≤ 1;
∑
j∈L0

xs,tj,i ≤ 1, ∀i ∈ L0 (8)

us,ti = ut,si , ∀i ∈ L0 (9)∑
i

xs,ti,j +
∑
j

xs,tj,i ≤ µ
i · ftimax, ∀i ∈ L0 (10)

∑
π∈Π•∧π∈c

1 ≤ ν · tmax, ∀c ∈ CB(G) (11)

Constraint (3) ensures that a path can only use ex-
isting links, and Constraint (4) represents the flow con-
servation constraints along the switch paths. Con-
straint (5) states that there must be one SDN switch as-
signed to each path and Constraint (6) requires that the
assigned switch is chosen for upgrade. Constraint (7)
ensures that the assigned switch is included in the path;
it takes effect when yi = 1. Constraint (8) guarantees
that a switch is only used once per path (loop-freedom)
and Constraint (9) specifies path symmetry (this con-
straint can safely be omitted if not required). Con-
straint (10) guarantees that the number of used flow
table entries (or MAC table entries for legacy switches)
are within the allowed limit. Finally, Constraint (11)

8

ensures that the number of VLAN IDs used in every
given cell block is within a tolerable limit.

Finally, note that our formulation assumes the ini-
tial network consists only of legacy switches. In prac-
tice, after the first SDN partial-deployment phase has
taken place one can reuse our planning tool by fixing the
values of yi to 1 according to the previously upgraded
switches.

5.3.1 Extension to Traffic and Best-Effort SDN Ports
We now introduce traffic-awaress into Opt and then

extend it to account for best-effort SDN ports.
Traffic matrix. Let κ(e) denote the bandwidth of
the link e = {i, j} between switches i, j. We refer to
the traffic matrix as Ms,t, which denotes the estimated
demand between two end-points s, t ∈ Π. The following
constraint enforces that every link utilization is at most
the capacity minus safety margin ε:∑

s,t∈Π

xs,ti,j ·Ms,t ≤ (1− ε) · κ({i, j}), ∀i, j ∈ L t S

As with any network planning approach, for better
results with capacity constraints satisfaction, we sug-
gest using a long-term traffic matrix, which we assume
to be sufficiently stable. In an enterprise network, we
expect it to be the norm that the utilization of every
link is monitored (e.g., via SNMP counter) at a fine
level of granularity over a time scale spanning several
months. With these measurements one can leverage ex-
isting methodologies (e.g., see [21,33]) to obtain a traffic
matrix.
Best-effort SDN ports. For end-points in Π•2, we in-
troduce the binary variable h(π) that is 1 iff end-point
π ∈ Π•2 becomes a SDN port. This variable is used to
disable Constraints (5) and (7) through an additional
helper variable defined similarly to us,ti . The objec-
tive function is extended to allow a parameter α(≥ 0)
to trade-off the number of best-effort ports made SDN
against path stretch, as follows:

min
x
s,t
i,j ,u

s,t
i

∑
i,j,s,t

xs,ti,j
d0(s, t)

− α ·
∑
π∈Π•

2

h(π)

Of course, best-effort paths can be further prioritized
(e.g., ordered or weighted).

5.4 Heuristics
While Opt computes optimal upgrade solutions, the

MIP formulation exhibits a high runtime. Alone, the
problem of finding just the minimal stretch end-to-end
paths through given waypoints is NP-hard [3]. Hence,
to provide fast approximate results, we extend the plan-
ning tool with two heuristics, called Vol and Deg.

Both heuristics use a greedy strategy, in that Vol and
Deg upgrade one switch after another, without back-
tracking. Both heuristics differ only in the selection
criterion of the next switch to upgrade.

Vol is based on the intuition that a switch forwarding
large volumes of traffic is likely to be on many shortest

paths between end-point pairs, and an upgrade of this
switch allows us to keep many existing paths even under
Waypoint Enforcement. Hence, detours are avoided
and the stretch remains small. To also take into account
switch costs, Vol chooses the next switch u to upgrade
by computing the max volume-cost ratio vol(u)/γ(u),
where vol(u) denotes the traffic on physical links inci-
dent to u before the Waypoint Enforcement.
Deg tries to upgrade switches which are likely to

yield many disconnected components (or cell blocks).
This allows to reuse VLAN tags and improves the
system scalability. Concretely, Deg chooses the next
switch u to upgrade by computing the best degree-cost
ratio, formally, the ratio max ∆(u)/γ(u), where ∆(u)
denotes the number of links incident to u. Indirectly,
the hope is that the high-degree switch is at a location
which does not change shortest paths by much.

Algorithm 1 gives the pseudo-code for both heuristics.
(Since both greedy algorithms only differ in the switch
selection, we present them together and highlight the
line where they differ.) Note that due to capacity con-
straints (e.g., the maximal flow table size at the switches
or the capacity of the links), the first couple of switches
upgraded by Vol and Deg may not yield a feasible so-
lution yet. The choice of the next switch ignores these
constraints: The algorithms return “infeasible” if no so-
lution is found that meets the capacity constraints or if
not all ports Π•1 are subject to waypoint enforcement.

Note that similar techniques are used for many classi-
cal problems, such as Knapsack, Facility Location, Max-
imal Independent Sets, etc. We leave the formal anal-
ysis of the worst-case approximation ratios of the two
heuristics for future research, however we observe in
small-scale experiments that these heuristics are within
10% of the optimal algorithm.

Data: Legacy network G0 = (Π t L, E)
Result: Upgraded network G+ = (Π t S t L, E)
S = ∅;
while (

∑
u∈S γ(u) ≤ β) do

(* choose next switch u ∈ L to upgrade *);

(* in case of Vol *);
u := arg maxu∈L vol(u)/γ(u);

(* in case of Deg *);
u := arg maxu∈L∆(u)/γ(u);

L = L \ {u}, S = S ∪ {u};
G+ := (Π t S t L, E);

end
if (feasible) return G+; else return ⊥;
Algorithm 1: Upgrade heuristics Vol and Deg.

9

Site Access/Dist/Core max/avg/min degree

LARGE 1293/417/3 53/2.58/1
MEDIUM –/54/3 19/1.05/1
SMALL –/14/2 15/3/2

Table 1: Topology Characteristics

6. EVALUATION
Our goal in this section is to evaluate different “hy-

pothetical” partial SDN upgrade scenarios using three
example campus networks. This simulation lets us
(i) evaluate the scalability limits of our mechanism,
namely, the available VLAN IDs and SDN flow table
entries, and (ii) explore the extent to which SDN con-
trol benefits extend to the overall network. We focus on
our simple heuristics Deg and Vol, and remark that
more refined heuristics may result in more SDN enabled
end-points for a given budget.

6.1 Methodology
To simulate a network upgrade with Panopticon, we

must first obtain network topologies, traffic matrices,
resource constraints, as well as cost estimates.
Topologies: Detailed topological information, includ-
ing switch and router-level configuration, link capaci-
ties, and end-host placements is difficult to obtain: net-
work operators are reluctant to share these details due
to privacy concerns. Hence, we leverage several pub-
licly available enterprise network topologies [30] and
the topology of a private, local large scale campus net-
work. The topologies range from SMALL, comprising
just the enterprise network backbone, to a MEDIUM
network with 54 distribution switches and unknown ac-
cess characteristics, to a comprehensive large-scale cam-
pus topology derived from anonymized device-level con-
figurations from 1713 L2 and L3 switches. Summary
information on the topologies is given in Table 1. All
links in each topology are annotated with their respec-
tive link capacities as well as their switch port densities.

We use the SMALL network only when comparing
our heuristics with the optimal solution computed by
Opt (see § 6.3). We used the MEDIUM network as a
“playground” during heuristic development and evalua-
tion. However, as the results for the MEDIUM network
are qualitatively equivalent to the ones for the LARGE
network, for the remainder of the paper, we present only
results for the LARGE network.
Focus on distribution switches: We distinguish be-
tween access switches (switches of degree one), distri-
bution switches, and core switches. As core switches
are typically very expensive and specialized, and hence
are unlikely to be upgraded, we focus on distribution
switches (in the following referred to as the candidate
set for the upgrade). In case of the LARGE network,
this candidate set has cardinality 417. Within this net-

work, we reason about legacy network end-points which
we wish to subject to SDN waypoint enforcement as
distribution-layer switch ports which lead to individual
host-facing access-layer switches. In this topology, we
identify 1160 such end-points.
Traffic matrices: We use a methodology similar to
that used in SEATTLE [17] to generate a traffic ma-
trix based on actual traces from an enterprise campus
network, the Lawrence Berkeley National Laboratory
(LBNL) [25]. The LBNL dataset contains more than
100 hours of anonymized packet level traces of activity
of several thousand internal hosts. The traces were col-
lected by sampling all internal switch ports periodically.
We aggregate this data to obtain estimates of traffic ma-
trix entries. More precisely, for all source-destination
pairs in each sample we estimate the load they impose
on the network over 10 and 60 minute periods, respec-
tively. We note that the data contains sources from 22
subnets.

To project the load onto our topologies, we take ad-
vantage of the subnet information to partition each
of our topologies into subnets as well. Each of these
subnets contains at least one distribution switch. In
addition, we pick one node as the Internet gateway.
Each end-point in every cluster is associated—in ran-
dom round-robin fashion—with a traffic source from the
LBNL network. Then all traffic within the LBNL net-
work is aggregated to produce the intra-network traffic
matrix. All destinations outside of the LBNL network
are assumed to be reachable via the Internet gateway
and, thus mapped to the designated gateway node. By
picking a different random assignment, we generate dif-
ferent traffic matrices which we use in our simulations.
Before using a traffic matrix we ensure that the topol-
ogy is able to support it. For this purpose we project
the load on the topology using shortest path routes.
Resource constraints: Most mid- to high-end enter-
prise network switches support 1024 VLAN IDs for si-
multaneous use. The maximum number of VLAN IDs
expressible in 802.1Q is 4096. Accordingly, we use both
numbers as parameters to capture VLAN ID resource
constraints, one realistic; one optimistic. Most current
OpenFlow capable switches support at least 1,000 flow
table entries while many support up to 10,000 entries
across TCAM and SRAM. Bleeding edge devices sup-
port up to 100,000 flow table entries. Again, we use all
numbers as possible flow table capacity resource con-
straints, one conservative, one realistic; one optimistic.
Unless mentioned otherwise, we assume a setting where
flow table entries are only persistently (pro-actively)
populated along paths that are used (rather than for
all potential src-dst endpoint pairs). The results pre-
sented in this paper include both optimistic as well as
conservative slack factors. With regards to the link uti-
lization when enforcing the waypoint enforcement pol-

10

SDN Switches

S
D

N
 P

or
ts

 [%
]

●

●

●

●

●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

M
or

e
F

T
 E

nt
rie

s
M

or
e

V
LA

N
s

0 2 4 6 8 10 12 14 16 18 20

0
20

40
60

80
10

0

●

DEG 1k FT Entries, 1024 VLANs
DEG 10k FT Entries, 1024 VLANs
DEG 100k FT Entries, 1024 VLANs
DEG 100k FT Entries, 4096 VLANs
VOL 100k FT Entries, 1024 VLANs

(a) Realistic scenario

SDN Switches

S
D

N
 P

or
ts

 [%
]

0 20 50 80 110 140 170 200 230 260 290 320

0
20

40
60

80 DEG 1k FT Entries, 4096 VLANs
VOL 1k FT Entries, 4096 VLANs

(b) Worst-case scenario

SDN Switches

[%
]

●

●

●

●
●

● ●
● ●

●

A
vg

. S
tr

et
ch

0 10 20 30 40 50 60 70 80 90 100

0
20

40
60

80
10

0

1
3.

2
5.

4
7.

6
9.

8
12

●

Max. Link Util. [%]
2 x SDN Ports [%]
Avg. Stretch

(c) Link utilization and path stretch

Figure 4: (a): Percentage of SDN-policed ports as a function of upgraded switches, available flow table entries (FT),
and available VLAN IDs. (b): Percentage of SDN-policed ports in a scenario where flow table entries are very scarce
and tables are populated along all possible paths. (c): Link utilization and average stretch trade-off as a function
of the number of SDN switches.

icy of SDN ports, we do not consider a partial-upgrade
feasible whenever any projected link exceeds 50% of its
nominal link capacity.
Switch cost estimates: We use the following sim-
plified switch cost model. A switch with more than
48 ports (up to 96) costs USD 60k. Switches with 48
or fewer ports are priced w.r.t. per link bandwidth. A
switch supporting 10 Gbps links costs USD 30k, 1 Gbps
cost USD 3k. These numbers correspond to currently
available hardware.

6.2 How much SDN can I get for my budget?
The first key question we address is, “what fraction

of an enterprise campus network can Panopticon oper-
ate as software-defined, given budget and resource con-
straints for upgrading legacy switches?”
Scenario 1: To investigate the interactions between
flow table capacity and VLAN ID space we run 5 it-
erations (with different random seeds) of both heuris-
tics. Both heuristics greedily upgrade one switch at a
time subject to the resource constraints, and we track
for each upgrade the number of end-points that can be
waypoint enforced. Figure 4a plots the corresponding
results with 95% confidence intervals for different re-
source parameters. Each point in the graph corresponds
to a set of upgraded SDN switches and a specific frac-
tion of upgraded SDN waypoint enforced end-points.
The exact number of end-points that can be SDN way-
point enforced depends on the traffic matrix, however,
the spread of the intervals is small.
Observations 1: The major take-away from Figure 4a
is that switch flow table capacity plays a dominant role
with regards to what fraction of the enterprise legacy
network can be SDN-enabled. In the optimistic case
when the switch supports 100,000 entries and 4,096
VLAN IDs the whole network can be SDN enable by
upgrading just a single distribution switch while ensur-
ing reasonable link utilizations. This case, however, is
unrealistic.

With more realistic resource assumptions, namely
10,000 flow entries and 1,024 VLANs over 80% of the
legacy network end-points can be SDN enabled with
just five switches. This corresponds to upgrading just
1.2% of the distribution switches of the LARGE net-
work.

For the most conservative case (1,000 flow table ca-
pacity and 1,024 VLAN IDs) we must upgrade a larger
fraction of the legacy network in order to get a rea-
sonable pay-back in terms of SDN enabled ports. 15
switches allow us to way-point enforce roughly 20% of
the end-ports.

In this scenario, VLAN resource constraints play very
little role, as the number of large number of poorly-
endowed switches leads to more connected components
and enables better VLAN ID reuse. Also, note that the
difference in performance for the two heuristics for this
scenario is relatively minor.

6.3 Which heuristic should one use?
Ideally, it would be optimal to always solve the Opt

for each scenario. Due to high runtime complexity,
however it may not be practical. For the SMALL and
MEDIUM networks, the runtimes of our un-tuned Opt
solver on modern hardware are in the order of multiple
days, while the performance of the heuristics is min-
utes. Given our observation that heuristic results are
within 10% of the Opt, we next focus on comparing
the capabilities of the heuristics.
Scenario 2: Accordingly, the second experiment eval-
uates what fraction of the end-points can be made SDN
waypoint enforced ports under severe flow table scala-
bility limitations. We define a “worst case” where flow-
table capacity is very small (1k), and enforce an all-
to-all traffic matrix model where flow table entries are
required for all paths between end-points; the number
of VLAN tags is set such that it does not pose any con-
straint. We use both Deg and Vol.
Observations 2: The major take away from Figure 4b

11

Time [s]

P
ac

ke
ts

/s

0 4 8 12 16 20 24 28 32 36 40

0
0.

5
1

Link failure

Failover
Primary
Backup

Figure 5: Panopticon SCT fail-over mechanism

is that Vol can significantly outperform Deg when flow
table capacity is the major constraint. Vol performs
better, and initially, approx. 5% upgraded switches are
sufficient to police almost 20% of the ports. However,
the marginal utility of additional upgrades declines;
eventually, we achieve 70% SDN ports. The intuition
behind this is that Deg upgrades switches in decreas-
ing order of their degree. These high-degree switch typ-
ically serve more (but smaller) traffic flows while the
high-volume switches serve less (but larger) flows. Ac-
cordingly, Vol needs a smaller number of flow entries to
capture a larger fraction of the traffic. Indeed, for this
harsh scenario, no iterative GREEDY upgrade solution
to achieve fully upgraded SDN network may exist at all.
Finding better heuristics is the subject of our future re-
search.

6.4 How will Panopticon affect my traffic
Scenario 3: Our third experiment investigates the im-
pact of SDN waypoint enforcement on traffic. We start
with optimistic resource constraints (1024 VLAN IDs
and 10K flow table entries) conservative traffic matrix,
namely scaling the amount of traffic by two. This sce-
nario has potentially the most severe impact on link
utilization and path stretch.
Observations 3: Figure 4c plots the maximum link
utilization over all links (left y-axis) as the number of
upgraded switches increases. In addition, it shows the
average path stretch across all waypoint enforced end-
to-end paths of the traffic matrix (right y-axis). The
major take away from Figure 4c is that Panopticon per-
forms rather well in terms of both link utilization and
stretch. While upgrading a single switch may yield a
large average stretch, upgrading a dozen SDN switches
(less than 3% of all distribution switches) reduces the
stretch to less than 10%. Moreover, the maximum link
utilization stays at reasonable levels. When only a small
number of legacy switches are upgraded, the maximum
link utilization may exceed 80%. However, as the num-
ber of upgraded switches increases the maximum link
utilization stabilizes to roughly 60%.

6.5 Evaluating a Panopticon prototype
To cross-check certain assumptions on which Pan-

opticon is founded, we created a prototype OpenFlow
controller which implements the key functionalities of

legacy switch interaction. The primary goal of our pro-
totype is to demonstrate feasibility for legacy Switch
interaction – namely the ability to construct and re-
spond to link failure events and other behaviors within
the SCT.

We design a simple experiment run in Mininet [12]
which demonstrates the ability of an SDN pro-
grammable switch to react to an STP re-convergence,
and adapt the network forwarding state accordingly.
Figure 5 illustrates one such fail-over event within a
topology modeled after Figure 3. Host A sends pings
over switch 4 to host F until 20 seconds into the ex-
periment, when a link failure between switch 1 and 4 is
simulated and an STP re-convergence is triggered. The
resulting BDPU updates are observed by the controller
and the connectivity is restored over switch 2.

7. DISCUSSION
As hinted in the introduction, Panopticon exposes an

SDN abstraction of the underlying partial-SDN deploy-
ment, however the SDN fidelity of the global network
view is reduced to the set of upgraded switches. In this
section we focus on what this means for the SDN pro-
gramming abstraction and control applications.
Panopticon SDN vs. full SDN. As opposed to con-
ventional links in a full SDN, links in Panopticon are
pseudo-wires made up of legacy switches and links that
run STP. Accordingly, the SDN controller must take
into account the behaviors of STP within each SCT and
ISM. For example, an STP re-convergence in an SCT
can create the impression that a pseudo-wire “jumps”
from one SDN switch to another. Conceptually, this
may correspond to a physical topology change, e.g., the
behavior of a multi-chassis link access group in a full
SDN.
Hiding the partial deployment from the app. As
each Panopticon end-point is not necessarily attached
to a SDN switch port, but rather to a group of SDN
switch port–the frontier. Consequently, the SDN con-
trol platform may present or hide this information from
the application to conceal the nature of the partial-
deployment as needed. For example, if a control ap-
plication wants to see the first packet of a flow to know
from where the packet originated, the control platform
can conceal the pseudo-wire nature of the legacy net-
work, such that—to the application—the packet arrived
directly from an end-point and not the physically neigh-
boring legacy switch.
Which SDN applications are possible? The
essence of SDN is to remove the application’s awareness
of the underlying physical network state and operate as
a function over the global network view. As the con-
trol platform is responsible for morphing the Panopti-
con partial deployment into a consistent global network
view, we do not foresee any restrictions for the con-

12

trol applications that can be supported in a Panopticon
network as opposed to a full SDN. Naturally, early gen-
eration SDN applications that attempt to interact with
legacy network islands will not work in Panopticon—
but we do not view this as a limitation. Panopticon
subsumes this functionality and thus deprecate these
applications.
Scalability The key scaling factor of our system is the
number of flow table entries–which is problematic when
many wildcard matching rules are needed. Panopticon
can leverage recent work on Palette [16] which proposes
an approach to decompose large SDN tables into small
ones and then distribute them across the network, while
preserving the overall SDN policy semantics. Further-
more, as was demonstrated in [29], it is possible to use
programmable MAC tables to off-load the TCAM and
therefore improves scalability.
Why fully-deploy SDN in enterprise? Why should
an enterprise ever move to a full deployment of SDN?
Perhaps many enterprise networks do not need to fully
deploy SDN. As our results show, it is a question of
the trade-offs between budget limitations and resource
constraint satisfaction. Our Panopticon evaluation sug-
gests that partial deployment may in-fact be the right
long-term approach for some enterprise networks.

8. RELATED WORK
Our overarching goal is to build a scalable network

architecture that fundamentally integrates legacy and
SDN switches, while exposing an abstract global net-
work view to the benefits of the control logic above. As
such, Panopticon differs from previous work in software-
defined networking, evolvable inter-networking, scalable
data-center network architectures, and enterprise net-
work design and architecture.
SDN. In the enterprise, SANE [5] and consecutively
Ethane [4] propose architectures where a centralized
policing system enforces fine-grained network policy.
Ethane overcomes SANE [5]’s obstacles to deployment
by allowing compatibility with legacy devices. How-
ever, its integration with the existing deployment is only
ad-hoc and the behavior of legacy devices falls out of
Ethane’s control. Panopticon supports policy enforce-
ment with an architecture that integrates with the ex-
isting deployment through a rigorously-derived network
design. Recently, Casado et al. in [6] propose a fab-
ric abstraction for SDN to decouple the network “edge”
from the “core” so as to introduce the necessary flex-
ibility to evolve network design. We view Panopticon
as a generalization of such abstraction for the specific
dimension of exposing a global network view as a layer
of indirection over an upgrade-able network substrate.
Evolvable inter-networking. The question of how
to evolve or run a transitional network, has been dis-
cussed in many contexts. Plutarch [8], proposes an

inter-networking approach that subsumes existing ar-
chitectures such as IP. The notions of context and in-
terstitial function are introduced to deal with (and ex-
ploit!) network heterogeneity. Xia [11] addresses the
“narrow waist” design of the Internet as a barrier to
evolvability. It natively supports the ability to evolve its
functionality to accommodate new, unforeseen, princi-
pals over time. Admittedly, Panopticon has more mod-
est aims. Still, we believe it provides a reference demon-
stration for operating transitional enterprise networks.
Scalable data-center network architectures.
There is a wealth of recent work towards improving
data-center network scalability. To name a few, Al-
Fares et al. [2], VL2 [10], PortLand [23], NetLord [22],
PAST [29] and Jellyfish [28], offer scalable alternatives
to classic data-center architectures at lower costs. How-
ever, as a clean-slate data-center architectures, these
approaches are less applicable to transitional enterprise
networks. Data-center network topologies are often
highly regular, and far less embroiled in legacy hard-
ware. The main objective of the data-center network
is to support full bisection bandwidth for low- latency
any-to-any communication patterns. In contrast, enter-
prise network structure is less homogeneous and grow
“organically” over time. Enterprise networks typically
exhibit low utilization, and the main objective is to
provide connectivity while ensuring isolation policies.
Waypoint Enforcement [5], as in Panopticon is one way
to achieve this goal.
Enterprise network design and architecture.
Sung et al. [30] propose a systematic redesign of enter-
prise networks with the goal of making a parsimonious
allocation of VLANs to ensure reachability and provide
isolation; this paper focuses on legacy networks only.
The SEATTLE [17] network architecture uses a one-
hop DHT host location lookup service to scale large en-
terprise Ethernet networks. However, such clean-slate
approach is not applicable for the type of transitional
networks we consider. Today’s scalability issues in large
enterprise networks are typically dealt with by building
a network out of several (V)LANs interconnected via
L3 routers [7, 15]. TRILL [26] is an IETF Standard for
so-called RBridges that combines bridges and routers.
TRILL bridges use their own link state routing protocol,
improving flexibility and add routing. Similar to our
approach, VLANs are used to support multi-path for-
warding. While TRILL requires hardware and firmware
changes, it can be deployed incrementally. However, we
are not aware of any work discussing and rigorously
evaluating the use of TRILL for efficient policy enforce-
ment in enterprise networks, or where to optimally de-
ploy RBridges.

To the best of our knowledge, there is no previous
work on partial SDN upgrade.

13

9. SUMMARY
Managing and configuring enterprise networks is a

non-trivial challenge given their complexity. While SDN
promises to ease these challenges through principled
network orchestration, it is nearly impossible to fully
upgrade an existing legacy network to an SDN in a sin-
gle operation. Accordingly, in this paper, we systemati-
cally tackle the problem of how to partially deploy SDN-
enabled switches into existing legacy networks, and reap
the benefits for as much of the network as is feasible,
subject to budget and resource constraints.

Accordingly, we have developed Panopticon, an
architecture and methodology for aiding operators in
planning and operating networks that combine legacy
switches and routers and SDN switches. Our evaluation
highlights that our approach can deeply extend SDN
capabilities into existing legacy networks. By upgrad-
ing just 3% of the distribution switches in a large cam-
pus network, it is possible to realize the network as an
SDN, without violating reasonable resource constraints.
Our results motivate the argument, that partial SDN
deployment may indeed be an appropriate long-term
operational strategy for enterprise networks. In future
work, we plan to expand our prototype implementation
to serve end-users, and further refine our algorithms.

10. REFERENCES
[1] Nicira Network Virtualization Platform.

http://nicira.com/en/

network-virtualization-platform.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A

scalable, commodity data center network
architecture. In SIGCOMM, 2008.

[3] A. Bley. Approximability of unsplittable shortest
path routing problems. J. Netw., 54(1):23–46,
2009.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking
control of the enterprise. In SIGCOMM, 2007.

[5] M. Casado, T. Garfinkel, A. Akella, M. J.
Freedman, D. Boneh, N. McKeown, and
S. Shenker. SANE: a protection architecture for
enterprise networks. In USENIX Security
Symposium, 2006.

[6] M. Casado, T. Koponen, S. Shenker, and
A. Tootoonchian. Fabric: a retrospective on
evolving SDN. In HotSDN, 2012.

[7] Cisco. Campus Network for High Availability
Design Guide, 2008. http://www.cisco.com/en/
US/docs/solutions/Enterprise/Campus/HA_

campus_DG/hacampusdg.html.
[8] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and

A. Warfield. Plutarch: an argument for network
pluralism. SIGCOMM CCR, 33(4), 2003.

[9] N. Foster, R. Harrison, M. J. Freedman,

C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: A network programming
language. In ICFP, 2011.

[10] A. Greenberg, J. R. Hamilton, N. Jain,
S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. VL2: A scalable and
flexible data center network. In SIGCOMM, 2009.

[11] D. Han, A. Anand, F. Dogar, B. Li, H. Lim,
M. Machado, A. Mukundan, W. Wu, A. Akella,
D. G. Andersen, J. W. Byers, S. Seshan, and
P. Steenkiste. Xia: efficient support for evolvable
internetworking. In NSDI, 2012.

[12] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz,
and N. McKeown. Reproducible network
experiments using container-based emulation. In
Proceedings of the 8th international conference on
Emerging networking experiments and
technologies, CoNEXT ’12, pages 253–264, New
York, NY, USA, 2012. ACM.

[13] N. Handigol, B. Heller, V. Jeyakumar,
D. Mazières, and N. McKeown. Where is the
debugger for my Software-Defined Network? In
HotSDN, 2012.

[14] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. ElasticTree: Saving energy in data
center networks. In NSDI, 2010.

[15] Juniper. Campus Networks Reference
Architecture, 2010.
http://www.juniper.net/us/en/local/pdf/

reference-architectures/8030007-en.pdf.
[16] Y. Kanizo, D. Hay, and I. Keslassy. Palette:

Distributing tables in software-defined networks.
In INFOCOM, 2013.

[17] C. Kim, M. Caesar, and J. Rexford. Floodless in
Seattle: A scalable ethernet architecture for large
enterprises. In SIGCOMM, 2008.

[18] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale
production networks. In OSDI, 2010.

[19] D. Levin, A. Wundsam, B. Heller, N. Handigol,
and A. Feldmann. Logically Centralized? State
Distribution Tradeoffs in Software Defined
Networks. In HotSDN, 2012.

[20] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: enabling innovation in
campus networks. SIGCOMM CCR, 38(2), 2008.

[21] A. Medina, N. Taft, K. Salamatian,
S. Bhattacharyya, and C. Diot. Traffic matrix
estimation: existing techniques and new
directions. In SIGCOMM, 2002.

[22] J. Mudigonda, P. Yalagandula, J. Mogul,

14

B. Stiekes, and Y. Pouffary. NetLord: a scalable
multi-tenant network architecture for virtualized
datacenters. In SIGCOMM, 2011.

[23] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat. PortLand: a
scalable fault-tolerant layer 2 data center network
fabric. In SIGCOMM, 2009.

[24] ONF. Hybrid Working Group. https://www.
opennetworking.org/working-groups/hybrid.

[25] R. Pang, M. Allman, M. Bennett, J. Lee,
V. Paxson, and B. Tierney. A first look at modern
enterprise traffic. In ACM IMC, 2005.

[26] R. Perlman, D. Eastlake, D. G. Dutt, S. Gai, and
A. Ghanwani. Rbridges: Base protocol
specification. In Technical report, IETF, 2009.

[27] M. Reitblatt, N. Foster, J. Rexford,
C. Schlesinger, and D. Walker. Abstractions for
network update. In SIGCOMM, 2012.

[28] A. Singla, C.-Y. Hong, L. Popa, and P. B.
Godfrey. Jellyfish: networking data centers
randomly. In NSDI, 2012.

[29] B. Stephens, A. Cox, W. Felter, C. Dixon, and
J. Carter. PAST: Scalable Ethernet for data
centers. In CoNEXT, 2012.

[30] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A.
Maltz. Towards systematic design of enterprise
networks. In CoNEXT, 2008.

[31] R. Wang, D. Butnariu, and J. Rexford.
Openflow-based server load balancing gone wild.
In Hot-ICE, 2011.

[32] H. Zeng, P. Kazemian, G. Varghese, and
N. McKeown. Automatic test packet generation.
In CoNEXT, 2012.

[33] Y. Zhang, M. Roughan, N. Duffield, and
A. Greenberg. Fast accurate computation of
large-scale ip traffic matrices from link loads. In
SIGMETRICS, 2003.

APPENDIX
Theorem A.1. Panopticon ensures that: (1) Forwarding sets

FS(s, t) are loop-free. (2) End-to-end paths including an SDN
port are subject to Waypoint Enforcement. (3) End-to-end
paths are mutually isolated. (4) VLANs can be reused in different
cell blocks.

Proof. We prove the three correctness properties (1), (2),
and (3), and the efficiency property (4) in turn.

Property (1): An end-to-end path from s ∈ Π• to t ∈ Π• is
of the following form: SCT (s) → u1 ∈ SCT (s) → ISM(u1, u2)
→ u2 ∈ SCT (t) → SCT (t). Therefore, loop-freeness follows
directly from the loop-freeness of the VLAN STPs in SCT (s),
ISM(u1, u2), and SCT (s). Moreover, even if only a small subset
of inter-SDN switch paths are realized as VLANs, and u1 and
u2 are not directly connected, the SDN controller can make sure
that sequence of VLANs used for forwarding traffic from u1 to u2

is loop-free.
Property (2): This property directly follows from the definition

of the Solitary Confinement Tree (SCT). Since each s ∈ Π• is
in its own VLAN, the packets sent from s can only reach another
VLAN via the SDN switches in the frontier F of s.

Property (3): The isolation property is due to the fact that
each SCT contains exactly one end-point π ∈ Π, and that the
inter-switch VLANs (in the ISM) to connect two SDN switches
u1 ∈ F , u2 ∈ F (u1, u2 ∈ S) do not traverse any end-point π ∈ Π.

Property (4): By the cell block definition, all communication
between two end-points π1 ∈ c1 ∈ CB and π2 ∈ c2 ∈ CB with
c1 6= c2 passes through the SDN switches in F(c1) and F(c2).
Hence, all VLANs can be isolated from each other, and VLAN
IDs reused in the different cell blocks.

15

