
this print for content only—size & color not accurate spine = 0.566"  240 page count

EMPOWERING PRODUCTIVITY FOR THE JAVA™ DEVELOPER

Java™ 6 Platform Revealed
Dear Reader,

Welcome to an early look at the libraries of Java™ SE 6, aka Mustang. While J2SE™

5.0 is just now starting to become regularly adopted by the masses, Java™ 6
Platform Revealed takes a look at the next release of the Standard Edition plat-
form to come from Sun. 

New editions of the platform don’t happen that frequently, but when they
do, there is a lot to learn about quickly. If you want to come up to speed on the
new feature set as quickly as possible, Java™ 6 Platform Revealed will place you
well ahead of the pack. Instead of struggling through the discovery process of
using the new APIs, feel pity for the struggling I had to go through so that you
don’t have to. Sun definitely kept things interesting with its weekly release cycle.

What you’ll find in this book is ten chapters of how to use the latest JSR
implementations and library improvements that are now a part of Mustang.
You’ll learn about the new scripting and compilation support available to your
programs, the many new features of AWT and Swing—like splash screens, system
tray access, and table sorting and filtering—and lots more, including JDBC™ 4.0
and the cookie monster . . . err, cookie manager.

What you won’t find in Java™ 6 Platform Revealed is a “getting started with
Java” tutorial. Come prepared with a good working knowledge of Java™ 5 plat-
form for best results.

I’ve always enjoyed looking at what’s up next, in order to get a feel for the
upcoming changes and help decide when it’s time to move on. With the help
of this book, not only will you too see what’s in Java’s future, but you’ll learn how
to actually use many of the new features of the platform quickly. Before the
platform has even become finalized, you’ll find yourself productive with the
many new capabilities of Mustang.

John Zukowski

Author of

The Definitive Guide to
Java™ Swing, Third Edition

Learn Java™ with JBuilder 6

Java™ Collections

Definitive Guide to Swing 
for Java™ 2, Second Edition

John Zukowski’s Definitive
Guide to Swing for Java™ 2

Mastering Java™ 2:
J2SE 1.4

Mastering Java™ 2

Borland’s JBuilder:
No Experience Required

Java™ AWT Reference

US $39.99

Shelve in
Java Programming

User level:
Intermediate

Java
™6 Platform

 Revealed
Zukow

ski

THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

John Zukowski

Java™ 6
Platform
Revealed

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-660-9

9 781590 596609

53999

6 89253 59660 9

Companion
eBook Available

Getting to know the new Java™ SE 6 (Mustang) feature set, fast.

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details 
on $10 eBook version

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

THE APRESS JAVA™ ROADMAP

Pro Java™ 
Programming, 2E

The Definitive Guide to
Java™ Swing, 3E 

Beginning Java™ 
Objects, 2E

Java™ 6 Platform
Revealed



John Zukowski

Java™ 6 Platform
Revealed

6609FM.qxd  6/27/06  6:09 PM  Page i



Java™ 6 Platform Revealed

Copyright © 2006 by John Zukowski

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-660-9

ISBN-10 (pbk): 1-59059-660-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries.

Apress, Inc. is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement
from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: Sumit Pal
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, 
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Damon Larson
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Dina Quan
Proofreader: Elizabeth Berry
Indexer: Toma Mulligan
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com. 

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Source Code section. 

6609FM.qxd  6/27/06  6:09 PM  Page ii



Contents at a Glance

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

■CHAPTER 1 Java SE 6 at a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

■CHAPTER 2 Language and Utility Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

■CHAPTER 3 I/O, Networking, and Security Updates . . . . . . . . . . . . . . . . . . . . . . . . . 39

■CHAPTER 4 AWT and Swing Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

■CHAPTER 5 JDBC 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

■CHAPTER 6 Extensible Markup Language (XML) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

■CHAPTER 7 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

■CHAPTER 8 The Java Compiler API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

■CHAPTER 9 Scripting and JSR 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

■CHAPTER 10 Pluggable Annotation Processing Updates . . . . . . . . . . . . . . . . . . . . 183

■APPENDIX Licensing, Installation, and Participation . . . . . . . . . . . . . . . . . . . . . . 201

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

iii

6609FM.qxd  6/27/06  6:09 PM  Page iii



6609FM.qxd  6/27/06  6:09 PM  Page iv



Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

■CHAPTER 1 Java SE 6 at a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Early Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

What’s New? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

JavaBeans Activation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Service Provider Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

■CHAPTER 2 Language and Utility Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

The java.lang Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

System.console() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Empty Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The java.util Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Calendar Display Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Deques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Navigable Maps and Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Resource Bundle Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Array Copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Lazy Atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v

6609FM.qxd  6/27/06  6:09 PM  Page v



■CHAPTER 3 I/O, Networking, and Security Updates . . . . . . . . . . . . . . . . . . . 39

The java.io Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

The java.nio Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

The java.net Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

The java.security Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

■CHAPTER 4 AWT and Swing Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

The java.awt Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Splash Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

System Tray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Dialog Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

GIF Writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Text Antialiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Miscellaneous Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

The javax.swing Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table Sorting and Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

The SwingWorker Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

JTabbedPane Component Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Text Component Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Drag-and-Drop Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

More Miscellaneous Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

■CHAPTER 5 JDBC 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

The java.sql and javax.sql Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Database Driver Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Exception Handling Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Enhanced BLOB/CLOB Functionality . . . . . . . . . . . . . . . . . . . . . . . . . 107

Connection and Statement Interface Enhancements . . . . . . . . . . . 108

National Character Set Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

SQL ROWID Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

SQL 2003 XML Data Type Support . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

■CONTENTSvi

6609FM.qxd  6/27/06  6:09 PM  Page vi



■CHAPTER 6 Extensible Markup Language (XML) . . . . . . . . . . . . . . . . . . . . . 115

The javax.xml.bind Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

The javax.xml.crypto Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

The javax.xml.stream Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

■CHAPTER 7 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

The javax.jws Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

The javax.xml.ws and javax.xml.soap Packages . . . . . . . . . . . . . . . . . . . 150

SOAP Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

The JAX-WS API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

■CHAPTER 8 The Java Compiler API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Compiling Source, Take 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Compiling Source, Take 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Introducing StandardJavaFileManager . . . . . . . . . . . . . . . . . . . . . . . 158

Working with DiagnosticListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Changing the Output Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Changing the Input Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Compiling from Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

■CHAPTER 9 Scripting and JSR 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Scripting Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

The Compilable Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

The Invocable Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

jrunscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Get Your Pnuts Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

■CONTENTS vii

6609FM.qxd  6/27/06  6:09 PM  Page vii



■CHAPTER 10 Pluggable Annotation Processing Updates . . . . . . . . . . . . . . 183

JDK 5.0 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

The @Deprecated Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

The @SuppressWarnings Annotation . . . . . . . . . . . . . . . . . . . . . . . . 185

The @Override Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

JDK 6.0 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

New Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Annotation Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

■APPENDIX Licensing, Installation, and Participation . . . . . . . . . . . . . . . . 201

Snapshot Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Licensing Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Getting the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

■CONTENTSviii

6609FM.qxd  6/27/06  6:09 PM  Page viii



About the Author

■JOHN ZUKOWSKI has been involved with the Java platform since it
was just called Java, 11 years and running, since 1995. He is actively
working with SavaJe Technologies to finish up the JavaOne 2006
device of show: the Jasper S20 mobile phone. He currently writes
a monthly column for Sun’s Core Java Technologies Tech Tips
(http://java.sun.com/developer/JDCTechTips) and Technology
Fundamentals Newsletter (http://java.sun.com/developer/
onlineTraining/new2java/supplements). He has contributed
content to numerous other sites, including jGuru (www.jguru.com),

DevX (www.devx.com), Intel (www.intel.com), and JavaWorld (www.javaworld.com). He has
written many other popular titles on Java, including Java AWT Reference (O’Reilly),
Mastering Java 2 (Sybex), Borland’s JBuilder: No Experience Required (Sybex), Learn Java
with JBuilder 6 (Apress), Java Collections (Apress), and The Definitive Guide to Java Swing
(Apress).

ix

6609FM.qxd  6/27/06  6:09 PM  Page ix



6609FM.qxd  6/27/06  6:09 PM  Page x



About the Technical Reviewer

■SUMIT PAL has about 12 years of experience with software architec-
ture, design, and development on a variety of platforms, including
J2EE. Sumit worked with the SQL Server replication group while
with Microsoft for 2 years, and with Oracle’s OLAP Server group
while with Oracle for 7 years. 

In addition to certifications including IEEE CSDP and J2EE
Architect, Sumit has an MS in computer science from the Asian
Institute of Technology, Thailand.

Sumit has keen interest in database internals, algorithms, and
search engine technology.

Sumit has invented some basic generalized algorithms to find divisibility between
numbers, and has also invented divisibility rules for prime numbers less than 100.

Currently, he loves to play as much as he can with his 22-month-old daughter.

xi

6609FM.qxd  6/27/06  6:09 PM  Page xi



6609FM.qxd  6/27/06  6:09 PM  Page xii



Acknowledgments

Who knew how long my tenth book would take to do? It is always fun to write about a
moving target—the API set has been evolving as I’ve written each chapter, and even after
I turned them in. Now that we’re done, thanks need to go out to a whole bunch of people.

For starters, there is everyone at Apress. Some days I wonder how they’ve put up with
me for so long. To my project manager, Kylie Johnston, and my editor, Steve Anglin:
thanks, we finally made it to the end. For Damon Larson, it was great working with you.
Other than that one chapter I wanted back after submitting, hopefully this was one of
your easier editing jobs. For Laura Esterman and everyone working with the page proofs:
this was much easier than it was with my second book, when we had to snail-mail PDFs
back and forth. To my tech reviewer, Sumit Pal: thanks for all the input and requests for
more details to get things described just right, as well as those rapid turnarounds to keep
things on schedule due to my delays.

A book on Mustang can’t go without thanking all the folks making it happen, espe-
cially Mark Reinhold, the spec lead for JSR 270. It was nice getting all those little tidbits on
how to use the latest feature of the week in everyone’s blogs. The timing on some of them
couldn’t have been better.

For the readers, thanks for all the comments about past books. It’s always nice to
hear how something I wrote helped you solve a problem more quickly. Hopefully, the
tradition continues with this book.

As always, there are the random folks I’d like to thank for things that happened since
the last book. To Dan Jacobs, a good friend and great co-worker: best of luck with your
latest endeavors. Mary Maguire, thanks for the laugh at JavaOne when you took out the
“Sold Out” sign. Of course, we needed it later that same first day. Venkat Kanthimathinath,
thanks for giving me a tour around Chennai when I was in town. My appreciation of the
country wouldn’t have been the same without it. To Matthew B. Doar: again, thanks for
JDiff (http://javadiff.sourceforge.net), a great doclet for reporting API differences. The
tool greatly helped me in finding the smaller changes in Java 6. For my Aunt Alicia and
Uncle George O’Toole, thanks for watching after my dad.

Lastly, there’s this crazy woman I’ve been with for close to 20 years now—my wife,
Lisa. Thanks for everything. Our dog, Jaeger, too, whose picture you’ll find in Chapter 4.
Thanks Dad. Here’s to another June with you in the hospital. Third time’s a charm.

xiii

6609FM.qxd  6/27/06  6:09 PM  Page xiii



6609FM.qxd  6/27/06  6:09 PM  Page xiv



Introduction

So you like living on the bleeding edge and want to learn about Java 6, aka Mustang.
Welcome. What you hold in your hands is a look at the newest features of the early access
version of Mustang. Working through the early access releases from Sun, I’ve painfully
struggled through the weekly drops and demonstrated the latest feature set to help you
decide when or if it is time to move to Java 6. OK, maybe it wasn’t that painful. In any
case, many of these new features make the transition from Java 5 (or earlier) to Java 6
the obvious choice.

Who This Book Is For
This book is for you if you like diving headfirst into software that isn’t ready yet, or at least
wasn’t when the book was written. While writing the material for the book, I assumed
that you, the reader, are a competent Java 5 developer. Typically, developers of earlier ver-
sions of Java should do fine, though I don’t go into too many details for features added
with Java 5, like the enhanced for loop or generics. I just use them.

How This Book Is Structured
This book is broken into ten chapters and one appendix. After the overview in Chapter 1,
the remaining chapters attack different packages and tools, exploring the new feature set
of each in turn.

After Chapter 1, the next few chapters dive into the more standard libraries. Chapter 2
starts with the core libraries of java.lang and java.util. Here, you get a look at the new
console I/O feature and the many changes to the collections framework, among other
additions. Chapter 3 jumps into updates to the I/O, networking, and security features.
From checking file system space to cookie management and beyond, you’ll explore how
this next set of libraries has changed with Java SE 6.0. Onward into Chapter 4, you’ll learn
about the latest AWT and Swing changes. Here, you’ll jump into some of the more user-
visible changes, like splash screen support and system tray access, table sorting and
filtering, text component printing, and more.

With the next series of chapters, the APIs start becoming more familiar to the enter-
prise developer; though with Mustang, these are now standard with the Standard Edition.

xv

6609FM.qxd  6/27/06  6:09 PM  Page xv



Chapter 5 explores the JDBC 4.0 additions. You’ll just love the latest in database driver
loading that Mustang offers, among the many other additions for SQL-based database
access. The latest additions related to XML come out in Chapter 6, with the Java Architec-
ture for XML Binding (JAXB) 2.0 API, the XML Digital Signatures API, and the Streaming
API for XML. Chapter 7 then moves into web services, but with a twist, since Mustang is
the client side—so you aren’t creating them, but using them.

Onward to the next semi-logical grouping, and you’re into tools-related APIs. Reading
Chapter 8, you get a look into the Java Compiler API, where you learn to compile source
from source. From compiling to scripting, Chapter 9 talks about Rhino and the JavaScript
support of the platform, where you learn all about the latest fashions in scripting engines.
The final chapter, 10, takes you to the newest annotation processing support. From all
the latest in new annotations to creating your own, you’re apt to like or dislike annota-
tions more after this one.

The single appendix talks about Mustang’s early access home at https://mustang.dev.
java.net, the licensing terms, and the participation model. It may be too late by the time
this book hits the shelf, but early access participants have been able to submit fixes for
bugs that have been annoying them since earlier releases of the Java platform. Sure, Sun
fixed many bugs with the release, but it was bugs they felt were worthy, not necessarily
those that were critical to your business.

By the time you’re done, the Java Community Process (JCP) program web site
(www.jcp.org) will be your friend. No, this book isn’t just about the JSRs for all the new fea-
tures—but if you need more depth on the underlying APIs, the JCP site is a good place to
start, as it holds the full specifications for everything introduced into Mustang. Of course,
if you don’t care for all the details, you don’t need them to use the APIs. That’s what this
book is for.

Prerequisites
This book was written to provide you, the reader, with early access knowledge of the
Java 6 platform. While the beta release was released in February 2006, that release was
based on a weekly drop from November 2005, with further testing. Much has changed
with the Java 6 APIs since then. By the time the book went through the production
process, most of the code was tested against the late May weekly snapshots from
https://mustang.dev.java.net, drops 84 and 85. There is no need to go back to those
specific drops—just pick up the latest weekly drop, as opposed to using the first beta
release. If there is a second beta, that is also probably a good place to start, though it
will be newer than what I tested with, and thus could have different APIs.

■INTRODUCTIONxvi

6609FM.qxd  6/27/06  6:09 PM  Page xvi



Sun makes available different versions of the Mustang platform. If you want to use
Sun’s VM, then your system should be one of the following:

• Microsoft Windows 2000, Server 2003, XP, or Vista

• Microsoft Windows AMD 64

• Solaris SPARC (8, 9, 10, or 11)

• Solaris x86 (8, 9, 10, or 11)

• Solaris AMD 64 (10 or 11)

• Linux (Red Hat 2.1, 3.0, or 4.0; SuSE 9, 9.1, 9.2, or 9.3; SuSE SLES8 or SLES 9;
Turbo Linux 10 (Chinese/Japanese); or Sun Java Desktop System, Release 3)

• Linux AMD 64 (SuSE SLES8 or SLES 9; SuSE 9.3; or Red Hat Enterprise Linux 3.0
or 4.0)

For a full set of supported configurations, see http://java.sun.com/javase/6/
webnotes/install/system-configurations.html.

Macintosh users will need to get Mustang from Apple. The Mac Java Community web
site, at http://community.java.net/mac, serves as a good starting point. At least during the
early access period in the spring, they were offering build 82 when Sun had 85 available,
so they’re a little behind, but the build was at least available for both PowerPC- and 
Intel-based Macs.

Downloading the Code
You can download this book’s code from the Source Code area of the Apress web site
(www.apress.com). Some code in this book is bound to not work by the time Java 6 goes
into production release. I’ll try my best to update the book’s source code available from
the web site for the formal releases from Sun, beta releases, and first customer ship (FCS).

■INTRODUCTION xvii

6609FM.qxd  6/27/06  6:09 PM  Page xvii



Support
You can head to many places online to get technical support for Mustang and answers to
general Java questions. Here’s a list of some of the more useful places around:

• JavaRanch, at www.javaranch.com, offers forums for just about everything in the
Big Moose Saloon.

• Java Technology Forums, at http://forum.java.sun.com, hosts Sun’s online forums
for Java development issues.

• developerWorks, at www.ibm.com/developerworks/java, is IBM’s developer commu-
nity for Java, which includes forums and tutorials.

• jGuru, at www.jguru.com, offers a series of FAQs and forums for finding answers.

• Java Programmer Certification (formerly Marcus Green’s Java Certification Exam
Discussion Forum), at www.examulator.com/moodle/mod/forum/view.php?id=168, offers
support for those going the certification route. 

While I’d love to be able to answer all reader questions, I get swamped with e-mail
and real-life responsibilities. Please consider using the previously mentioned resources
to get help. For those looking for me online, my web home remains www.zukowski.net.

■INTRODUCTIONxviii

6609FM.qxd  6/27/06  6:09 PM  Page xviii



Java SE 6 at a Glance

What’s in a name? Once again, the Sun team has changed the nomenclature for the
standard Java platform. What used to be known as Java 2 Standard Edition (J2SE) 5.0
(or version 1.5 for the Java Development Kit [JDK]) has become Java SE 6 with the latest
release. It seems some folks don’t like “Java” being abbreviated, if I had to guess. Java SE 6
has a code name of Mustang, and came into being through the Java Community Process
(JCP) as Java Specification Request (JSR) 270. Similar to how J2SE 5.0 came about as
JSR 176, JSR 270 serves as an umbrella JSR, where other JSRs go through the JCP public
review phase on their own, and become part of the “next” standard edition platform if
they are ready in time.

The JSRs that are planned to be part of Mustang include the following:

• JSR 105: XML Digital Signature

• JSR 173: Streaming API for XML

• JSR 181: Web Services Metadata

• JSR 199: Java Compiler API

• JSR 202: Java Class File Specification Update

• JSR 221: JDBC 4.0

• JSR 222: JAXB 2.0

• JSR 223: Scripting for the Java Platform

• JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0

• JSR 250: Common Annotations

• JSR 269: Pluggable Annotation Processing API

1

C H A P T E R  1

6609CH01.qxd  6/23/06  1:12 PM  Page 1



With J2SE 5.0, the set of JSRs changed during the development and review process.
One would expect the same with Mustang. Having said that, the blog of Mark Reinhold,
who is the Mustang JSR specification lead, claims that won’t be the case (see http://
weblogs.java.net/blog/mreinhold/archive/2005/07/mustang_compone.html).

In addition to the announced set of JSRs, Mustang has a set of goals or themes for
the release, as follows:

• Compatibility and stability

• Diagnosability, monitoring, and management

• Ease of development

• Enterprise desktop

• XML and web services

• Transparency

What does all this mean? As with J2SE 5.0, the next release of the standard Java plat-
form will be bigger than ever, with more APIs to learn and with bigger and supposedly
better libraries available.

Early Access
With Mustang, Sun has taken a different approach to development. While they still
haven’t gone the open source route, anyone who agreed to their licensing terms was per-
mitted access to the early access software. Going through their http://java.net web site
portal, developers (and companies) were allowed access to weekly drops of the soft-
ware—incomplete features and all. APIs that worked one way one week were changed the
next, as architectural issues were identified and addressed. In fact, developers could even
submit fixes for their least favorite bugs with the additional source drop that required
agreeing to a second set of licensing terms.

What does all this mean? There is apt to be at least one example, if not more, that will
not work as coded by the time this book is printed and makes it to the bookstore shelves.
For those features that have changed, the descriptions of the new feature sets will hope-
fully give you a reasonable head start toward productivity. For the examples that still
work—great. You’ll be able to take the example-driven code provided in this book and
use it to be productive with Java SE 6 that much more quickly.

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE2

6609CH01.qxd  6/23/06  1:12 PM  Page 2



Everything in this book was created with various releases of the early access software
to provide you with example after example of the new APIs. It is assumed that you have a
reasonable level of knowledge of the Java programming language and earlier libraries,
leaving the following pages to describe that which is being introduced into the next stan-
dard release of the Java Platform, Standard Edition.

Structure
After this first chapter, which provides an overview of what’s new in Java SE 6, this book
describes the new and updated libraries, as well as updates related to tools.

The initial chapters break up changes to the java.* and javax.* packages into logical
groupings for explanation. Chapter 2 takes a look at the base language and utilities pack-
ages (java.lang.* and java.util.*). Chapter 3 is for input/output (I/O), networking, and
security. Chapter 4 addresses graphical updates in the AWT and Swing work, still called
the Java Foundation Classes (JFC). Chapter 5 explores JDBC 4.0 and JSR 221. Chapter 6
moves on to the revamped XML stack and the related JSRs 105, 173, and 222. Last for the
libraries section, Chapter 7 is on client-side web services, with JSRs 181, 250, and 224.

The remaining chapters look at tools like javac and apt, and explore how they’ve
grown up. Chapter 8 looks at the Java Compiler API provided with JSR 199. You’ll look into
new features like compiling from memory. Chapter 9 is about that other Java, called
ECMAScript or JavaScript to us mere mortals. Here, JSR 223’s feature set is explored, from
scripting Java objects, to compilation, to Java byte codes of scripts. Finally, Chapter 10
takes us to JSR 269 with the Pluggable Annotation Processing API. 

No, this book is not all about the JSRs, but they occasionally provide a logical struc-
ture for exploring the new feature sets. Some JSRs (such as JSR 268, offering the Java
Smart Card I/O API, and JSR 260, offering javadoc tag updates) missed being included
with Mustang for various reasons. JSR 203 (More New I/O APIs for the Java Platform),
missed the Tiger release and won’t be included in Mustang either.

What’s New?
No single printed book can cover all the new features of Mustang. While I’ll try to neatly
break up the new features into the following nine chapters, not everything fits in so
nicely. For starters, Table 1-1 identifies the new packages in Java SE 6.

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE 3

6609CH01.qxd  6/23/06  1:12 PM  Page 3



Table 1-1. New Mustang Packages

Package Description

java.text.spi Service provider classes for java.text package

java.util.spi Service provider classes for java.util package

javax.activation Activation Framework

javax.annotation Annotation processing support

javax.jws Web services support classes

javax.jws.soap SOAP support classes

javax.lang.model.* For modeling a programming language and processing its elements
and types

javax.script Java Scripting Engine support framework

javax.tools Provides access to tools, such as the compiler

javax.xml.bind.* JAXB-related support

javax.xml.crypto.* XML cryptography–related support

javax.xml.soap For creating and building SOAP messages

javax.xml.stream.* Streaming API for XML support

javax.xml.ws.* JAX-WS support

This just goes to show that most of the changes are “hidden” in existing classes and
packages, which, apart from the XML upgrade, keeps everyone on their toes. You’ll learn
about most of these packages in later chapters, along with those hidden extras.

JavaBeans Activation Framework

While most of these packages are described in later chapters, let’s take our first look at
Mustang with the javax.activation package. This package is actually old, and is typically
paired up with the JavaMail libraries for dealing with e-mail attachments. Now it is part
of the standard API set and leads us to more than just e-mail.

What does the Activation Framework provide you? Basically, a command map of
mime types to actions. For a given mime type, what are the actions you can do with it?
The CommandMap class offers a getDefaultCommandMap() method to get the default command
map. From this, you get the set of mime types with getMimeTypes(), and for each mime
type, you get the associated commands with getAllCommands(). This is demonstrated in
Listing 1-1.

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE4

6609CH01.qxd  6/23/06  1:12 PM  Page 4



Listing 1-1. Getting the Command Map

import javax.activation.*;

public class Commands {

public static void main(String args[]) {

CommandMap map = CommandMap.getDefaultCommandMap();

String types[] = map.getMimeTypes();

for (String type: types) {

System.out.println(type);

CommandInfo infos[] = map.getAllCommands(type);

for (CommandInfo info: infos) {

System.out.println("\t" + info.getCommandName());

}

}

}

}

Running this program displays the mime types and their commands in the default
location.

image/jpeg

view

text/*

view

edit

image/gif

view

How does the system determine where to get the default command map? If you
don’t call setDefaultCommandMap() to change matters, the system creates an instance of
MailcapCommandMap. When looking for the command associated with the mime type, the
following are searched in this order:

1. Programmatically added entries to the MailcapCommandMap instance

2. The file .mailcap in the user’s home directory

3. The file <java.home>/lib/mailcap

4. The file or resources named META-INF/mailcap

5. The file or resource named META-INF/mailcap.default (usually found only in the
activation.jar file)

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE 5

6609CH01.qxd  6/23/06  1:12 PM  Page 5



As soon as a “hit” is found for your mime type, searching stops.

■Note See the javadoc for the MailcapCommandMap class for information on the format of the
.mailcap file.

Another thing you can do with the Activation Framework is map files to mime types.
This is something your e-mail client typically does to see if it knows how to handle a
particular attachment.

The program in Listing 1-2 displays the mime types that it thinks are associated with
the files in a directory identified from the command line.

Listing 1-2. Getting the File Type Map

import javax.activation.*;

import java.io.*;

public class FileTypes {

public static void main(String args[]) {

FileTypeMap map = FileTypeMap.getDefaultFileTypeMap();

String path;

if (args.length == 0) {

path = ".";

} else {

path = args[0];

}

File dir = new File(path);

File files[] = dir.listFiles();

for (File file: files) {

System.out.println(file.getName() + ": " +

map.getContentType(file));

}

}

}

The default implementation of the FileTypeMap class is its MimetypesFileTypeMap sub-
class. This does a mapping of file extensions to mime types. Theoretically, you could
create your own subclass that examined the first few bytes of a file for its magic signature
(for instance, 0xCAFEBABE for .class files). The output from running the program is
dependent on the directory you run it against. With no command-line argument, the
current directory is used as the source:

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE6

6609CH01.qxd  6/23/06  1:12 PM  Page 6



> java FileTypes /tmp

ack.jpg: image/jpeg

addr.html: text/html

alabama.gif: image/gif

alarm.wav: audio/x-wav

alex.txt: text/plain

alt.tif: image/tiff

With the JavaMail API, you would typically create a DataHandler for the part of the
multipart message, associating the content with the mime type:

String text = ...;

DataHandler handler = new DataHandler(text, "text/plain");

BodyPart part = new MimeBodyPart();

part.setDataHandler(handler);

Under the covers, this would use the previously mentioned maps. If the system didn’t
know about the mapping of file extension to mime type, you would have to add it to the
map, allowing the receiving side of the message to know the proper type that the sender
identified the body part to be.

FileTypeMap map = FileTypeMap.getDefaultFileTypeMap();

map.addMimeTypes("mime/type ext EXT");

Desktop

This mapping of file extensions to mime types is all well and good, but it doesn’t really
support tasks you want to do with your typical desktop files, like printing PDFs or open-
ing OpenOffice documents. That’s where Mustang adds something new: the Desktop class,
found in the java.awt package. The Desktop class has an enumeration of actions that may
be supported for a file or URI: BROWSE, EDIT, MAIL, OPEN, and PRINT. Yes, I really did say that
you can print a PDF file from your Java program. It works, provided you have Acrobat (or
an appropriate reader) installed on your system.

The Desktop class does not manage the registry of mime types to applications.
Instead, it relies on the platform-dependent registry mapping of mime type and action
to application. This is different from what the Activation Framework utilizes.

You get access to the native desktop by calling the aptly named getDesktop() method
of Desktop. On headless systems, a HeadlessException will be thrown. Where the operation
isn’t supported, an UnsupportedOperationException is thrown. To avoid the former excep-
tion, you can use the isHeadless() method to ask the GraphicsEnvironment if it is headless.
To avoid the latter, you can use the isDesktopSupported() method to ask the Desktop class
if it is supported before trying to acquire it.

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE 7

6609CH01.qxd  6/23/06  1:12 PM  Page 7



Once you have the Desktop, you can see if it supports a particular action with the
isSupported() method, as shown in the following code:

Desktop desktop = Desktop.getDesktop();

if (desktop.isSupported(Desktop.Action.OPEN)) {

...

}

This does not ask if you can open a specific mime type—it asks only if the open
action is supported by the native desktop.

To demonstrate, the program in Listing 1-3 loops through all the files in the specified
directory, defaulting to the current directory. For each file, it asks if you want to open the
object. If you answer YES, in all caps, the native application will open the file.

Listing 1-3. Opening Files with Native Applications

import java.awt.*;

import java.io.*;

public class DesktopTest {

public static void main(String args[]) {

if (!Desktop.isDesktopSupported()) {

System.err.println("Desktop not supported!");

System.exit(-1);

}

Desktop desktop = Desktop.getDesktop();

String path;

if (args.length == 0) {

path = ".";

} else {

path = args[0];

}

File dir = new File(path);

File files[] = dir.listFiles();

for (File file: files) {

System.out.println("Open " + file.getName() + "? [YES/NO] :");

if (desktop.isSupported(Desktop.Action.OPEN)) {

String line = System.console().readLine();

if ("YES".equals(line)) {

System.out.println("Opening... " + file.getName());

try {

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE8

6609CH01.qxd  6/23/06  1:12 PM  Page 8



desktop.open(file);

} catch (IOException ioe) {

System.err.println("Unable to open: " + file.getName());

}

}

}

}

}

}

■Note The console() method of the System class will be looked at further in Chapter 3, along with other
I/O changes.

You can change the open() method call to either edit() or print() if the action is sup-
ported by your installed set of applications for the given mime type you are trying to
process. Passing in a file with no associated application will cause an IOException to be
thrown.

The mail() and browse() methods accept a URI instead of a File object as their
parameter. The mail() method accepts mailto: URIs following the scheme described in
RFC 2368 (http://www.ietf.org/rfc/rfc2368.txt). In other words, it accepts to, cc,
subject, and body parameters. Passing no argument to the mail() method just launches
the e-mail composer for the default mail client, without any fields prefilled in. Browser
URIs are your typical http:, https:, and so on. If you pass in one for an unsupported
protocol, you’ll get an IOException, and the browser will not open.

Service Provider Interfaces

One of the things you’ll discover about the Mustang release is additional exposure of the
guts of different feature sets. For instance, in Chapter 2, you’ll see how the use of resource
bundles has been more fully exposed. Want complete control of the resource cache, or
the ability to read resource strings from a database or XML file? You can now do that
with the new ResourceBundle.Control class. The default behavior is still there to access
ListResourceBundle and PropertyResourceBundle types, but now you can add in your own
types of bundles.

As another part of the better internationalization support, the java.util and
java.text packages provide service provider interfaces (SPIs) for customizing the locale-
specific resources in the system. That’s what the new java.util.spi and java.text.spi
packages are for. Working in a locale that your system doesn’t know about? You can bundle
in your own month names. Live in a country that just broke off from another that has its

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE 9

6609CH01.qxd  6/23/06  1:12 PM  Page 9



own new locale or different currency symbol? No need to wait for the standard platform
to catch up. Want to localize the time zone names for the locale of your users? You can do
that, too.

The LocaleServiceProvider class of the java.util.spi package is the basis of all this
customization. The javadoc associated with the class describes the steps necessary to
package up your own custom provider. Table 1-2 lists the providers you can create. They
are broken up between the two packages, based upon where the associated class is
located. For instance, TimeZoneNameProvider is in java.util.spi because TimeZone is in
java.util. DateFormatSymbolsProvider is in java.text.spi because DateFormatSymbols is
in java.text. Similar correlations exist for the other classes shown in Table 1-2.

Table 1-2. Custom Locale Service Providers

java.text.spi java.util.spi

BreakIteratorProvider CurrencyNameProvider

CollatorProvider LocaleNameProvider

DateFormatProvider TimeZoneNameProvider

DateFormatSymbolsProvider

DecimalFormatSymbolsProvider

NumberFormatProvider

To demonstrate how to set up your own provider, Listing 1-4 includes a custom
TimeZoneNameProvider implementation. All it does is print out the query ID before return-
ing the ID itself. You would need to make up the necessary strings to return for the set of
locales that you say you support. If a query is performed for a locale that your provider
doesn’t support, the default lookup mechanism will be used to locate the localized name.

Listing 1-4. Custom Time Zone Name Provider

package net.zukowski.revealed;

import java.util.*;

import java.util.spi.*;

public class MyTimeZoneNameProvider extends TimeZoneNameProvider {

public String getDisplayName(String ID, boolean daylight,

int style, Locale locale) {

System.out.println("ID: " + ID);

return ID;

}

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE10

6609CH01.qxd  6/23/06  1:12 PM  Page 10



public Locale[] getAvailableLocales() {

return new Locale[] {Locale.US};

}

}

All custom locale service providers must implement getAvailableLocales() to return
the array of locales you wish to translate. The exact signature of the getDisplayName()
method is dependent on what you are translating.

Defining the class is only half the fun. You must then jar it up and place it into the
appropriate runtime extension directory.

To tell the system that you are providing a custom locale service provider, you need
to configure a file for the type of provider you are offering. From the directory from which
you will be running the jar command, create a subdirectory named META-INF, and under
that, create a subdirectory with the name of services. In the services directory, create a
file after the type of provider you subclassed. Here, that file name would be java.util.
spi.TimeZoneNameProvider. It must be fully qualified. In that file, place the name of your
provider class (again, fully qualified). Here, that line would be net.zukowski.revealed.
MyTimeZoneNameProvider. Once the file is created, you can jar up the class and the configu-
ration file.

> jar cvf Zones.jar META-INF/* net/*

Next, place the Zones.jar file in the lib/ext directory, underneath your Java runtime
environment. (The runtime is one level down from your JDK installation directory.)
You’ll need to know where the runtime was installed. For Microsoft Windows users,
this defaults to C:\Program Files\Java\jdk1.6.0\jre. On my system, the directory is
C:\jdk1.6.0\jre, so the command I ran is as follows:

> copy Zones.jar c:\jdk1.6.0\jre\lib\ext

Next, you need to create a program that looks up a time zone, as shown in Listing 1-5.

Listing 1-5. Looking Up Display Names for Time Zones

import java.util.*;

public class Zones {

public static void main(String args[]) {

TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");

System.out.println(tz.getDisplayName(Locale.US));

System.out.println(tz.getDisplayName(Locale.UK));

}

}

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE 11

6609CH01.qxd  6/23/06  1:12 PM  Page 11



Compile and run the program. The first println() will look up the name for the US
locale, while the second uses the UK locale. Only the first lookup should have any output
with ID: at the beginning of the line:

> java Zones

ID: America/Los_Angeles

ID: America/Los_Angeles

ID: America/Los_Angeles

ID: America/Los_Angeles

America/Los_Angeles

Pacific Standard Time

With the four ID:s there, apparently it looks up the name four times before returning
the string in the line without the leading ID:. It is unknown whether this is a bug in the
early access software or proper behavior.

■Caution Errors in the configuration of the LocaleServiceProvider JAR will render your Java runtime
inoperable. You will need to move the JAR file out of the extension directory before you can run another
command, like java to run the example or jar to remake the JAR file.

Summary
Playground (1.2), Kestrel (1.3), Merlin (1.4), Tiger (5.0), Mustang (6), Dolphin (7); where
do the names come from? With each release of the standard edition, the core libraries
keep growing. At least the language level changes seem to have settled down for this
release. I remember when the whole of Java source and javadocs used to fit on a 720-KB
floppy disk. With this chapter, you see why you now require 50 MB just for the API docs
and another 50 MB or so for the platform. Read on to the libraries and tools chapters to
discover the latest features of the Java Standard Edition in Mustang.

In this next chapter, you’ll learn about the changes to the language and utilities pack-
ages. You’ll learn about what’s new and different with java.lang.*, java.util.*, and all of
their subpackages. You’ll learn about everything from updates, to resource bundle han-
dling, to the concurrency utilities; you’ll also learn about lazy atomics and resizing arrays.

CHAPTER 1 ■ JAVA SE 6 AT A GLANCE12

6609CH01.qxd  6/23/06  1:12 PM  Page 12



Language and Utility Updates

Where does one begin? The key parts of the Java platform are the java.lang and
java.util packages, so it seems logical that the exploration of Java 6 will start there. From
a pure numbers perspective, java.lang and its subpackages grew by two classes (as
shown in Table 2-1). java.util.*, on the other hand, grew a little bit more. Table 2-2
shows a difference of seven new interfaces, ten new classes, and one new Error class.

C H A P T E R  2

Table 2-1. java.lang.* Package Sizes

Package Version Interfaces Classes Enums Throwable Annotations Total

lang 5.0 8 35 1 26+22 3 95

lang 6.0 8 35 1 26+22 3 95

lang.annotation 5.0 1 0 2 2+1 4 10

lang.annotation 6.0 1 0 2 2+1 4 10

lang.instrument 5.0 2 1 0 2+0 0 5

lang.instrument 6.0 2 1 0 2+0 0 5

lang.management 5.0 9 5 1 0+0 0 15

lang.management 6.0 9 7 1 0+0 0 17

lang.ref 5.0 0 5 0 0+0 0 0

lang.ref 6.0 0 5 0 0+0 0 0

lang.reflect 5.0 9 8 0 3+1 0 21

lang.reflect 6.0 9 8 0 3+1 0 21

Delta 0 2 0 0+0 0 2

13

6609CH02.qxd  6/23/06  1:34 PM  Page 13



■Note In Tables 2-1 and 2-2, the Throwable column is for both exceptions and errors. For example, 2+0
means two Exception classes and zero Error classes.

Between the two packages, it doesn’t seem like much was changed, but the changes
were inside the classes. Mostly, whole classes or packages were not added; instead, exist-
ing classes were extended.

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES14

Table 2-2. java.util.* Package Sizes

Package Version Interfaces Classes Enums Throwable Total

util 5.0 16 49 1 20+0 86

util 6.0 19 54 1 20+1 95

util.concurrent 5.0 12 23 1 5+0 41

util.concurrent 6.0 16 26 1 5+0 48

...concurrent.atomic 5.0 0 12 0 0+0 12

...concurrent.atomic 6.0 0 12 0 0+0 12

...concurrent.locks 5.0 3 6 0 0+0 9

...concurrent.locks 6.0 3 8 0 0+0 11

util.jar 5.0 2 8 0 1+0 11

util.jar 6.0 2 8 0 1+0 11

util.logging 5.0 2 15 0 0+0 17

util.logging 6.0 2 15 0 0+0 17

util.prefs 5.0 3 4 0 2+0 9

util.prefs 6.0 3 4 0 2+0 9

util.regex 5.0 1 2 0 1+0 4

util.regex 6.0 1 2 0 1+0 4

util.spi 6.0 0 4 0 0+0 4

util.zip 5.0 1 16 0 2+0 17

util.zip 6.0 1 16 0 2+0 19

Delta 7 16 0 0+1 24

6609CH02.qxd  6/23/06  1:34 PM  Page 14



For java.lang, the changes include the addition of a console() method to the System
class to access the system console for reading input, including passwords, and writing
output. There’s a new isEmpty() method in the String class, similar methods added to
both Math and StrictMath for numeric manipulations, and new constants added to Double
and Float. The java.lang.management changes are related to monitor locks, such as getting
the map of all locked monitors and the IDs of deadlocked threads.

With java.util, the changes are a little more involved. The new Deque interface (pro-
nounced deck) adds double-ended queue support. Sorted maps and sets add navigation
methods for reporting nearest matches for search keys, thanks to the NavigableMap and
NavigableSet interfaces, respectively. Resource bundles expose their underlying control
mechanism with ResourceBundle.Control, so you can have resource bundles in formats
other than ListResourceBundle and PropertyResourceBundle. You also have more control
over the resource bundle cache.

On a smaller scale, there are some smaller-scale changes. The Arrays class has new
methods for making copies; the Collections class has new support methods; Scanner gets
a method to reset its delimiters, radix, and locale; and Calendar gets new methods to
avoid using DateFormat for getting the display name of a single field.

One last aspect of java.util worth mentioning was first explored in Chapter 1.
The java.util.spi and java.text.spi packages take advantage of a new service
provider–lookup facility offered by the Service class. Without knowing it, you saw
how to configure the service via the provider configuration file found under the 
META-INF/services directory.

In java.util.concurrent, you’ll find concurrent implementations for Deque and
NavigableMap. In addition, the Future interface has been extended with Runnable to give
you a RunnableFuture or RunnableScheduledFuture. And in java.util.concurrent.atomic,
all the atomic wrapper classes get lazySet() methods to lazily change the value of the
instance. Even LockSupport of java.util.concurrent.locks adds some new methods,
though it doesn’t change much in terms of functionality.

For the record, nothing changed in the java.math package.

The java.lang Package
The java.lang package is still the basic package for the Java platform. You still don’t have
to explicitly import it, and—for those packages that actually changed with Java 6—it
probably has the fewest of changes. You’ll take a quick look at two of the changes to the
package:

• Console input and output

• Empty string checking

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 15

6609CH02.qxd  6/23/06  1:34 PM  Page 15



System.console()

As first demonstrated in Chapter 1, the System class has a new console() method. It
returns an instance of the new Console class of the java.io package. It provides support
for reading from and writing to the system console. It works with Reader and Writer
streams, so it works correctly with high-order byte characters (which System.out.println()
calls would have chopped off). For instance, Listing 2-1 helps demonstrate the difference
when trying to print a string to the console outside the ASCII character range.

Listing 2-1. Printing High-Order Bit Strings

public class Output {

public static void main(String args[]) {

String string = "Español";

System.out.println(string);

System.console().printf("%s%n", string);

}

}

> java Output

Espa±ol

Español

Notice that B1 hex (±) is shown instead of F1 hex (ñ) when using the OutputStream way
of writing to the console. The first chops off the high-order bit converting the underlying
value, thus displaying ± instead of ñ.

■Note The %n in the formatter string specifies the use of the platform-specific newline character in the
output string. Had \n been specified instead, it would have been incorrect for the platforms that use \r
(Mac) or \r\n (Windows). There are times when you want \n, but it is better to not explicitly use it
unless you really want it. See Wikipedia, the online encyclopedia, for more information about newlines
(http://en.wikipedia.org/wiki/Newline).

While output using Console and its printf() and format() methods is similar to what
was available with Java 5, input is definitely different. Input is done by the line and sup-
ports having echo disabled. The readLine() method reads one line at a time with echo

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES16

6609CH02.qxd  6/23/06  1:34 PM  Page 16



enabled, whereas readPassword() does the same with echo disabled. Listing 2-2 demon-
strates the reading of strings and passwords. Notice how the input prompt can be done
separately or provided with the readPassword() call.

Listing 2-2. Reading Passwords

import java.io.Console;

public class Input {

public static void main(String args[]) {

Console console = System.console();

console.printf("Enter name: ");

String name = console.readLine();

char password[] = console.readPassword("Enter password: ");

console.printf("Name:%s:\tPassword:%s:%n",

name, new String(password));

}

}

> java Input

Enter name: Hello

Enter password:

Name:Hello:     Password:World:

Empty Strings

The String class has a new isEmpty() method. It simplifies the check for a string length
of 0. As such, the following code

if (myString.length() == 0) {

...

}

can now be written as the following:

if (myString.isEmpty()) {

...

}

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 17

6609CH02.qxd  6/23/06  1:34 PM  Page 17

fa938d55a4ad028892b226aef3fbf3dd



As demonstrated by running the program in Listing 2-3, you still need to check
whether the string is null before you can call isEmpty(); otherwise a NullPointerException
is thrown.

Listing 2-3. Checking for Empty Strings

public class EmptyString {

public static void main(String args[]) {

String one = null;

String two = "";

String three = "non empty";

try {

System.out.println("Is null empty? : " + one.isEmpty());

} catch (NullPointerException e) {

System.out.println("null is null, not empty");

}

System.out.println("Is empty string empty? : " + two.isEmpty());

System.out.println("Is non empty string empty? : " + three.isEmpty());

}

}

Running the program in Listing 2-3 produces the following output:

> java EmptyString

null is null, not empty

Is empty string empty? : true

Is non empty string empty? : false

The java.util Package
The classes in the java.util package tend to be the most frequently used. They are utility
classes, so that is expected. Java 6 extends their utilitarian nature by adding the Deque
interface to the collections framework, throwing in search support with navigable collec-
tions, exposing the guts of resource bundles for those who like XML files, and even more
with arrays, calendar fields, and lazy atomics. The following will be covered in the
upcoming sections of this chapter:

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES18

6609CH02.qxd  6/23/06  1:34 PM  Page 18



• Calendar display names

• Deques

• Navigable maps and sets

• Resource bundle controls

• Array copies

• Lazy atomics

Calendar Display Names

The Calendar class is used to represent a point of time to the system. Through the
DateFormat class, you can display the date or time in a locale-sensitive manner. As long as
you display your dates and times with the help of DateFormat, users shouldn’t be confused
if they see 01/02/03, as they will know it means February 1, 2003, for most European
countries, and January 2, 2003, for those in the United States. Less ambiguous is to
display the textual names of the months, but it shouldn’t be up to you to decide (or trans-
late) and figure out the order in which to place fields. That’s what DateFormat does for you.
The runtime provider will then have to worry about acquiring the localization strings for
the days of the week and months of the year, and the display order for the different dates
and time formats (and numbers too, though those are irrelevant at the moment).

In the past, if you wanted to offer the list of weekday names for a user to choose
from, there wasn’t an easy way to do this. The DateFormatSymbols class is public and offers
the necessary information, but the javadoc for the class says, “Typically you shouldn’t
use DateFormatSymbols directly.” So, what are you to do? Instead of calling methods like
getWeekdays() of the DateFormatSymbols class, you can now call getDisplayNames() for the
Calendar class. Just pass in the field for which you want to get the names:

Map<String, Integer> names = aCalendar.getDisplayNames(

Calendar.DAY_OF_WEEK, Calendar.LONG, Locale.getDefault());

The first argument to the method is the field whose names you want. The second is
the style of the name desired: LONG, SHORT, or ALL_STYLES. The last argument is the locale
whose names you want. Passing in null doesn’t assume the current locale, so you have
to get that for yourself. With styles, getting the long names would return names like
Wednesday and Saturday for days of the week. Short names would instead be Wed and Sat.
Obviously, fetching all styles would return the collection of both long and short names,
removing any duplicates.

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 19

6609CH02.qxd  6/23/06  1:34 PM  Page 19



Table 2-3 lists the different fields that support display names.

Table 2-3. Displayable Names of the Calendar Class

Field

ERA

MONTH

DAY_OF_WEEK

AM_PM

What you get back is a Map, not an ordered List. Instead, the set of map entries
returned has the key part be the name and the value part be the ordered position for
that name. So, passing the returned map onto println() will display the following:

{Saturday=7, Monday=2, Wednesday=4, Sunday=1, Friday=6, Tuesday=3, Thursday=5}

Of course, you shouldn’t use println() with localized names. For example, had the
locale been Italian, you would have lost data, seeing

{sabato=7, domenica=1, gioved∞=5, venerd∞=6, luned∞=2, marted∞=3, mercoled∞=4}

instead of

{sabato=7, domenica=1, giovedì=5, venerdì=6, lunedì=2, martedì=3, mercoledì=4}

Notice the missing accented i (ì) from the first set of results.
In addition to getting all the strings for a particular field of the calendar, you can get

the single string for the current setting with getDisplayName(int field, int style, Locale
locale). Here, style can only be LONG or SHORT. Listing 2-4 demonstrates the use of the two
methods.

Listing 2-4. Displaying Calendar Names

import java.util.*;

public class DisplayNames {

public static void main(String args[]) {

Calendar now = Calendar.getInstance();

Locale locale = Locale.getDefault();

// Locale locale = Locale.ITALIAN;

Map<String, Integer> names = now.getDisplayNames(

Calendar.DAY_OF_WEEK, Calendar.LONG, locale);

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES20

6609CH02.qxd  6/23/06  1:34 PM  Page 20



// System.out.println(names);

System.console().printf("%s%n", names.toString());

String name = now.getDisplayName(Calendar.DAY_OF_WEEK,

Calendar.LONG, locale);

System.console().printf("Today is a %s.%n", name);

}

}

> java DisplayNames

{Saturday=7, Monday=2, Wednesday=4, Sunday=1, Friday=6, Tuesday=3, Thursday=5}

Today is a Saturday.

Try out different calendar fields to see different results. If names are not available for
the field asked, null would be returned from either method.

There is one additional noteworthy change in Mustang that is not related to calendar
display names, but is nevertheless part of Calendar. When you get an instance of Calendar,
if your locale is Japanese, with a language of "ja" and country and variant of "JP" (new
Locale("ja", "JP", "JP")), you will get a JapaneseImperialCalendar class back, instead of a
Gregorian one. The Japanese system supports era-based year numbering after the Meiji
era, where an ERA of 1 is Meiji (since January 1, 1868), an ERA of 2 is Taisho (since July 30,
1912), an ERA of 3 is Showa (since December 26, 1926), and an ERA of 4 is Heisei (since
January 8, 1989).

Listing 2-5 demonstrates the class. It creates the necessary calendar, shows that there
are five named eras, displays the current year (17 for 2005), and displays the class name
of the calendar implementation, where the results are shown after the source. You’ll need
a system configured for the Japanese runtime and fonts to see the Kanji characters.

Listing 2-5. Using the New JapaneseImperialCalendar Class

import java.io.*;

import java.util.*;

public class JapaneseCalendar {

public static void main(String args[]) {

Locale locale = new Locale("ja", "JP", "JP");

Calendar now = Calendar.getInstance(locale);

Console console = System.console();

Map<String, Integer> names = now.getDisplayNames(

Calendar.ERA, Calendar.LONG, locale);

console.printf("%s%n", names);

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 21

6609CH02.qxd  6/23/06  1:34 PM  Page 21



console.printf("It is year %tY of the current era%n", now);

console.printf("The calendar class is: %s%n", now.getClass().getName());

}

}

> java JapaneseCalendar

{??=1, ??=0, ??=3, ??=4, ??=2}

It is year 0017 of the current era

The calendar class is: java.util.JapaneseImperialCalendar

■Note The other custom Calendar implementation is a Buddhist calendar for Thai locales. This is not new
with Mustang.

Deques

Deque is short for double-ended queue (again, pronounced like deck, not de-queue).
While a queue supports adding from one end and removing from the other, double-
ended queues support adding and removing from both, like a stack and queue
combined. The Deque interface extends from the Queue interface introduced with Java 5,
and is the latest addition to the Java Collections Framework. Implementations of the
interface include LinkedList, ArrayDeque, and the concurrent LinkedBlockingDeque.

The LinkedList is the most typical usage of a deque. It grows without bounds and has
quick add and remove operations at both ends. An ArrayDeque has no capacity restrictions
either, and offers a wraparound index implementation for optimal performance. Neither
implementation is threadsafe. If you need thread safety, that’s where LinkedBlockingDeque
comes in. The LinkedBlockingDeque class implements the BlockingDeque interface, which
extends from Deque. The class can either be bounded or not. If no capacity is specified, its
size limit is Integer.MAX_VALUE.

Adding elements to a deque is done with one of three methods: void addFirst(E e),
void addLast(E e), and boolean add(E e), where the last method is equivalent to addLast().
Lack of capacity causes an IllegalStateException to be thrown. There is also the concept
of offering an element to be added with boolean offer(E e), boolean offerFirst(E e), and
boolean offerLast(E e). Unlike the case of adding elements with the addXXX() methods, if
an item can’t be added when offered, false is returned. The boolean returned from the
add() method is always true, whereas the boolean returned from the offer() set of meth-
ods indicates the success or failure of the operation.

Removal of elements also has its pair of method sets: remove(), removeFirst(), and
removeLast() for one set; and poll(), pollFirst(), and pollLast() for the other. The

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES22

6609CH02.qxd  6/23/06  1:34 PM  Page 22



removeXXX() methods throw a NoSuchElementException when the deque is empty, whereas
the pollXXX() methods return null when the deque is empty. You can even remove a spe-
cific object with boolean remove(Object o), boolean removeFirstOccurrence(Object o),
and boolean removeLastOccurrence(Object o), though deques are meant for adding and
removing from the ends only. Removing from the middle of a deque is apt to lead to per-
formance degradation, though the operation will succeed.

Deque has six methods for examining elements: element(), getFirst(), and getLast(),
with peek(), peekFirst(), and peekLast(). There is no get() method, as element() is the
interface method inherited from Queue. The get methods are similar to removeXXX(), as a
NoSuchElementException is thrown when the deque is empty. The peek methods, on the
other hand, return null when empty. Of course, this means that if a deque allows the
addition of null values, you won’t be able to tell the difference between a null item at the
end of the deque or nothing in the deque. But that is where the size() method comes in
handy.

As a deque is doubly linked, you can traverse through the elements in either
order, forward or backward. Use iterator() to go through from front to back, and
descendingIterator() to go in the reverse order, from back to front. You cannot, however,
access an element by position—at least not through the Deque interface. While LinkedList
is an implementation of Deque, it supports indexed access through the List interface.

Here’s what the whole interface looks like:

public interface Deque extends Queue {

public boolean add(Object element);

public void addFirst(Object element);

public void addLast(Object element);

public boolean contains(Object element);

public Iterator descendingIterator();

public Object element();

public Object getFirst();

public Object getLast();

public Iterator iterator();

public boolean offer(Object element);

public boolean offerFirst(Object element);

public boolean offerLast(Object element);

public Object peek();

public Object peekFirst();

public Object peekLast();

public Object poll();

public Object pollFirst();

public Object pollLast();

public Object pop();

public void push(Object element);

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 23

6609CH02.qxd  6/23/06  1:34 PM  Page 23



public Object remove();

public boolean remove(Object element);

public Object removeFirst();

public boolean removeFirstOccurrence(Object element)

public Object removeLast();

public boolean removeLastOccurrence(Object element);

public int size();

}

Why use a deque? Deques are useful data structures for recursive problems, like
searching through a maze or parsing source. As you move along a path, you save “good”
spots, adding more data along the way while you think the path is good. If the path turns
bad, you pop off the bad bits, returning to the last good spot. Here, you would be adding
and removing from the same end, like a stack. Once you find your way through, you start
back at the beginning to reveal the solution, which starts at the other end.

In lieu of creating a program that finds its way through a maze of twisty passages,
all alike, Listing 2-6 demonstrates the use of Deque—or more specifically,
LinkedBlockingDeque—with its capacity limits. It is certainly not the best use of a deque,
but it demonstrates the API and what happens when you hit the capacity limit. If all you
are doing is adding to one end and removing from the other, you should consider using a
Queue implementation in the collections framework instead. The program here takes the
23 names for months (both short and long) and adds them to a six-element blocking
deque, one at a time, to the head. In another thread, elements are removed from the head
and tail of the deque, based on the number of elements currently in the collection.

Listing 2-6. Using a Capacity-Limited LinkedBlockingDeque

import java.io.*;

import java.util.*;

import java.util.concurrent.*;

public class Blocked {

public static void main(String args[]) {

Calendar now = Calendar.getInstance();

Locale locale = Locale.getDefault();

final Console console = System.console();

final Map<String, Integer> names = now.getDisplayNames(

Calendar.MONTH, Calendar.ALL_STYLES, locale);

console.printf("Starting names: %s%n", names);

final Deque<String> deque = new LinkedBlockingDeque<String>(6);

try {

// Fails as too many elements

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES24

6609CH02.qxd  6/23/06  1:34 PM  Page 24



// Still adds some

deque.addAll(names.keySet());

} catch (IllegalStateException e) {

console.printf("Full: %s%n", e);

}

// Reset, remove those that fit

deque.clear();

// Add one at time to beginning of deque

new Thread() {

public void run() {

Set<String> keys = names.keySet();

Iterator<String> itor = keys.iterator();

String element = null;

while (itor.hasNext() || element != null) {

if (element == null) {

element = itor.next();

console.printf("MapGot: %s%n",  element);

}

console.printf("Offering: %s%n", element);

if (deque.offerFirst(element)) {

console.printf("MapRemoving: %s%n", element);

itor.remove();

element = null;

} else {

try {

Thread.sleep(250);

} catch (InterruptedException ignored) {

}

}

}

// Done. Give time to process rest.

try {

Thread.sleep(3500);

} catch (InterruptedException ignored) {

}

System.exit(0);

}

}.start();

while (true) {

if ((deque.size() % 2 == 1)) {

// remove head

console.printf("Remove head: %s%n", deque.pollFirst());

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 25

6609CH02.qxd  6/23/06  1:34 PM  Page 25



} else {

// remove tail

console.printf("Remove tail: %s%n", deque.pollLast());

}

// Sleep between loops

try {

Thread.sleep(500);

} catch (InterruptedException ignored) {

}

}

}

}

As shown in Listing 2-7, running the program generates lots of output due to the
printf() statements. Each time an element is fetched from the source map, removed
from the source map, offered to the deque, or removed from the deque, an output line is
generated. Notice how the act of offering happens multiple times while the deque is full.

Listing 2-7. Output from a LinkedBlockingDeque Sample

> java Blocked

Starting names: {Jun=5, March=2, December=11, April=3, November=10, September=8,

October=9, Sep=8, Aug=7, Apr=3, May=4, June=5, Feb=1, Dec=11, Oct=9, Jan=0,

Mar=2, Jul=6, August=7, January=0, February=1, July=6, Nov=10}

Full: java.lang.IllegalStateException: Deque full

MapGot: Jun

Offering: Jun

MapRemoving: Jun

MapGot: March

Offering: March

MapRemoving: March

MapGot: December

Offering: December

MapRemoving: December

MapGot: April

Offering: April

MapRemoving: April

MapGot: November

Offering: November

MapRemoving: November

MapGot: September

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES26

6609CH02.qxd  6/23/06  1:34 PM  Page 26



Offering: September

MapRemoving: September

MapGot: October

Offering: October

Remove tail: null

Offering: October

Remove tail: Jun

Offering: October

MapRemoving: October

MapGot: Sep

Offering: Sep

Offering: Sep

Remove tail: March

Offering: Sep

MapRemoving: Sep

MapGot: Aug

Offering: Aug

Offering: Aug

Remove tail: December

Offering: Aug

MapRemoving: Aug

MapGot: Apr

Offering: Apr

Offering: Apr

Remove tail: April

Offering: Apr

MapRemoving: Apr

MapGot: May

Offering: May

Offering: May

Remove tail: November

Offering: May

MapRemoving: May

MapGot: June

Offering: June

Offering: June

Remove tail: September

Offering: June

MapRemoving: June

MapGot: Feb

Offering: Feb

Offering: Feb

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 27

6609CH02.qxd  6/23/06  1:34 PM  Page 27



Remove tail: October

Offering: Feb

MapRemoving: Feb

MapGot: Dec

Offering: Dec

Offering: Dec

Remove tail: Sep

Offering: Dec

MapRemoving: Dec

MapGot: Oct

Offering: Oct

Offering: Oct

Remove tail: Aug

Offering: Oct

MapRemoving: Oct

MapGot: Jan

Offering: Jan

Offering: Jan

Remove tail: Apr

Offering: Jan

MapRemoving: Jan

MapGot: Mar

Offering: Mar

Offering: Mar

Remove tail: May

Offering: Mar

MapRemoving: Mar

MapGot: Jul

Offering: Jul

Offering: Jul

Remove tail: June

Offering: Jul

MapRemoving: Jul

MapGot: August

Offering: August

Offering: August

Remove tail: Feb

Offering: August

MapRemoving: August

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES28

6609CH02.qxd  6/23/06  1:34 PM  Page 28



MapGot: January

Offering: January

Offering: January

Remove tail: Dec

Offering: January

MapRemoving: January

MapGot: February

Offering: February

Offering: February

Remove tail: Oct

Offering: February

MapRemoving: February

MapGot: July

Offering: July

Offering: July

Remove tail: Jan

Offering: July

MapRemoving: July

MapGot: Nov

Offering: Nov

Offering: Nov

Remove tail: Mar

Offering: Nov

MapRemoving: Nov

Remove tail: Jul

Remove head: Nov

Remove tail: August

Remove head: July

Remove tail: January

Remove head: February

Remove tail: null

■Note There are 23 combined names for months between short and long because May counts for both the
short and long name of the fifth month. Since getDisplayNames() returns a Map, May can’t be the key for
two entries, one short and one long.

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 29

6609CH02.qxd  6/23/06  1:34 PM  Page 29



Navigable Maps and Sets

Yet another new piece of the Java Collections Framework is the new NavigableMap and
NavigableSet interfaces. They extend the SortedMap and SortedSet interfaces, respectively,
to essentially add search options to the interfaces.

The NavigableMap Interface

For NavigableMap, there are essentially three sets of methods. One set of methods gets
you submaps, another set works with the map entries, and the last set works with the
map keys.

There are three methods in the first set. To start with, navigableHeadMap(toKey)
returns a NavigableMap with all the keys up to, but not including, the toKey. Next, there is
navigableTailMap(fromKey), which returns a NavigableMap with all the keys, starting with
the fromKey, inclusive, to the end. Last, there is navigableSubMap(fromKey, toKey), which
gives you a NavigableMap, starting with the fromKey, inclusive, to the toKey, exclusive.
Always remember that the starting key is inclusive and the ending key is exclusive
([startKey, endKey)). Functionally, these methods are the same as the headMap(),
tailMap(), and subMap() methods of SortedMap, but return a different type—NavigableMap—
instead.

The second set of methods works with the keys of the map. With SortedMap, you have
the methods firstKey() and lastKey() for getting the edge keys of the map. NavigableMap
adds several other keys you can get, as follows:

• ceilingKey(key): Used for getting the first key of the map greater than or equal to
the given key, or null if there is none

• floorKey(key): Used for getting the first key of the map less than or equal to the
given key, or null if there is none

• higherKey(key): Used for getting the first key of the map strictly greater than the
given key, or null if there is none

• lowerKey(key): Used for getting the first key of the map strictly less than the given
key, or null if there is none

The third set of methods is probably the most useful. When working with a SortedMap
or Map instance, in general, you would get the key and then look up its value. This last set
of methods returns a Map.Entry instance instead of a key. Thus, you don’t have to do the
secondary lookup operation. So, there are six new methods for the new operations men-
tioned in the second set, as follows:

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES30

6609CH02.qxd  6/23/06  1:34 PM  Page 30



• ceilingEntry(key): Used for getting the first entry of the map greater than or equal
to the given key, or null if there is none

• firstEntry(): Used for getting the first entry of the map, or null if there is none

• floorEntry(key): Used for getting the first entry of the map less than or equal to the
given key, or null if there is none

• higherEntry(key): Used for getting the first entry of the map strictly greater than
the given key, or null if there is none

• lastEntry(): Used for getting the last entry of the map, or null if there is none

• lowerEntry(key): Used for getting the first entry of the map strictly less than the
given key, or null if there is none

There are two additional methods for fetching entries from the map and removing
them in a single step. These provide an easy way to iterate through all the elements of a
map without using an iterator. Depending upon the Map implementation, it is possible for
the iterator to become stale if the underlying map changes while processing its elements.
The two methods are as follows:

• Map.Entry<K,V> pollFirstEntry(): Gets the entry the with first key of the map and
removes the entry from map, or returns null if the map is empty

• Map.Entry<K,V> pollLastEntry(): Gets the entry with the last key of the map and
removes the entry from map, or returns null if the map is empty

Two other NavigableMap methods worth mentioning are descendingKeySet() and
descendingEntrySet(). Where keySet() and entrySet() give you the set of keys in ascend-
ing order, the new NavigableMap methods work in reverse order.

There are two implementations of the NavigableMap interface in Java 6. The old
TreeMap class has been retrofitted to extend from NavigableMap instead of SortedMap. In
addition, a concurrent version of the interface is available with the ConcurrentSkipListMap
class. For those unfamiliar with skip lists, they are a form of ordered linked lists that
maintain parallel linked lists for speeding up search time. While the TreeMap structure
is balanced and searches from roughly the middle of the list to find a key, the
ConcurrentSkipListMap always starts at the beginning—but thanks to the secondary
skip lists, it keeps its search time close to that of a binary search.

There is nothing fancy about using the NavigableMap interface. Listing 2-8 demon-
strates its usage with a map of the days of the week. Output follows the source.

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 31

6609CH02.qxd  6/23/06  1:34 PM  Page 31



Listing 2-8. Using the NavigableMap Interface

import java.io.*;

import java.util.*;

public class Navigable {

public static void main(String args[]) {

Calendar now = Calendar.getInstance();

Locale locale = Locale.getDefault();

Console console = System.console();

Map<String, Integer> names = now.getDisplayNames(

Calendar.DAY_OF_WEEK, Calendar.LONG, locale);

NavigableMap<String, Integer> nav = new TreeMap<String, Integer>(names);

console.printf("Whole list:%n%s%n", nav);

console.printf("First key: %s\tFirst entry: %s%n",

nav.firstKey(), nav.firstEntry());

console.printf("Last key: %s\tLast entry: %s%n",

nav.lastKey(), nav.lastEntry());

console.printf("Map before Sunday: %s%n",

nav.navigableHeadMap("Sunday"));

console.printf("Key floor before Sunday: %s%n",

nav.floorKey("Sunday"));

console.printf("Key lower before Sunday: %s%n",

nav.lowerKey("Sunday"));

console.printf("Key ceiling after Sunday: %s%n",

nav.ceilingKey("Sunday"));

console.printf("Key higher after Sunday: %s%n",

nav.higherKey("Sunday"));

}

}

> java Navigable

Whole list:

{Friday=6, Monday=2, Saturday=7, Sunday=1, Thursday=5, Tuesday=3, Wednesday=4}

First key: Friday       First entry: Friday=6

Last key: Wednesday     Last entry: Wednesday=4

Map before Sunday: {Friday=6, Monday=2, Saturday=7}

Key floor before Sunday: Sunday

Key lower before Sunday: Saturday

Key ceiling after Sunday: Sunday

Key higher after Sunday: Thursday

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES32

6609CH02.qxd  6/23/06  1:34 PM  Page 32



The NavigableSet Interface

NavigableSet works in a fashion similar to NavigableMap, but without key/value pairs.
Two of the three sets of methods contained in NavigableMap are contained in 
NavigableSet as well. You can get a navigable subset with navigableHeadSet(toElement),
navigableSubSet(fromElement, toElement), and navigableTailSet(E fromElement). Or you
can get specific elements with ceiling(element), floor(element), higher(element), and
lower(element). You can also get and remove elements with pollFirst() and pollLast(),
and get a descendingIterator() in addition to the ascending iterator().

The implementation classes are a rejiggered TreeSet (which now implements
NavigableSet instead of SortedSet) and a new ConcurrentSkipListSet. Under the covers,
the ConcurrentSkipListSet uses a ConcurrentSkipListMap for all the work. The Set imple-
mentation just wraps the calls to a proxied Map, at least for now storing Boolean.TRUE for
all the values.

Resource Bundle Controls

Resource bundles are the way to go when creating programs that need to deal with inter-
nationalization. Ignoring the fact that all programs should really be written that way from
the start, Java developers have been stuck with .properties files with their a=b format
(PropertyResourceBundle), or .java class files with their returning of a two-dimensional
array from getContents() (ListResourceBundle) since the dawn of Java time back in 1995.
Ten-plus years later, the world has moved to XML—but you couldn’t have resource bun-
dles in XML, until now, thanks to the new inner Control class of the ResourceBundle class.
By creating your own ResourceBundle.Control subclass, you can customize many aspects
of your resource bundle loading.

Minimally, to create your own control, you need to override two methods:
getFormats() and newBundle(). With getFormats(), you need to return a List of String
objects for the collection of formats you support. To support only XML, you could return
a singleton List. If you want to combine XML with the set of preexisting formats, you
would add XML to the List returned by the base Control class. There are class constants
for the other possible lists: FORMAT_CLASS, FORMAT_PROPERTIES, and FORMAT_DEFAULT (for
both). Listing 2-9 shows an implementation that supports only XML.

Assuming the arguments are valid and point to an XML format, the newBundle()
implementation in the XMLResourceBundleControl class calls the toBundleName() and
toResourceName() methods to build up the file name for the resource bundle based upon
the base name, locale, and format. Assuming the resource file is found, the XML file of
resources is read with the help of the loadFromXML() method of the Properties class in the
created ResourceBundle subclass. The handleGetObject() method of the subclass does the
actual lookup, while the getKeys() method returns an Enumeration of keys.

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 33

6609CH02.qxd  6/23/06  1:34 PM  Page 33



Listing 2-9. Customizing Resource Bundle Loading

import java.io.*;

import java.net.*;

import java.util.*;

public class XMLResourceBundleControl extends ResourceBundle.Control {

private static String XML = "xml";

public List<String> getFormats(String baseName) {

return Collections.singletonList(XML);

}

public ResourceBundle newBundle(String baseName, Locale locale,

String format, ClassLoader loader, boolean reload) throws

IllegalAccessException, InstantiationException, IOException {

if ((baseName == null) || (locale == null) || (format == null) ||

(loader == null)) {

throw new NullPointerException();

}

ResourceBundle bundle = null;

if (format.equals(XML)) {

String bundleName = toBundleName(baseName, locale);

String resourceName = toResourceName(bundleName, format);

URL url = loader.getResource(resourceName);

if (url != null) {

URLConnection connection = url.openConnection();

if (connection != null) {

if (reload) {

connection.setUseCaches(false);

}

InputStream stream = connection.getInputStream();

if (stream != null) {

BufferedInputStream bis = new BufferedInputStream(stream);

bundle = new XMLResourceBundle(bis);

bis.close();

}

}

}

}

return bundle;

}

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES34

6609CH02.qxd  6/23/06  1:34 PM  Page 34



private static class XMLResourceBundle extends ResourceBundle {

private Properties props;

XMLResourceBundle(InputStream stream) throws IOException {

props = new Properties();

props.loadFromXML(stream);

}

protected Object handleGetObject(String key) {

return props.getProperty(key);

}

public Enumeration<String> getKeys() {

Set<String> handleKeys = props.stringPropertyNames();

return Collections.enumeration(handleKeys);

}

}

public static void main(String args[]) {

ResourceBundle bundle =

ResourceBundle.getBundle("Strings", new XMLResourceBundleControl());

String string = bundle.getString("Key");

System.out.println("Key: " + string);

}

}

The main() routine of the class here demonstrates the use of the
XMLResourceBundleControl. You have to pass an instance of the class to the getBundle()
method of ResourceBundle to tell the system that the default way of loading resource
bundles ain’t happening. Once you’ve gotten the bundle, its usage is the same as for a
ListResourceBundle or a PropertyResourceBundle. The XML file to demonstrate the
XMLResourceBundleControl is shown in Listing 2-10.

Listing 2-10. The Strings.xml Resource Bundle

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<entry key="Key">Value</entry>

</properties>

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 35

6609CH02.qxd  6/23/06  1:34 PM  Page 35



Running the program then shows that the Key key produces a value of Value:

> java XMLResourceBundleControl

Key: Value

Not many people know this, but loaded resource bundles are cached by the system.
Thus, the second time you fetch a bundle from the same class loader, the loading of the
bundle is instantaneous, as it never left memory. If you wish to reset the cache and clear
out loaded bundles, call the static clearCache() method of ResourceBundle. There is a sec-
ond version of clearCache(), which accepts a ClassLoader for even further memory usage
optimization.

Array Copies

The Arrays class is full of static methods for manipulating arrays. Prior to Java 6, you
could convert an array to a List, sort it, do a binary search, check for equality, generate a
hash code, and display its elements as a comma-delimited string. Mustang adds another
operation you can perform: copy. Think of it as another approach to System.arraycopy(),
which doesn’t require you to explicitly allocate space for the new array before calling the
method. You can copy part or all of the array from the beginning with one of the many
versions of the copyOf() method, or from any part with copyOfRange(). Both methods
allow you to make the size of the destination array larger or smaller than the original to
grow or shrink the array.

Listing 2-11 demonstrates the use of copyOf() by making a copy of the command-line
arguments and then changing the copy. Notice that the original array contents aren’t
affected when the copy is changed.

Listing 2-11. Resizing Arrays

import java.util.Arrays;

public class ArrayCopy {

public static void main(String args[]) {

System.console().printf("Before (original)\t%s%n", Arrays.toString(args));

String copy[] = Arrays.copyOf(args, 4);

System.console().printf("Before (copy)\t\t%s%n", Arrays.toString(copy));

copy[0] = "egg";

copy[1] = "caterpillar";

copy[2] = "pupa";

copy[3] = "butterfly";

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES36

6609CH02.qxd  6/23/06  1:34 PM  Page 36



System.console().printf("After (original)\t%s%n", Arrays.toString(args));

System.console().printf("After (copy)\t\t%s%n", Arrays.toString(copy));

}

}

Running the program produces the following output:

> java ArrayCopy one two three

Before (original)       [one, two, three]

Before (copy)           [one, two, three, null]

After (original)        [one, two, three]

After (copy)            [egg, caterpillar, pupa, butterfly]

Lazy Atomics

Sun introduced the java.util.concurrent.atomic package to the masses with Java 5.
It provides a series of classes that wrap access to primitives and objects for atomically
getting, comparing, and setting their values. As the set operation may take longer than
it would for a nonatomic variable, the atomic program may function a little more
slowly. This can be expected, as you’re restricting access to something (a variable in 
this case). There is now an unsafe way to set the value of an atomic variable through 
the lazySet() method of AtomicBoolean, AtomicInteger, AtomicIntegerArray,
AtomicIntegerFieldUpdater, AtomicLong, AtomicLongArray, AtomicLongFieldUpdater,
AtomicReference, AtomicReferenceArray, and AtomicReferenceFieldUpdater. If you 
don’t mind the value not being set immediately—possibly even queuing up multiple
updates if done quickly enough—use the new lazySet() method of these classes.

Summary
Learning the language and utility class changes are the first step toward learning about
Mustang. In this chapter, you got your first glimpse into the new features of two key sets
of libraries. From reading passwords from the console, to writing Unicode strings, you
discovered the usefulness of the new Console class. With the utility packages, there are the
additions to the collection framework with the new deque data structure and the naviga-
ble maps and sets support. You learned how to make custom resource bundle controls
and how to display names for parts of the calendar. Last, you learned how to work with
lazy atomic variables.

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES 37

6609CH02.qxd  6/23/06  1:34 PM  Page 37



For the next chapter, there are the changes besides Console in the java.io package.
You’ll see what’s new for java.io along with the latest additions to the java.net and
java.security packages. From checking file system space to handling cookies and
beyond, the latest Mustang feature sets are coming your way.

CHAPTER 2 ■ LANGUAGE AND UTIL ITY UPDATES38

6609CH02.qxd  6/23/06  1:34 PM  Page 38



I/O, Networking, and Security
Updates

What’s new with I/O, networking, and security? When talking about what’s new with
I/O, this shouldn’t automatically take you to the new I/O package (java.nio), which isn’t
so “new” anymore. In addition to that package, you’ll discover changes to the java.io,
java.net, and java.security packages. Following the numerical approach shown in Chap-
ter 2, Table 3-1 shows the growth of the java.io package, Table 3-2 shows the changes
for java.net, and Table 3-3 shows the changes for java.security. There are changes in
java.nio, but not with the addition of classes, interfaces, and so on—so no table there.

Table 3-1. java.io.* Package Sizes

Package Version Interfaces Classes Throwable Total

io 5.0 12 50 16+0 78

io 6.0 12 51 16+1 80

Delta 0 1 0+1 2

Table 3-2. java.net.* Package Sizes

Package Version Interfaces Classes Enums Throwable Total

net 5.0 6 34 2 12+0 54

net 6.0 8 38 2 12+0 60

Delta 2 4 0 0+0 6

39

C H A P T E R  3

6609CH03.qxd  6/23/06  1:35 PM  Page 39



Table 3-3. java.security.* Package Sizes

Package Version Interfaces Classes Enums Throwable Total

security 5.0 12 50 1 16+0 79

security 6.0 13 52 1 16+0 82

security.acl 5.0 5 0 0 3+0 8

security.acl 6.0 5 0 0 3+0 8

security.cert 5.0 8 27 0 9+0 44

security.cert 6.0 8 27 0 9+0 44

security.interfaces 5.0 13 0 0 0+0 13

security.interfaces 6.0 13 0 0 0+0 13

security.spec 5.0 3 22 0 2+0 27

security.spec 6.0 3 22 0 2+0 27

Delta 1 2 0 0+0 3

With even fewer additions than in Chapter 2, these four packages add next to noth-
ing to the core libraries. There are certainly adjustments to existing classes, too, but just
not new classes and interfaces here. You can even throw in the java.rmi and javax.rmi
packages, as there are even fewer changes with RMI (Remote Method Invocation)
libraries.

The java.io Package
Outside of the Console class covered in Chapter 2, the only java.io package changes
worth mentioning are changes to file system access and manipulation within the File
class, and the deprecation of its toURL() method.

Personally, I’ve been playing in the J2ME space lately. One of the things you can do
there is ask a file partition how much space is available. Prior to Mustang, this informa-
tion was not available, short of forking off a subprocess to run a platform-specific
command or adding in some native code. Now, in Java 6, you can find this out with
getUsableSpace() and getTotalSpace(). Between the two, you can show how much space
each file system has available and has in total. Listing 3-1 does this for each available
file system partition.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES40

6609CH03.qxd  6/23/06  1:35 PM  Page 40



Listing 3-1. Checking Available File System Space

import java.io.*;

public class Space {

public static void main(String args[]) {

Console console = System.console();

File roots[] = File.listRoots();

for (File root: roots) {

console.printf("%s has %,d of %,d free%n", root.getPath(),

root.getUsableSpace(), root.getTotalSpace());

}

}

}

Obviously, the results depend upon your particular system. Here’s what one particu-
lar run might look like:

> java Space

A:\ has 30,720 of 730,112 free

C:\ has 5,825,671,680 of 39,974,860,288 free

D:\ has 51,128,320 of 100,431,872 free

E:\ has 0 of 655,429,632 free

F:\ has 0 of 0 free

G:\ has 19,628,294,144 of 40,047,280,128 free

H:\ has 347,922,432 of 523,993,088 free

I:\ has 248,061,952 of 255,827,968 free

In addition to providing access to available file system space, Mustang adds support
for manipulating the read/write/execute attributes of files. Before Java 6, there was
canRead() and canWrite(). Now, in addition to canExecute(), there are also methods for
setting the access bits with setReadable(), setWritable(), and setExecutable(). For each
setter method, there are two versions. The first takes a boolean parameter and sets the
state accordingly, assuming the permission check passes. The second version takes two
boolean arguments. For those file systems that support separate permissions for owner
and non-owner, you can restrict which set you are changing. If the underlying file system
doesn’t distinguish between the two, then the second argument is ignored, changing the
access for all to the value of the first.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 41

6609CH03.qxd  6/23/06  1:35 PM  Page 41



The last of the changes to the File class is the deprecation of the toURL() method.
Someone finally realized that the toURL() method returns invalid URLs when a space is in
the file system path. Now, the appropriate way to get a URL for a File is to get its URI with
toURI(), and then convert the URI to a URL with the toURL() method. For example

URL url = aFile.toURL();

becomes

URL url = aFile.toURI().toURL();

Listing 3-2 demonstrates the difference.

Listing 3-2. Getting a Proper URL from a File Object

import java.io.*;

import java.net.*;

public class FileURL {

public static void main(String args[]) throws MalformedURLException {

Console console = System.console();

File file = new File("The End");

URL url1 = file.toURL();

URL url2 = file.toURI().toURL();

console.printf("Bad url  %s%n", url1);

console.printf("Good url %s%n", url2);

}

}

When you compile the program, you’ll need to ignore the deprecation usage warning.
Now, notice the difference between the results when run on a file (or directory) with

a space in its name.

> java FileURL

Bad url  file:/C:/revealed/code/ch03/The End

Good url file:/C:/revealed/code/ch03/The%20End

■Note Another new feature that might be worth mentioning is the protected clearError() method of
PrintStream and PrintWriter. Subclasses can call the method to reset the internal error state of the
stream.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES42

6609CH03.qxd  6/23/06  1:35 PM  Page 42



The java.nio Package
The java.nio package is extremely light on changes. The Buffer class has a handful of new
methods for accessing the backing array. These are useful when integrating with native
code to provide the native code direct access to the array. Beyond that, the package is rel-
atively unchanged.

The java.net Package
C is for cookie; that’s good enough for me. The java.net changes in Mustang are related
to cookie handling. While Java 5 has a CookieHandler class, Java 6 adds CookiePolicy and
CookieStore interfaces with CookieManager and HttpCookie classes.

When talking about cookies, we’re talking about the HTTP variety, which store data
on your system. The stored data enables the remote system to remember some informa-
tion about you when you visit again. This allows the stateless HTTP protocol to support
online shopping, or just to preserve login information so you don’t have to log in with
each visit, among many other good and bad possibilities.

The J2SE 5.0 CookieHandler formed the basis of managing cookies. That basis was an
abstract class with no implementation, no storage mechanism, no storage policy, and
nothing to store. That’s where Java 6 comes in. The CookieManager class is the CookieHandler
implementation. CookieStore is the storage mechanism. CookiePolicy offers a policy of
accepting or rejecting cookies, and finally HttpCookie offers something to save.

Now that you know all the members of the family, let us explore why you might want
to use them. Cookies are typically thought of when using a browser. Browsers make con-
nections over the Web using HTTP, which stands for HyperText Transfer Protocol. When
you type in something like www.apress.com into the address area of your web browser, the
browser tells the web server what user agent it is using and what image formats it sup-
ports, and it of course asks for a page and reads the response. You can do the same with
your own Java programs. Just open a socket connection to a host and talk HTTP. The issue
comes about when you want to write your own browser. You have to personally create a
way to verify whether a cookie is for the right site, save it in a cache you come up with,
and be sure to properly set up the response with any cookies that were saved. Not an
impossible task, and certainly easier with CookieHandler, but not a quickie job either if
you want to get it right. To see how to use the new classes, let us first explore how to man-
age cookies with Java 5 without the new classes. Listing 3-3 is the main driver program.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 43

6609CH03.qxd  6/23/06  1:35 PM  Page 43



Listing 3-3. Using CookieHandler in Java 5

import java.io.*;

import java.net.*;

import java.util.*;

public class Fetch5 {

public static void main(String args[]) throws Exception {

if (args.length == 0) {

System.err.println("URL missing");

System.exit(-1);

}

String urlString = args[0];

CookieHandler.setDefault(new ListCookieHandler());

URL url = new URL(urlString);

URLConnection connection = url.openConnection();

Object obj = connection.getContent();

url = new URL(urlString);

connection = url.openConnection();

obj = connection.getContent();

}

}

The key part of the Fetch5 program is highlighted. You call the setDefault() method
of CookieHandler to install a handler. Unless there is long-term storage in the implementa-
tion, the first call to get the contents from a URL should have no locally stored cookies.
The second call to get the contents will then have any cookies that were saved from the
first run.

To create a CookieHandler, you have to implement its two abstract methods, get()
and put():

• public Map<String,List<String>> get(URI uri, Map<String, List<String>>

requestHeaders) throws IOException

• public void put(URI uri, Map<String, List<String>> responseHeaders) throws

IOException

The get() method works on the request side. Are there any saved cookies to add to
the request headers for the appropriate domain? The put() method is called when you
get a response back from the server, letting you look at the response headers to see if
there are any cookies. If any are present, you need to cache them off for the next
get() call.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES44

6609CH03.qxd  6/23/06  1:35 PM  Page 44



Implementing the put() method first tends to be more logical, as you don’t yet know
from where to get anything for the get() method.

To find the set of cookies, the put() method has a responseHeaders Map as a parameter.
You need to find the set of map entries that are cookies, as follows:

List<String> setCookieList = responseHeaders.get("Set-Cookie");

■Note For simplicity here, we are only looking for Set-Cookie, not Set-Cookie2, in the response
headers. RFC 2965 calls for the name change. The Java 6 classes are more complete, work with both,
and conform with the RFC.

Once you have the list of cookies, you then have to loop through the list and save
each cookie in a cache, represented by the variable cookieJar here. If a cookie already
exists, you have to replace the existing one—you cannot have duplicates.

if (setCookieList != null) {

for (String item : setCookieList) {

Cookie cookie = new Cookie(uri, item);

// Remove cookie if it already exists in cache

// New one will replace it

for (Cookie existingCookie : cookieJar) {

...

}

System.out.println("Adding to cache: " + cookie);

cookieJar.add(cookie);

}

}

First, the Cookie class here is something you need to create—there is no preexisting
class in Java 5 for this. That’s where HttpCookie comes into play with Java 6. Second, the
cache is also something you have to come up with. In the example program here, it is just
a List from the collections framework, but it could be an external MySQL database that
preserves cookies between runs of the program. That is totally up to you in Java 5. With
Java 6, the cache becomes the CookieStore.

There’s a little more to the put() method, but you’ll see the full version in the com-
pleted class. For now, let’s see what there is to the get() method. The first part of get() is
to find cookies from the cache that match the URI passed into the method. You need to
create a comma-separated list of cached cookies.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 45

6609CH03.qxd  6/23/06  1:35 PM  Page 45



// Retrieve all the cookies for matching URI

// Put in comma-separated list

StringBuilder cookies = new StringBuilder();

for (Cookie cookie : cookieJar) {

// Remove cookies that have expired

if (cookie.hasExpired()) {

cookieJar.remove(cookie);

} else if (cookie.matches(uri)) {

if (cookies.length() > 0) {

cookies.append(", ");

}

cookies.append(cookie.toString());

}

}

After you have the comma-separated list, you have to make a Map to return. The Map
must be read-only but has to start with the Map passed into get():

// Map to return

Map<String, List<String>> cookieMap =

new HashMap<String, List<String>>(requestHeaders);

// Convert StringBuilder to List, store in map

if (cookies.length() > 0) {

List<String> list = Collections.singletonList(cookies.toString());

cookieMap.put("Cookie", list);

}

// Make read-only

return Collections.unmodifiableMap(cookieMap);

And that is really the whole of the class. Listing 3-4 is the CookieHandler implementa-
tion used for Java 5.

Listing 3-4. Implementing a CookieHandler for Java 5

import java.io.*;

import java.net.*;

import java.util.*;

public class ListCookieHandler extends CookieHandler {

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES46

6609CH03.qxd  6/23/06  1:35 PM  Page 46



// "Long" term storage for cookies, not serialized so only

// for current JVM instance

private List<Cookie> cookieJar = new LinkedList<Cookie>();

public void put(URI uri, Map<String, List<String>> responseHeaders)

throws IOException {

System.out.println("Cache: " + cookieJar);

List<String> setCookieList = responseHeaders.get("Set-Cookie");

if (setCookieList != null) {

for (String item : setCookieList) {

Cookie cookie = new Cookie(uri, item);

// Remove cookie if it already exists

// New one will replace

for (Cookie existingCookie : cookieJar) {

if((cookie.getURI().equals(existingCookie.getURI())) &&

(cookie.getName().equals(existingCookie.getName()))) {

cookieJar.remove(existingCookie);

break;

}

}

System.out.println("Adding to cache: " + cookie);

cookieJar.add(cookie);

}

}

}

public Map<String, List<String>> get(URI uri,

Map<String, List<String>> requestHeaders) throws IOException {

// Retrieve all the cookies for matching URI

// Put in comma-separated list

StringBuilder cookies = new StringBuilder();

for (Cookie cookie : cookieJar) {

// Remove cookies that have expired

if (cookie.hasExpired()) {

cookieJar.remove(cookie);

} else if (cookie.matches(uri)) {

if (cookies.length() > 0) {

cookies.append(", ");

}

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 47

6609CH03.qxd  6/23/06  1:35 PM  Page 47



cookies.append(cookie.toString());

}

}

// Map to return

Map<String, List<String>> cookieMap =

new HashMap<String, List<String>>(requestHeaders);

// Convert StringBuilder to List, store in map

if (cookies.length() > 0) {

List<String> list =

Collections.singletonList(cookies.toString());

cookieMap.put("Cookie", list);

}

System.out.println("CookieMap: " + cookieMap);

// Make read-only

return Collections.unmodifiableMap(cookieMap);

}

}

In Java 6, the ListCookieHandler turns into the CookieManager class. The cookieJar that
is used as the cache becomes the CookieStore. One thing not in this implementation of
CookieHandler is a policy for storing cookies. Do you want to accept no cookies, all cookies,
or only cookies from the original server? That’s where the CookiePolicy class comes into
play. You will explore CookiePolicy more later.

The last part of the Java 5 situation is the Cookie class itself. The constructor parses
out the fields from the header line. Listing 3-5 shows an implementation that will be
replaced in Java 6 by HttpCookie. The Java 6 version will also be more complete.

Listing 3-5. Implementing a Cookie Class to Save for Java 5

import java.net.*;

import java.text.*;

import java.util.*;

public class Cookie {

String name;

String value;

URI uri;

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES48

6609CH03.qxd  6/23/06  1:35 PM  Page 48



String domain;

Date expires;

String path;

private static DateFormat expiresFormat1

= new SimpleDateFormat("E, dd MMM yyyy k:m:s 'GMT'", Locale.US);

private static DateFormat expiresFormat2

= new SimpleDateFormat("E, dd-MMM-yyyy k:m:s 'GMT'", Locale.US);

public Cookie(URI uri, String header) {

String attributes[] = header.split(";");

String nameValue = attributes[0].trim();

this.uri = uri;

this.name = nameValue.substring(0, nameValue.indexOf('='));

this.value = nameValue.substring(nameValue.indexOf('=')+1);

this.path = "/";

this.domain = uri.getHost();

for (int i=1; i < attributes.length; i++) {

nameValue = attributes[i].trim();

int equals = nameValue.indexOf('=');

if (equals == -1) {

continue;

}

String name = nameValue.substring(0, equals);

String value = nameValue.substring(equals+1);

if (name.equalsIgnoreCase("domain")) {

String uriDomain = uri.getHost();

if (uriDomain.equals(value)) {

this.domain = value;

} else {

if (!value.startsWith(".")) {

value = "." + value;

}

uriDomain = uriDomain.substring(uriDomain.indexOf('.'));

if (!uriDomain.equals(value)) {

throw new IllegalArgumentException("Trying to set foreign cookie");

}

this.domain = value;

}

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 49

6609CH03.qxd  6/23/06  1:35 PM  Page 49



} else if (name.equalsIgnoreCase("path")) {

this.path = value;

} else if (name.equalsIgnoreCase("expires")) {

try {

this.expires = expiresFormat1.parse(value);

} catch (ParseException e) {

try {

this.expires = expiresFormat2.parse(value);

} catch (ParseException e2) {

throw new IllegalArgumentException(

"Bad date format in header: " + value);

}

}

}

}

}

public boolean hasExpired() {

if (expires == null) {

return false;

}

Date now = new Date();

return now.after(expires);

}

public String getName() {

return name;

}

public URI getURI() {

return uri;

}

public boolean matches(URI uri) {

if (hasExpired()) {

return false;

}

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES50

6609CH03.qxd  6/23/06  1:35 PM  Page 50



String path = uri.getPath();

if (path == null) {

path = "/";

}

return path.startsWith(this.path);

}

public String toString() {

StringBuilder result = new StringBuilder(name);

result.append("=");

result.append(value);

return result.toString();

}

}

At this point, you can actually run the Fetch5 program in Listing 3-3. To run the
program, find a site that uses cookies and pass the URL string as the command-line
argument.

> java Fetch5 http://java.sun.com

CookieMap: {Connection=[keep-alive], Host=[java.sun.com], User-Agent=[

Java/1.6.0-rc], GET / HTTP/1.1=[null], Content-type=[

application/x-www-form-urlencoded], Accept=[text/html, image/gif, image/jpeg, 

*; q=.2, */*; q=.2]}

Cache: []

Adding to cache: SUN_ID=141.154.45.36:196601132578618

CookieMap: {Connection=[keep-alive], Host=[java.sun.com], User-Agent=[

Java/1.6.0-rc], GET / HTTP/1.1=[null], Cookie=[

SUN_ID=141.154.45.36:196601132578618], Content-type=[

application/x-www-form-urlencoded], Accept=[text/html, image/gif,

image/jpeg, *; q=.2, */*; q=.2]}

Cache: [SUN_ID=141.154.45.36:196601132578618]

The first line shows the adjusted map from the get() call. Since the cookie jar (cache)
is empty when the initial get() is called, there are no cookie lines added. When the put()
happens, a Set-Cookie header is found, so it is added to the cache. The next request to
get() finds the cookie in the cache and adds the header to the adjusted map.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 51

6609CH03.qxd  6/23/06  1:35 PM  Page 51



Now that you’ve seen the Java 5 way of caching cookies, let’s change Listing 3-3 and
the Fetch5 program to the Java 6 way. The following line

CookieHandler.setDefault(new ListCookieHandler());

changes to

CookieHandler.setDefault(new CookieManager());

Compile the program and you’re done. No extra classes necessary. Listing 3-6 shows
the modified version. As an additional step, the modified program shows the cookies
cached to the store at the end of the run.

Listing 3-6. Using CookieHandler in Java 6

import java.io.*;

import java.net.*;

import java.util.*;

public class Fetch {

public static void main(String args[]) throws Exception {

Console console = System.console();

if (args.length == 0) {

System.err.println("URL missing");

System.exit(-1);

}

String urlString = args[0];

CookieManager manager = new CookieManager();

CookieHandler.setDefault(manager);

URL url = new URL(urlString);

URLConnection connection = url.openConnection();

Object obj = connection.getContent();

url = new URL(urlString);

connection = url.openConnection();

obj = connection.getContent();

CookieStore cookieJar = manager.getCookieStore();

List<HttpCookie> cookies = cookieJar.getCookies();

for (HttpCookie cookie: cookies) {

console.printf("Cookie: %s%n", cookie);

}

}

}

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES52

6609CH03.qxd  6/23/06  1:35 PM  Page 52



One difference between the Java 5 version created and the Java 6 implementation
provided is that the CookieStore cache deals with the expiration of cookies. This shouldn’t
be the responsibility of the handler (CookieManager). All the handler needs to do is tell the
cache to store something. The fact that other cookies have expired shouldn’t matter to
the handler.

Another difference is the CookiePolicy interface (not yet shown). You can define a
custom policy for dealing with cookies or tell the CookieManager to use one of the prede-
fined ones. The interface consists of a single method:

boolean shouldAccept(URI uri, HttpCookie cookie)

The interface also includes three predefined policies: ACCEPT_ALL, ACCEPT_NONE, and
ACCEPT_ORIGINAL_SERVER. The last one will reject third-party cookies, accepting only those
that come from the original server—the same server as the response.

To set the cookie policy for the CookieManager, call its setCookiePolicy() method the
following:

CookieManager manager = new CookieManager();

manager.setCookiePolicy(CookiePolicy.ACCEPT_ORIGINAL_SERVER);

CookieHandler.setDefault(manager);

The CookieManager class also has a constructor that accepts a CookieStore and a
CookiePolicy:

public CookieManager(CookieStore store, CookiePolicy cookiePolicy)

Use this constructor if you want to use a cache other than the in-memory
CookieStore used as a default (such as for long-term cookie storage between runs). You
cannot change the cache for the manager after creation, but you can change the default-
installed handler at any time.

Besides the additional cookie support in standard Java, there is a new IDN class for
converting internationalized domain names (IDNs) between an ASCII-compatible
encoding (ACE) and Unicode representation. In addition, there is a new InterfaceAddress
class and new methods added to NetworkInterface for providing information about the
available network interfaces. Listing 3-7 demonstrates the new methods added. The
method names make the purpose of the methods pretty obvious, so no explanation is
necessary.

Listing 3-7. Using NetworkInterface

import java.io.*;

import java.net.*;

import java.util.*;

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 53

6609CH03.qxd  6/23/06  1:35 PM  Page 53



public class NetworkInfo {

public static void main(String args[]) throws SocketException {

Console console = System.console();

Enumeration<NetworkInterface> nets =

NetworkInterface.getNetworkInterfaces();

for (NetworkInterface netint : Collections.list(nets)) {

console.printf("Display name: %s%n",

netint.getDisplayName());

console.printf("Name: %s%n", netint.getName());

console.printf("Hardware address: %s%n",

Arrays.toString(netint.getHardwareAddress()));

console.printf("Parent: %s%n", netint.getParent());

console.printf("MTU: %s%n", netint.getMTU());

console.printf("Loopback? %s%n", netint.isLoopback());

console.printf("PointToPoint? %s%n", netint.isPointToPoint());

console.printf("Up? %s%n", netint.isUp());

console.printf("Virtual? %s%n", netint.isVirtual());

console.printf("Supports multicast? %s%n", netint.isVirtual());

List<InterfaceAddress> addrs = netint.getInterfaceAddresses();

for (InterfaceAddress addr : addrs) {

console.printf("InterfaceAddress: %s --- %s%n",

addr.getAddress(), addr.getBroadcast());

}

console.printf("%n");

}

}

}

Again, the results of running the program depend upon your system configuration.
They’re similar to what you might see with an ipconfig command. The physical address
is shown as a series of signed bytes. More commonly, you would expect to see their hex
values.

> java NetworkInfo

Display name: MS TCP Loopback interface

Name: lo

Hardware address: null

Parent: null

MTU: 1500

Loopback? true

PointToPoint? false

Up? true

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES54

6609CH03.qxd  6/23/06  1:35 PM  Page 54



Virtual? false

Supports multicast? false

InterfaceAddress: /127.0.0.1 --- /127.255.255.255

Display name: 3Com EtherLink PCI

Name: eth0

Hardware address: [0, 1, 2, 3, 4, 5]

Parent: null

MTU: 1500

Loopback? false

PointToPoint? false

Up? true

Virtual? false

Supports multicast? false

InterfaceAddress: /192.168.0.103 --- /192.168.0.255

The javax.net.ssl package should get a passing mention. There’s a new SSLParameters
class for encapsulating the SSL/TLS connection parameters. You can get or set these for
an SSLSocket, SSLEngine, or SSLContext.

The java.security Package
As Table 3-3 previously showed, there aren’t many added interfaces or classes in the
security packages. The changes are related to some new methods added to the Policy
class. The Policy class now has a new marker interface, Policy.Parameters, for specifying
parameters when getting an instance. A second marker interface is Configuration.
Parameters in the javax.security.auth.login package. These marker interfaces are imple-
mented by the new URIParameter class, which wraps a URI for a Policy or Configuration
provider. These are used internally by the PolicySpi and ConfigurationSpi classes, respec-
tively, for what will become a familiar service provider lookup facility.

Summary
Keeping to the concept of building up from the basic libraries to those that are a tad more
involved, in this chapter you looked at the I/O, networking, and security libraries. These
packages stayed relatively unchanged. The File class finally has a free disk space API, and
you can also manipulate the read, write, and execute bits. Cookie management is now
available in a much simpler form with Java 6. You could certainly do things yourself with
the API exposed in Java 5, but it is certainly easier the Mustang way. Last, you explored
the new network interface to display newly available information.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES 55

6609CH03.qxd  6/23/06  1:35 PM  Page 55



The next chapter gets into some of the more visual new features of Mustang—those
of the java.awt and javax.swing packages. You saw how to access the system desktop in
Chapter 1. Chapter 4 teaches you about the new splash screen support, table sorting and
filtering, and system tray access.

CHAPTER 3 ■ I /O, NETWORKING, AND SECURITY UPDATES56

6609CH03.qxd  6/23/06  1:35 PM  Page 56



AWT and Swing Updates

Have GUIs gotten better? Graphical user interfaces written with the Swing component
set seem to be on the rise since JDK 1.4. I’m not sure what triggered the change, but it
is no longer abnormal to see a full-fledged graphical program written from the ground
up with the Java programming language. Just look at Sun’s Swing Connection at www.
theswingconnection.com to see the latest things people are doing with Java-based
user interfaces. Of the packages covered in this book so far, the AWT and Swing
packages have changed the most. Table 4-1 shows the java.awt updates, and Table 4-2
shows javax.swing’s changes.

Table 4-1. java.awt.* Package Sizes

Package Version Interfaces Classes Enums Throwable Total

awt 5.0 16 90 0 4/1 111

awt 6.0 16 98 7 4/1 126

awt.color 5.0 0 5 0 2/0 7

awt.color 6.0 0 5 0 2/0 7

awt.datatransfer 5.0 5 5 0 2/0 12

awt.datatransfer 6.0 5 5 0 2/0 12

awt.dnd 5.0 5 17 0 1/0 23

awt.dnd 6.0 5 17 0 1/0 23

awt.event 5.0 18 25 0 0/0 43

awt.event 6.0 18 25 0 0/0 43

awt.font 5.0 2 16 0 0/0 18

awt.font 6.0 2 17 0 0/0 19

awt.geom 5.0 1 30 0 2/0 33

awt.geom 6.0 1 33 0 2/0 36

Continued

57

C H A P T E R  4

6609CH04.qxd  6/23/06  1:36 PM  Page 57



Table 4-1. Continued

Package Version Interfaces Classes Enums Throwable Total

awt.im 5.0 1 3 0 0/0 4

awt.im 6.0 1 3 0 0/0 4

awt.im.spi 5.0 3 0 0 0/0 3

awt.im.spi 6.0 3 0 0 0/0 3

awt.image 5.0 8 42 0 2/0 52

awt.image 6.0 8 42 0 2/0 52

awt.image.renderable 5.0 3 4 0 0/0 7

awt.image.renderable 6.0 3 4 0 0/0 7

awt.print 5.0 3 4 0 3/0 10

awt.print 6.0 3 4 0 3/0 10

Delta 0 12 7 0+0 19

Table 4-2. javax.swing.* Package Sizes

Package Version Interfaces Classes Enums Throwable Total

swing 5.0 24 119 1 1/0 145

swing 6.0 24 133 7 1/0 165

swing.border 5.0 1 9 0 0/0 10

swing.border 6.0 1 9 0 0/0 10

swing.colorchooser 5.0 1 3 0 0/0 4

swing.colorchooser 6.0 1 3 0 0/0 4

swing.event 5.0 23 23 0 0/0 46

swing.event 6.0 24 24 1 0/0 49

swing.filechooser 5.0 0 3 0 0/0 3

swing.filechooser 6.0 0 4 0 0/0 4

swing.plaf 5.0 1 47 0 0/0 48

swing.plaf 6.0 1 47 0 0/0 48

swing.plaf.basic 5.0 1 71 0 0/0 72

swing.plaf.basic 6.0 1 71 0 0/0 72

swing.plaf.metal 5.0 0 56 0 0/0 56

swing.plaf.metal 6.0 0 56 0 0/0 56

CHAPTER 4 ■ AWT AND SWING UPDATES58

6609CH04.qxd  6/23/06  1:36 PM  Page 58



Package Version Interfaces Classes Enums Throwable Total

swing.plaf.multi 5.0 0 31 0 0/0 31

swing.plaf.multi 6.0 0 31 0 0/0 31

swing.plaf.synth 5.0 1 8 0 0/0 9

swing.plaf.synth 6.0 1 8 0 0/0 9

swing.table 5.0 4 7 0 0/0 11

swing.table 6.0 4 9 0 0/0 13

swing.text 5.0 21 79 0 2/0 102

swing.text 6.0 21 80 0 2/0 103

swing.text.html 5.0 0 30 1 0/0 31

swing.text.html 6.0 0 30 1 0/0 31

...text.html.parser 5.0 1 9 0 0/0 10

...text.html.parser 6.0 1 9 0 0/0 10

swing.text.rtf 5.0 0 1 0 0/0 1

swing.text.rtf 6.0 0 1 0 0/0 1

swing.tree 5.0 7 10 0 1/0 18

swing.tree 6.0 7 10 0 1/0 18

swing.undo 5.0 2 5 0 2/0 9

swing.undo 6.0 2 5 0 2/0 9

Delta 1 19 7 0+0 27

Just seeing the additions to the interface and class counts doesn’t show the whole
story for AWT and Swing. Besides just the additional interfaces and classes, many of the
classes have internal changes, like additional methods. You’ll find no new components
added to either AWT or Swing, but plenty of changes to go around—all very visual.

The java.awt Package
You’ll find the java.awt package growing to better integrate with the desktop environ-
ment. In addition to the Desktop class demonstrated in Chapter 1, you’ll find other areas
of the system environment exposed to the Java developer that were previously unavail-
able, as follows:

• Splash screen

• System tray

CHAPTER 4 ■ AWT AND SWING UPDATES 59

6609CH04.qxd  6/23/06  1:36 PM  Page 59



• Dialog modality

• GIF writer

• Text antialiasing

Splash Screens

For those who don’t know what they are, splash screens are the graphics you see while a
program is starting up. Most users like to see something happening quickly, and the
graphic appeases the need for immediate feedback. Prior to Mustang, if you wanted any
visual indication of your program loading, the Java runtime had to be fully started before
you could create a screen to put in a temporary graphic while the rest of the program ini-
tialized. No more. In Mustang, you can now have the system display an initial graphic
prior to the runtime becoming fully initialized.

The quick-and-dirty way of doing this is via the -splash command-line switch.

java -splash:MyImage.jpg HelloSplash

What happens here is the MyImage.png image will show immediately, centered in
the screen. Once your application creates a top-level window, the image goes away.
Supported image formats include GIF, JPEG, and PNG, including their animated, trans-
parent, and translucent varieties.

It is that simple to do, though you typically don’t want to force the user to specify a 
-splash command-line switch every time they start up your program. Instead, a better
way to work with splash screens is to specify the splash screen in the manifest of a JAR file
and jar up your application. To demonstrate, Listing 4-1 is a simple program that directly
does absolutely nothing with splash screens.

Listing 4-1. Creating a Simple GUI Window with a Label

import javax.swing.*;

import java.awt.*;

public class HelloSplash {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

try {

Thread.sleep(3000);

} catch (InterruptedException e) {

}

CHAPTER 4 ■ AWT AND SWING UPDATES60

6609CH04.qxd  6/23/06  1:36 PM  Page 60



JFrame frame = new JFrame("Java 6 Revealed");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JLabel label = new JLabel(

" Java 6 Revealed", JLabel.CENTER);

frame.add(label, BorderLayout.CENTER);

frame.setSize(300, 95);

frame.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

}

Compile and run the program with the earlier command-line switch to make sure
everything works fine. Be sure you have an image available to use as the splash screen.
When the program is run, your image will show first (as in Figure 4-1), and then the
screen in Figure 4-2 will be shown.

Figure 4-1. A splash screen of my dog, Jaeger

Figure 4-2. A simple graphical screen

To move this program into the world of JAR files, your manifest file needs to specify
the main class to execute and the name of the image to display as the splash screen. The
main class is specified using the Main-Class identifier, and the splash screen is specified
with SplashScreen-Image. Create a file named manifest.mf, and place the contents of
Listing 4-2 in it. Make corrections for the image name if you decide to name the image
differently, possibly due to a different image file format.

CHAPTER 4 ■ AWT AND SWING UPDATES 61

6609CH04.qxd  6/23/06  1:36 PM  Page 61



Listing 4-2. The Manifest File to Show the Splash Screen

Manifest-Version: 1.0

Main-Class: HelloSplash

SplashScreen-Image: MyImage.jpg

Next, package up the manifest file, class files, and image.

jar -mcvf manifest.mf Splash.jar HelloSplash*.class MyImage.jpg

You can now run your program by passing the JAR file name to the java -jar
command.

java -jar Splash.jar

Notice that you don’t have to specify the -splash option here anymore to see the
splash screen. This is the typical way that splash screens will be packed up for users.

For those interested in doing a little more with splash screens, you have access to the
splash screen area in your program when the runtime starts up, but before you create
your own window. For instance, if you want to change the image to indicate some level
of progress, add a call to the setImageURL() method, as follows:

SplashScreen splash = SplashScreen.getSplashScreen();

URL url = ...;

splash.setImageURL(url);

The image specified by the URL should be the same size as the original, since the
splash screen area doesn’t grow based upon the new image provided. To find out its size,
just ask with a call to getSize(), which returns a Dimension object. There are no borders
around the splash screen image, so it should be the size of the original image specified as
the splash screen.

If you want to show a progress bar over the splash screen, a little extra work is
involved. You can think of the splash screen as a double-buffered image. You get its
graphics context with the createGraphics() method, draw to it, and then tell the splash
screen to update itself with its update() method. Until update() is called, the user doesn’t
see the intermediate drawing operations. So, for the “draw to it” part, you would draw a
growing rectangle. The Graphics object returned from the createGraphics() method is a
Graphics2D object, so more advanced graphics operations can be done. For simplicity’s
sake, Listing 4-3 only draws a growing white rectangle over the splash screen. Consider
changing the color if white doesn’t work with your image.

CHAPTER 4 ■ AWT AND SWING UPDATES62

6609CH04.qxd  6/23/06  1:36 PM  Page 62



Listing 4-3. Showing a Progress Bar Over the Splash Screen

import javax.swing.*;

import java.awt.*;

public class LoadingSplash {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

SplashScreen splash = SplashScreen.getSplashScreen();

Graphics g = splash.createGraphics();

if (splash != null) {

// Draw growing rectangle / progress bar

for (int i=0; i < 100; i++) {

g.setColor(Color.WHITE);

g.fillRect(50, 50, i, 25);

if (splash.isVisible()) {

splash.update();

} else {

break;

}

try {

Thread.sleep(100);

} catch (InterruptedException e) {

}

}

}

JFrame frame = new JFrame("Java 6 Revealed");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JLabel label = new JLabel(

" Java 6 Revealed", JLabel.CENTER);

frame.add(label, BorderLayout.CENTER);

frame.setSize(300, 95);

frame.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

}

CHAPTER 4 ■ AWT AND SWING UPDATES 63

6609CH04.qxd  6/23/06  1:36 PM  Page 63



When Listing 4-3 is run, the user will see Figure 4-3, with the growing progress bar
over the dog’s face. Notice the isVisible() check in Listing 4-3. If the user happens to
close the window, the program just breaks out of the for loop. If your program is still ini-
tializing when the user closes the window, there needs to be a check that happens before
the program continues with its main operations. Be sure to pass the image name to be
drawn over via the -splash option, as follows:

java -splash:MyImage.jpg LoadingSplash

Figure 4-3. A splash screen with a progress bar

■Note On a Microsoft Windows machine, pressing Alt+F4 will close the splash screen immediately. The
key sequence only closes the splash screen; it doesn’t terminate the application.

The final method of SplashScreen worth mentioning is the close() method. To close
the screen and release its resources before an AWT (or Swing) window is shown, you can
call this method. Calling isn’t necessary, though, as the method will be called automati-
cally when the top-level window becomes visible.

System Tray

Yet another new class in AWT that provides direct access to the user’s desktop is the
SystemTray class. In the notification area of your desktop (where you see little icons about
what “system apps” are running, like your antivirus software, the coffee cup logo for the
browser’s Java runtime, and network connectivity indicators), more and more applica-
tions are vying for a little part of this space. (See Figure 4-4 for a view of this area in

CHAPTER 4 ■ AWT AND SWING UPDATES64

6609CH04.qxd  6/23/06  1:36 PM  Page 64



Microsoft Windows.) Now, your Java programs can fight for their rights, too. As the system
tray is shared by all applications running on a system, you shouldn’t place every icon
there; however, for those applications that require quick, immediate notifications and/or
startup, this is a good place to put them, as you can have the icon flash or jump up and
down to grab the user’s attention. Your application can even offer the user the option of
whether to add the icon to the tray.

Figure 4-4. The Windows system tray area

The SystemTray class uses the Singleton pattern to offer access to the single instance
of the tray.

SystemTray tray = SystemTray.getSystemTray();

Of course, before you even get the tray, you must see if it is supported on the user’s
platform.

if (SystemTray.isSupported()) {

SystemTray tray = SystemTray.getSystemTray();

} else {

System.err.println("No system tray. Go home.");

}

While the tray is supported on Sun’s runtimes for Microsoft Windows, Linux, and
Solaris, it is possible that another platform might not support the tray immediately after
the Java 6 release, but add support for such a feature later.

What can you do with SystemTray once you get its instance? Why, add TrayIcon objects
to it, of course. A tray icon is an image with an associated tool tip and pop-up menu. Rest
your mouse over the image and you’ll see the tool tip. Click on the image with the appro-
priate mouse action and you’ll see the pop-up menu. Of course, if you want to do much
of anything, you have to add menu items and listeners, too.

Listing 4-4 shows a simple example of using a system tray and tray icon. The
jpgIcon.jpg image comes from the demo area of the JDK. Feel free to use your own icon
as the image. Any image format supported by the Java platform can be used, including
user-created ones. It just has to be an Image object, with a capital I.

CHAPTER 4 ■ AWT AND SWING UPDATES 65

6609CH04.qxd  6/23/06  1:36 PM  Page 65



Listing 4-4. Demonstrating a Simple System Tray

import javax.swing.*;

import java.awt.*;

public class SimpleTray {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

if (SystemTray.isSupported()) {

SystemTray tray = SystemTray.getSystemTray();

Image image = Toolkit.getDefaultToolkit().getImage("jpgIcon.jpg");

PopupMenu popup = new PopupMenu();

MenuItem item = new MenuItem("Hello, World");

popup.add(item);

TrayIcon trayIcon = new TrayIcon(image, "Tip Text", popup);

try {

tray.add(trayIcon);

} catch (AWTException e) {

System.err.println("Unable to add to system tray: " + e);

}

} else {

System.err.println("No system tray available");

}

}

};

EventQueue.invokeLater(runner);

}

}

Compiling and running the program will add another icon to the system tray. Rest
your mouse over it to see the tool tip text, as shown in Figure 4-5. Right-click the tray icon
to see the pop-up menu, as shown in Figure 4-6.

Figure 4-5. Showing the icon and tool tip for a new system tray application

CHAPTER 4 ■ AWT AND SWING UPDATES66

6609CH04.qxd  6/23/06  1:36 PM  Page 66



Figure 4-6. Showing the menu for a new system tray application

It’s simple so far, but there’s much more you can do with the system tray and its
icons. Yes, each of your applications can add multiple icons to the system tray. To make
the SimpleTray application interesting, you should first have your application detect when
the tray icon is added or removed from the system tray. The SystemTray class allows you to
add a PropertyChangeListener to detect these operations. Its addPropertyChangeListener()
method requires you to pass in the property name to watch for changes. In the case of
SystemTray, that name is trayIcons.

tray.addPropertyChangeListener("trayIcons", propListener);

With the PropertyChangeListener, the old and new values you are told about make
up the array of tray icons associated with the SystemTray. By checking the difference
between the old and new values, you can see which specific TrayIcon was added, or just
calculate the delta between the counts of the two if you only need to know whether the
operation was an add() or a remove().

PropertyChangeListener propListener = new PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent evt) {

TrayIcon oldTray[] = (TrayIcon[])evt.getOldValue();

TrayIcon newTray[] = (TrayIcon[])evt.getNewValue();

System.out.println(oldTray.length + " / " + newTray.length);

}

};

Next, you need to detect when the user selects an item in the pop-up menu. Associate
an ActionListener with the MenuItem operation for selection detection. This is no different
than pre-JDK 6 code for pop-up menus. What is different is the action that you can per-
form. One operation specific to the TrayIcon is the displaying of specially formatted
messages via calling the following displayMessage() method: public void displayMessage
(String caption, String text, TrayIcon.MessageType messageType). Here, selecting the
“Hello, World” menu item shows a caption of “Good-bye” and text message of “Cruel
World.”

CHAPTER 4 ■ AWT AND SWING UPDATES 67

6609CH04.qxd  6/23/06  1:36 PM  Page 67



MenuItem item = new MenuItem("Hello, World");

ActionListener menuActionListener = new ActionListener() {

public void actionPerformed(ActionEvent e) {

trayIcon.displayMessage("Good-bye", "Cruel World",

TrayIcon.MessageType.WARNING);

}

};

item.addActionListener(menuActionListener);

Figure 4-7 shows the warning message.

Figure 4-7. Warning message shown on selection of system tray pop-up menu item

The last argument to displayMessage() is an enumerated type of TrayIcon.MessageType
elements—one of the following: ERROR, INFO, NONE, and WARNING. 

Figures 4-8 through 4-10 show examples of ERROR, INFO, and NONE messages, respec-
tively. 

Figure 4-8. An example of an ERROR message

Figure 4-9. An example of an INFO message

CHAPTER 4 ■ AWT AND SWING UPDATES68

6609CH04.qxd  6/23/06  1:36 PM  Page 68



Figure 4-10. An example of a NONE message

There’s more to using SystemTray, though. In addition to associating a
PropertyChangeListener with SystemTray, and associating an ActionListener with
each MenuItem in PopupMenu, you can associate an ActionListener with TrayIcon itself.
Then, when you “select” the tray icon (typically with a double-click operation), the
ActionListener is notified. Here’s a simple example that removes the tray icon from
the system tray when the icon is selected:

ActionListener actionListener = new ActionListener() {

public void actionPerformed(ActionEvent e) {

tray.remove(trayIcon);

}

};

trayIcon.addActionListener(actionListener);

■Note SystemTray also supports associating a MouseListener and MouseMotionListener with the
component. There is default behavior assigned here, as in the case of showing the pop-up menu. You can
add your own operation if you need to do something other than showing tool tip text or a pop-up menu.

Listing 4-5 combines all these operations into one example program.

Listing 4-5. Demonstrating a System Tray That Responds to Selection

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.beans.*;

public class ActiveTray {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

CHAPTER 4 ■ AWT AND SWING UPDATES 69

6609CH04.qxd  6/23/06  1:36 PM  Page 69



if (SystemTray.isSupported()) {

final SystemTray tray = SystemTray.getSystemTray();

PropertyChangeListener propListener = new PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent evt) {

TrayIcon oldTray[] = (TrayIcon[])evt.getOldValue();

TrayIcon newTray[] = (TrayIcon[])evt.getNewValue();

System.out.println(oldTray.length + " / " + newTray.length);

}

};

tray.addPropertyChangeListener("trayIcons", propListener);

Image image = Toolkit.getDefaultToolkit().getImage("jpgIcon.jpg");

PopupMenu popup = new PopupMenu();

MenuItem item = new MenuItem("Hello, World");

final TrayIcon trayIcon = new TrayIcon(image, "Tip Text", popup);

ActionListener menuActionListener = new ActionListener() {

public void actionPerformed(ActionEvent e) {

trayIcon.displayMessage("Good-bye", "Cruel World",

TrayIcon.MessageType.WARNING);

}

};

item.addActionListener(menuActionListener);

popup.add(item);

ActionListener actionListener = new ActionListener() {

public void actionPerformed(ActionEvent e) {

tray.remove(trayIcon);

}

};

trayIcon.addActionListener(actionListener);

try {

tray.add(trayIcon);

} catch (AWTException e) {

System.err.println("Unable to add to system tray: " + e);

}

} else {

System.err.println("No system tray available");

}

}

};

EventQueue.invokeLater(runner);

}

}

CHAPTER 4 ■ AWT AND SWING UPDATES70

6609CH04.qxd  6/23/06  1:36 PM  Page 70



One last tidbit worth mentioning is the getTrayIconSize() method of SystemTray. If
you don’t use a prefabricated image as the icon on the system tray, you can ask the sys-
tem what size image to create. Then, just create a buffered image, draw on it, and pass it
along to the TrayIcon constructor, as shown here:

Dimension dim = tray.getTrayIconSize();

BufferedImage bi = new BufferedImage(

dim.width, dim.height, BufferedImage.TYPE_INT_RGB);

Graphics g = bi.getGraphics();

// then draw on image before associating with tray icon

TrayIcon trayIcon = new trayIcon(bi, text, popup);

Dialog Modality

Top-level pop-up windows in Java-speak are called dialog boxes. They aren’t the main
windows (frames) of an application; they’re typically used to interact with a user—either
to display a message or accept user input. Pre-Mustang, dialog boxes were by default
modeless, with an option to be modal. When a dialog box was modal, other windows of
the application were blocked from accepting input, unless the window had the dialog box
as its owner. Once the user reacted to the dialog accordingly, by entering the input or just
closing the dialog, input to other windows of the application became accessible again.
That is basically the limitations of modality with predecessors to Mustang.

Along comes Java 6 and you have more options. No longer are you limited in scope to
one level of modality (on or off). Now you have four distinct settings, defined by the new
Dialog.ModalityType enumeration, whose types are shown in Table 4-3.

Table 4-3. Dialog.ModalityType Enumeration

Dialog.ModalityType

APPLICATION_MODAL

DOCUMENT_MODAL

MODELESS

TOOLKIT_MODAL

Before describing each of the modalities, it is important to talk about them in the
context of their default settings and the set of Dialog and JDialog constructors, of which
there are 14 and 16, respectively. The default modality is defined by the DEFAULT_MODALITY_
TYPE constant of the Dialog class. Calling the setModal() method with a value of false is
the obvious MODELESS setting, whereas calling it with a value of true sets the modality of

CHAPTER 4 ■ AWT AND SWING UPDATES 71

6609CH04.qxd  6/23/06  1:36 PM  Page 71



that Dialog to DEFAULT_MODALITY_TYPE. DEFAULT_MODALITY_TYPE happens to equate to
APPLICATION_MODAL. This keeps all historical code valid, although new code should use the
new setModalityType() method instead. As far as the constructors go, if you don’t explic-
itly specify a modality, the initial modality is DEFAULT_MODALITY_TYPE. If you specify a
boolean modality, you get the same settings as calling setModal() with that boolean value.
The last option is explicitly setting the modality, which has the obvious effect.

What do all the different types mean? The obvious one is MODELESS. That has the same
effect as it did before Mustang. A modeless dialog box will not block input to any other
window of the application. Another modal dialog box could block input to it, but a
modeless one will have no effect on another. The APPLICATION_MODAL setting is the next to
describe, as it equates directly to the modality behavior of pre-Mustang code. All win-
dows of the application that does not have the modal dialog box in its owner hierarchy
will be blocked from getting focus. This means that new windows that are created from
the modal dialog can accept input, but new windows created from other preexisting win-
dows cannot.

It’s with the last two, DOCUMENT_MODAL and TOOLKIT_MODAL, that life gets interesting.
DOCUMENT_MODAL allows you to have different sets of windows that are modal. For instance,
you can have a modal application window that calls up a help window. Provided the help
window has a different top-level window that is not part of the main application hierar-
chy, it can be modal and create other modal windows whose modality is separate from
the main window and any modal dialogs the main window creates. This is a common
need when utilizing the JavaHelp library, in which you always want to be able to interact
with help, even when the current window is modal. However, it never worked right prior
to support for DOCUMENT_MODAL, as they had different owner hierarchies. The last option is
TOOLKIT_MODAL. Think of TOOLKIT_MODAL as APPLICATION_MODAL, but where the application is
the browser. This typically allows one applet in a browser to be modal, blocking other
applets from accepting input. This is because all the applets are loaded with the same
system toolkit. Your applet must have AWTPermission.toolkitModality enabled for
TOOLKIT_MODAL to work.

In addition to setting the modality type of a window, you can set the modal exclusion
type via the setModalExclusionType() method of Window. This method accepts one of the
three values from the Dialog.ModalExclusionType enumeration, shown in Table 4-4.

Table 4-4. Dialog.ModalExclusionType Enumeration

Dialog.ModalExclusionType

APPLICATION_EXCLUDE

NO_EXCLUDE

TOOLKIT_EXCLUDE

CHAPTER 4 ■ AWT AND SWING UPDATES72

6609CH04.qxd  6/23/06  1:36 PM  Page 72



Basically, you can set the modality type for a dialog and the windows created with it
as the owner. Then, you can specify that specific windows with the dialog owner can be
excluded from that base modality setting. When the ModalExclusionType is set to the
NO_EXCLUDE option for a window, you get the normal behavior, in which that window par-
ticipates in the behavior based on the current modality type of the window. The other
two options allow you to use a modality type, but say that specific windows can override
the setting and always accept input focus. When the ModalExclusionType is APPLICATION_
EXCLUDE, you don’t have this window participate in the window modality at the applica-
tion level. TOOLKIT_EXCLUDE, on the other hand, works with both application and toolkit
modality. There is no way to have a window exclude behavior at the toolkit level, but not
the application level.

Before using either the modality types or the exclusion option, you can ask the
toolkit if either is supported. To discover whether a particular modality is supported,
ask the boolean isModalityTypeSupported(Dialog.ModalityType modalityType) method.
To discover if an exclusion type is supported, ask boolean isModalExclusionType➥

Supported(Dialog.ModalExclusionType modalExclusionType).
Now that you’ve read the long-winded version describing the Mustang modality fea-

tures, the program in Listing 4-6 shows off dual frames using the DOCUMENT_MODAL setting.
Each frame has a button that creates a document modal option pane, accepting input.
The label of the selected button changes to the text entered when the option pane closes.

Listing 4-6. Demonstrating Modality Types

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class DualModal {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

JFrame frame1 = new JFrame("Left");

JFrame frame2 = new JFrame("Right");

frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame2.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton button1 = new JButton("Left");

JButton button2 = new JButton("Right");

frame1.add(button1, BorderLayout.CENTER);

frame2.add(button2, BorderLayout.CENTER);

ActionListener listener = new ActionListener() {

public void actionPerformed(ActionEvent e) {

JButton source = (JButton)e.getSource();

CHAPTER 4 ■ AWT AND SWING UPDATES 73

6609CH04.qxd  6/23/06  1:36 PM  Page 73



String text = getNewText(source);

if (!JOptionPane.UNINITIALIZED_VALUE.equals(text) &&

text.trim().length() > 0) {

source.setText(text);

}

}

};

button1.addActionListener(listener);

button2.addActionListener(listener);

frame1.setBounds(100, 100, 200, 200);

frame1.setVisible(true);

frame2.setBounds(400, 100, 200, 200);

frame2.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

private static String getNewText(Component parent) {

JOptionPane pane = new JOptionPane(

"New label", JOptionPane.QUESTION_MESSAGE

);

pane.setWantsInput(true);

JDialog dialog = pane.createDialog(parent, "Enter Text");

// Uncomment line and comment out next to see application modal

// dialog.setModalityType(Dialog.ModalityType.APPLICATION_MODAL);

dialog.setModalityType(Dialog.ModalityType.DOCUMENT_MODAL);

dialog.setVisible(true);

return (String)pane.getInputValue();

}

}

Notice how you can interact with the top-level dialog over each frame, but not the
frame under either of them when the dialog is shown. Figure 4-11 shows the initial pair of
frames. Figure 4-12 shows the two frames with their respective option panes showing.
Changing the setModalityType() line to use APPLICATION_MODAL and rerunning the program
won’t allow you to interact with both option frames simultaneously. You need to finish
using one before you can bring up the other.

CHAPTER 4 ■ AWT AND SWING UPDATES74

6609CH04.qxd  6/23/06  1:36 PM  Page 74



Figure 4-11. Initial frames without either input pop-up window

Figure 4-12. Frames with both input pop-up windows showing

■Note Changing the modality of a window that’s already showing has no effect. You must hide the dialog
box and make it visible again for the new modality setting to take effect.

One pre-Mustang feature is worth mentioning here: any AWT Window or subclass can
request that it is always on top, via the setAlwaysOnTop() method of Window. This is not the
same as modal and does not prevent other windows from getting input focus.

GIF Writer

Lempel-Ziv-Welch (LZW) is a lossless data compression algorithm implementation.
Part of the GIF image format, it was originally patented by Sperry Corporation, and later
taken over by Unisys. While displaying GIF formats has always been supported by the
Java platform, the image I/O libraries only supported reading the format. Due to the

CHAPTER 4 ■ AWT AND SWING UPDATES 75

6609CH04.qxd  6/23/06  1:36 PM  Page 75



aforementioned patent, support for writing GIF images was never part of the standard
Java libraries. Now that the US patent and its counterparts around the globe have
expired, support for writing GIF images is available, free of any legal threats or royalty
requirements.

Listing 4-7 demonstrates the newly added capabilities.

Listing 4-7. Writing GIF-Formatted Images

import javax.imageio.*;

import java.io.*;

import java.awt.image.*;

import java.util.*;

public class ToGif {

public static void main(String args[]) throws IOException {

System.out.println("Supported Writer Formats:");

System.out.println(Arrays.toString(ImageIO.getWriterFormatNames()));

if (args.length == 0) {

System.err.println("Missing input filename");

System.exit(-1);

}

String name = args[0];

File inputFile = new File(name);

BufferedImage input = ImageIO.read(inputFile);

File outputFile = new File(name+".gif");

ImageIO.write(input, "GIF", outputFile);

}

}

First, the program prints out a list of all available format names for writing images
([BMP, jpeg, bmp, wbmp, GIF, gif, png, JPG, PNG, jpg, WBMP, JPEG] for the Java 6 stan-
dard platform). Then, it checks for an image file name specified on the command line,
reads it, and writes the converted image to GIF. The original file is not overwritten, even if
it was originally a GIF image. Instead, .gif is simply appended to the entire original file
name. For example, a file named HelloWorld.png would become HelloWorld.png.gif.

CHAPTER 4 ■ AWT AND SWING UPDATES76

6609CH04.qxd  6/23/06  1:36 PM  Page 76



Text Antialiasing

I am not really into the specifics of describing antialiasing, so this description may not be
the best from a technical standpoint; however, I nonetheless want to discuss this topic,
since Java 6 adds some additional antialiasing support that benefits text.

Antialiasing is the smoothing-out of lines drawn into a graphics context (typically the
screen, though also to a printer). As you know, the screen is just a bunch of square pixels.
If you connect these pixels on a diagonal, the user will see what are known as “the jag-
gies,” as shown in Figure 4-13. When enabled, antialiasing smoothes out these jagged
edges by drawing a lighter shade of color around the pixel. As shown in Figure 4-14, your
eyes don’t perceive the jagged edges to be as bad with the added color around pixels. The
difference is actually quite amazing when antialiasing is displayed at a proper pixel size,
as opposed to the large size shown in Figures 4-13 and 4-14.

Figure 4-13. The jaggies

Figure 4-14. Antialiased jaggies

CHAPTER 4 ■ AWT AND SWING UPDATES 77

6609CH04.qxd  6/23/06  1:36 PM  Page 77



Now, step forward to Mustang, and you’ll find LCD text antialiasing (where LCD
means your LCD screen—more specifically, a flat-panel version to get optimal results).
The prior form of antialiasing works great for grayscale printing. However, screens have
their own display characteristics and can be even better optimized for improved display
characteristics of text.

Instead of using gray scales to smooth out the edges, LCD text antialiasing involves
splitting each pixel into its component types—namely three columns of light: red, green,
and blue. It can then more gradually stagger the antialiasing columns to get a better
result.

Figure 4-15 shows what Figure 4-14 would look like if each side pixel were split into
its RGB components.

Figure 4-15. Antialiased stripes

The RGB values are taken with intensities of 75 percent for the outermost color (red
on left, blue on right), 50 percent in the middle (green), and 25 percent on the inside
(blue on left, red on right). Now, pixels aren’t created through the specific drawing of the
red, green, and blue colors. Instead, the value of each column is combined. This equates
to a left color of 75-percent red, 50-percent green, and 25-percent blue (or roughly 191,
128, and 64; or an off-orange color). On the right side, you get 25-percent red, 50-percent
green, and 75-percent blue, or a cyan-like color. Figure 4-16 shows this effect.

CHAPTER 4 ■ AWT AND SWING UPDATES78

6609CH04.qxd  6/23/06  1:36 PM  Page 78



Figure 4-16. LCD-antialiased jaggies

When this LCD-antialiased line is scaled down to a normal size, your eyes somehow
see this as blended to the right color mix, and don’t even see any orange and light blue
there.

To configure the system to perform this behavior, you must set the
KEY_TEXT_ANTIALIASING rendering hint to one of the five available constants:

• VALUE_TEXT_ANTIALIAS_GASP

• VALUE_TEXT_ANTIALIAS_LCD_HRGB

• VALUE_TEXT_ANTIALIAS_LCD_HBGR

• VALUE_TEXT_ANTIALIAS_LCD_VRGB

• VALUE_TEXT_ANTIALIAS_LCD_VBGR

The first one, VALUE_TEXT_ANTIALIAS_GASP, equates to what you can think of as stan-
dard smoothing. This relies on a font designer–provided table to manipulate the font
smoothing behavior. The last four describe subpixel configurations. For instance,
Figure 4-15 shows the HRGB (horizontal red, green, blue) configuration. Which you
choose depends upon your monitor’s configuration. Also, if your monitor isn’t an LCD
display, don’t expect the setting to have a good effect. You even have to match HRGB to
an HRGB display, as something like VBGR in such a case will produce blurry text.

CHAPTER 4 ■ AWT AND SWING UPDATES 79

6609CH04.qxd  6/23/06  1:36 PM  Page 79



Miscellaneous Stuff

In addition to the bigger AWT changes just described, there are a handful of smaller
changes worth mentioning. The Font class now has five new constants, one for each of
the logical font families defined by the Java platform: SERIF, SANS_SERIF, MONOSPACED,
DIALOG, and DIALOG_INPUT. No longer do you have to worry about typos in these names if
you use the constants. The MouseEvent class now supports getting the absolute x and y
coordinates of the event via its new methods getLocationOnScreen(), getXOnScreen(), and
getYOnScreen(). The location is specified by a Point, while the x and y locations are speci-
fied by an int. Lastly, the AffineTransform class offers about a dozen new methods to
support additional rotation options—many to better support quadrant rotations, like 
90-, 180-, and 270-degree rotations.

The javax.swing Package
Mustang updates the javax.swing package to provide even better support for your
graphic user interfaces. The changes include expanding the functionality of the existing
components and bringing into the standard libraries a class that has been around in one
form or another since the early days of the Java platform. The following list shows the
new features of Swing to be highlighted:

• Table sorting and filtering

• The SwingWorker class

• JTabbedPane component tabs

• Text component printing

• Drag-and-drop support

Table Sorting and Filtering

With Java 6, Swing tables have grown up. The common functionality of sorting and filter-
ing tables has finally been added to the standard functionality of a JTable. Through the
help of a whole bunch of new classes and interfaces, your users get to click on a column
to sort the elements in that column. In addition, you can offer them ways to easily filter
the set of rows in a JTable to only the set that meets some criterion.

First off is the added sorting support. To sort a JTable, you need to associate a
RowSorter class with the component. RowSorter is an abstract class that is responsible for
mapping the original table model to the sorted version and back again. After an instance
has been associated with the JTable, it is rarely interacted with directly.

CHAPTER 4 ■ AWT AND SWING UPDATES80

6609CH04.qxd  6/23/06  1:36 PM  Page 80



DefaultRowSorter is a subclass of RowSorter that combines sorting and filtering
support. You don’t, however, typically use this class directly either. Instead, that’s
where TableRowSorter comes into play. It’s a concrete implementation of the abstract
DefaultRowSorter class. TableRowSorter is what you associated with the JTable to sort
the shared model. The basic principle to enable sorting of a JTable is this simple:

TableModel model = ...;

JTable table = new JTable(model);

RowSorter sorter = new TableRowSorter(model);

table.setRowSorter(sorter);

Notice that the same model is passed into both constructors here: JTable and
TableRowSorter. At this point, your table’s rows can be sorted by a user clicking on a table
column header, as shown in Figure 4-17 (before) and Figure 4-18 (after). The black arrow
next to the Name header indicates that it is the sort key column. The arrow doesn’t
appear until a sort key column has been identified, which is why Figure 4-17 has none.

Figure 4-17. Before sorting a JTable

Figure 4-18. After sorting a JTable

Listing 4-8 demonstrates the sorting of a JTable. The table model offers a set of stock
symbols, names, and prices, as shown in Figures 4-17 and 4-18.

CHAPTER 4 ■ AWT AND SWING UPDATES 81

6609CH04.qxd  6/23/06  1:36 PM  Page 81



Listing 4-8. Sorting Table Elements

import javax.swing.*;

import javax.swing.table.*;

import java.awt.*;

public class SortedTable {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

JFrame frame = new JFrame("Sorting JTable");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Object rows[][] = {

{"AMZN", "Amazon", 44.36},

{"EBAY", "eBay", 44.84},

{"GOOG", "Google", 463.63},

{"MSFT", "Microsoft", 27.14},

{"N", "Inco Ltd.", 44.57},

{"O", "Realty Income Corp.", 23.15},

{"SUNW", "Sun Microsystems", 4.40},

{"T",  "AT&T", 24.96},

{"TIVO", "Tivo Inc", 5.45},

{"X",  "US Steel", 49.54},

{"Y", "Alleghany", 280.00}

};

String columns[] = {"Symbol", "Name", "Price"};

TableModel model = new DefaultTableModel(rows, columns);

JTable table = new JTable(model);

RowSorter<TableModel> sorter =

new TableRowSorter<TableModel>(model);

table.setRowSorter(sorter);

JScrollPane pane = new JScrollPane(table);

frame.add(pane, BorderLayout.CENTER);

frame.setSize(300, 150);

frame.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

}

CHAPTER 4 ■ AWT AND SWING UPDATES82

6609CH04.qxd  6/23/06  1:36 PM  Page 82



There is one key thing worth mentioning here. Clicking the last column will sort the
table based on the last column value, as shown in Figure 4-19.

Figure 4-19. An alphabetic sort of a numeric column

Notice that the value 280.0 is between 27.14 and 4.4. By default, the elements of a
DefaultTableModel are of type Object. In order to do numeric sorting, you have to change
the data type of the column. This involves overriding the getColumnClass() method of
DefaultTableModel:

TableModel model = new DefaultTableModel(rows, columns) {

public Class getColumnClass(int column) {

Class returnValue;

if ((column >= 0) && (column < getColumnCount())) {

returnValue = getValueAt(0, column).getClass();

} else {

returnValue = Object.class;

}

return returnValue;

}

};

Here, the getColumnClass() method reports back that the data in the first row deter-
mines the class for all cells in that column. Thus, 280.0 would now be treated as type
Number, not String, for sorting purposes. After the change, sorting the table in Figure 4-17
by the last column produces a more appropriate result, as shown in Figure 4-20.

CHAPTER 4 ■ AWT AND SWING UPDATES 83

6609CH04.qxd  6/23/06  1:36 PM  Page 83



Figure 4-20. A numeric sort of a numeric column

Before moving on to filtering, it is important to mention the concept of selection.
When sorting is enabled and the model has been reordered, selection of a row from the
sorted model doesn’t map back to the same row number in the source table model. That’s
where the convertRowIndexToModel() method comes into play. To demonstrate, the follow-
ing code adds a JButton to the prior program that when selected displays the set of
selected rows in the JTable:

JButton button = new JButton("Print Selected Rows");

ActionListener listener = new ActionListener() {

public void actionPerformed(ActionEvent e) {

for (int row: table.getSelectedRows()) {

System.out.println("Selected row: " +

table.convertRowIndexToModel(row));

}

}

};

button.addActionListener(listener);

frame.add(button, BorderLayout.SOUTH);

Without the call to table.convertRowIndextoModel(), printing the set of selected rows
will print the set of selected rows for the current view of the model, whether sorted or
otherwise. Once the conversion call is added, the selected row gets mapped back to the
position in the original model. From here, you can print it, manipulate it, and so on.
There is also another method, convertRowIndexToView(), which takes a row from the
source table model and determines which row in the sorted model it maps to.

CHAPTER 4 ■ AWT AND SWING UPDATES84

6609CH04.qxd  6/23/06  1:36 PM  Page 84



■Tip To discover when a table-resorting operation happens, attach a RowSorterListener to RowSorter
and implement the sorterChanged() method.

Filtering of table rows is done with the help of the abstract RowFilter class. You typi-
cally don’t create your own subclasses of this, but instead use one of its six static methods
to get a sufficient filter:

• andFilter(Iterable<? extends RowFilter<? super M,? super I>> filters)

• dateFilter(RowFilter.ComparisonType type, Date date, int... indices)

• notFilter(RowFilter<M,I> filter)

• numberFilter(RowFilter.ComparisonType type, Number number, int... indices)

• orFilter(Iterable<? extends RowFilter<? super M,? super I>> filters)

• regexFilter(String regex, int... indices)

The andFilter(), orFilter(), and notFilter() methods are themselves only for com-
bining with other RowFilter instances. Want to check for a date greater than December
25, 2000, and a number less than 25? You’ll need to combine the date filter and number
filter with the help of the andFilter() method. It’s that simple.

RowFilter.ComparisonType allows you to check for equality, inequality, before, and
after type comparisons. The date or number provided fills in the other side of the equa-
tion. What the last indices argument buys you is the ability to limit the search to only the
set of columns specified. Specifying no indices means everything will be searched.

Probably the most interesting of all the filters is the regular expression filter, or regex
filter for short. This allows you to limit the visible view of the table model to those that
match the specified regular expression (for instance, only those rows with a T in them).
Figure 4-21 shows what happens after a table is filtered. The source listing follows in
Listing 4-9.

CHAPTER 4 ■ AWT AND SWING UPDATES 85

6609CH04.qxd  6/23/06  1:36 PM  Page 85



Figure 4-21. Filtered table entries

Listing 4-9. Filtering Table Elements

import javax.swing.*;

import javax.swing.table.*;

import java.awt.*;

import java.awt.event.*;

public class RegexTable {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

JFrame frame = new JFrame("Regexing JTable");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Object rows[][] = {

{"AMZN", "Amazon", 44.36},

{"EBAY", "eBay", 44.84},

{"GOOG", "Google", 463.63},

{"MSFT", "Microsoft", 27.14},

{"N", "Inco Ltd.", 44.57},

{"O", "Realty Income Corp.", 23.15},

{"SUNW", "Sun Microsystems", 4.40},

{"T",  "AT&T", 24.96},

{"TIVO", "Tivo Inc", 5.45},

{"X",  "US Steel", 49.54},

{"Y", "Alleghany", 280.00}

};

String columns[] = {"Symbol", "Name", "Price"};

TableModel model = new DefaultTableModel(rows, columns) {

CHAPTER 4 ■ AWT AND SWING UPDATES86

6609CH04.qxd  6/23/06  1:36 PM  Page 86



public Class getColumnClass(int column) {

Class returnValue;

if ((column >= 0) && (column < getColumnCount())) {

returnValue = getValueAt(0, column).getClass();

} else {

returnValue = Object.class;

}

return returnValue;

}

};

final JTable table = new JTable(model);

final TableRowSorter<TableModel> sorter =

new TableRowSorter<TableModel>(model);

table.setRowSorter(sorter);

JScrollPane pane = new JScrollPane(table);

frame.add(pane, BorderLayout.CENTER);

JPanel panel = new JPanel(new BorderLayout());

JLabel label = new JLabel("Filter");

panel.add(label, BorderLayout.WEST);

final JTextField filterText = new JTextField("T");

panel.add(filterText, BorderLayout.CENTER);

frame.add(panel, BorderLayout.NORTH);

JButton button = new JButton("Filter");

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

String text = filterText.getText();

if (text.length() == 0) {

sorter.setRowFilter(null);

} else {

sorter.setRowFilter(RowFilter.regexFilter(text));

}

}

});

frame.add(button, BorderLayout.SOUTH);

frame.setSize(300, 250);

frame.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

}

CHAPTER 4 ■ AWT AND SWING UPDATES 87

6609CH04.qxd  6/23/06  1:36 PM  Page 87



Clicking a filtered table’s column header still allows you to sort the rows, as demon-
strated in Figure 4-22.

Figure 4-22. A sorted and filtered JTable

The SwingWorker Class

What’s old is new again with SwingWorker. If the name sounds familiar, that’s because the
original version of this class first came about in the late 1990s. If you’re familiar with the
class, great—you should be able to get up to speed with it quickly. One major difference
is that the class now implements Runnable, among other interfaces. There are more
changes than that, though. What the SwingWorker class allows you to do is some back-
ground operation off the event dispatch thread, and then automatic completion on the
event dispatch thread to update any screen state. Think of an operation like reading a file.
This should not be done on the event thread because it takes some time, and you don’t
want to block the event thread while reading the file. Once you’re done reading the file,
you need to update the screen with some piece of data, like the number of characters in
the file or the file contents. Why the separation? Basically, because you do this combined
set of tasks frequently. (And if you don’t, you should.) Remember that Swing components
are not threadsafe, and should only be accessed from the event dispatch thread.

Without using the SwingWorker class, the normal mode of operation is to kick off a
new thread that performs a lengthy task, and then when done, notify the event thread to
update the screen of your changes. Sometimes you forget about the first piece of this,
causing the event thread to block during the lengthy task. If you use SwingWorker, though,
you can save yourself some trouble.

There are multiple ways to use the SwingWorker class. The basic operation, which fol-
lows the pattern previously mentioned, is the method pair doInBackground() and done().
You subclass SwingWorker, override the doInBackground() method with some lengthy

CHAPTER 4 ■ AWT AND SWING UPDATES88

6609CH04.qxd  6/23/06  1:36 PM  Page 88



operation, and override the done() method to do the last little bit of work, updating the
Swing component from the event thread.

final JLabel label = new JLabel("Welcome");

SwingWorker worker = new SwingWorker() {

public String doInBackground() {

return "Lengthy task output";

}

public void done() {

label.setText(get());

}

}.execute();

The get() call here indirectly returns the value returned by doInBackground(). Until
you call the execute() method, nothing is done yet as far as the thread actually running.

■Tip The SwingWorker class has an enumeration for its StateValue. This can be one of DONE, PENDING,
or STARTED. To get the current value, call the getState() method of SwingWorker.

The second way to use SwingWorker is with the publish() and process() pair of
methods. These are appropriate when you need to pass off intermediate results while
additional work is waiting to be processed. For instance, in the doInBackground() method,
you might periodically call publish() to notify any waiting processes of something to
process. The process() method then gets called here, which offers a way to perform inter-
mediate steps on the event dispatch thread. Think of updating a JProgressBar here. Every
once in a while, you need to push the progress bar along until completion, as shown in
the following snippet of code:

public String doInBackground() {

while (!done) {

nextString = getNextString();

publish(nextString);

count++

if (count >= 100) {

done == true;

}

setProgress(100 * count / total)

}

}

CHAPTER 4 ■ AWT AND SWING UPDATES 89

6609CH04.qxd  6/23/06  1:36 PM  Page 89



Along with calling the publish() method periodically, the doInBackground() method
immediately notifies any property change listeners. Whether you need them or not is up
to you. And the previously mentioned progress() method is still available for usage.

JTabbedPane Component Tabs

The JTabbedPane component offers a convenient way to show lots of stuff in a small
amount of space. It does this by breaking the information into separate tabs. Select one
tab to see a particular set of components; select a different tab to see a different set of
components. Since first introduced, the JTabbedPane allowed you to place text and an icon
on each tab, but people weren’t happy with only text and icons. A little more functionality
has been completed with the Java 6 release: components directly placed on tabs, as
demonstrated in Figure 4-23.

To set the title of a tab, you specify the title text and which tab you are configuring.
Setting up a tab to be used with a Component is done similarly with the setTabComponentAt()
method, which passes in the tab index and component object to be used.

Component comp = ...;

JTabbedPane pane = new JTabbedPane();

pane.setTabComponentAt(0, comp);

Figure 4-23. A JTabbedPane with component tabs

Basically, you have three methods to play with: 
setTabComponentAt(int index, Component comp), getTabComponentAt(int index), and
indexOfTabComponent(Component). The last one tries to locate a placed component 
for you.

Listing 4-10 demonstrates the usage of this new API. As the API dictates, you can
technically use either Swing or AWT components. However, I wouldn’t recommend mix-
ing the two. In this particular example, a JTextField is used as the label for each tab. It is
editable, so if you don’t like the default name of a tab, you can rename it.

CHAPTER 4 ■ AWT AND SWING UPDATES90

6609CH04.qxd  6/23/06  1:36 PM  Page 90



Listing 4-10. Components on a JTabbedPane

import java.awt.*;

import javax.swing.*;

public class TabSample {

static void addIt(JTabbedPane tabbedPane, String text) {

JLabel label = new JLabel(text);

JButton button = new JButton(text);

JPanel panel = new JPanel();

panel.add(label);

panel.add(button);

tabbedPane.addTab(text, panel);

tabbedPane.setTabComponentAt(tabbedPane.getTabCount()-1,

new JTextField(text));

}

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

JFrame f = new JFrame("Got JTabbedPane?");

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JTabbedPane tabbedPane = new JTabbedPane();

addIt(tabbedPane, "Tab One");

addIt(tabbedPane, "Tab Two");

addIt(tabbedPane, "Tab Three");

addIt(tabbedPane, "Tab Four");

addIt(tabbedPane, "Tab Five");

f.add(tabbedPane, BorderLayout.CENTER);

f.setSize(300, 200);

f.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

}

Text Component Printing

In the same manner that J2SE 5.0 simplified printing of JTable components, Java 6 sim-
plifies the printing of the different JTextComponent subclasses, like JTextField, JTextArea,
and JTextPane, to name a few. While you could always print the text components before,

CHAPTER 4 ■ AWT AND SWING UPDATES 91

6609CH04.qxd  6/23/06  1:36 PM  Page 91



you were responsible for pagination and the like. Now, it’s all done for you—you just need
to call one of the new print() methods, of which there are three.

The simplest way to print the contents of a text component is to call its no-argument
print() method. Figure 4-24 shows what the initial program looks like, and Figure 4-25
shows the standard printer dialog. The program in Listing 4-11 simply shows a JTextArea,
pastes the current clipboard contents into it, and offers a Print button for printing the
content.

Figure 4-24. Printing the contents of a text component

Figure 4-25. The printer dialog

CHAPTER 4 ■ AWT AND SWING UPDATES92

6609CH04.qxd  6/23/06  1:36 PM  Page 92



Listing 4-11. Printing Text Components

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.print.*;

public class TextPrint {

public static void main(final String args[]) {

Runnable runner = new Runnable() {

public void run() {

JFrame frame = new JFrame("Text Print");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

final JTextArea textArea = new JTextArea();

JScrollPane pane = new JScrollPane(textArea);

frame.add(pane, BorderLayout.CENTER);

textArea.paste();

JButton button = new JButton("Print");

frame.add(button, BorderLayout.SOUTH);

ActionListener listener = new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

textArea.print();

} catch (PrinterException pe) {

System.err.println("Unable to print...");

}

}

};

button.addActionListener(listener);

frame.setSize(250, 150);

frame.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

}

CHAPTER 4 ■ AWT AND SWING UPDATES 93

6609CH04.qxd  6/23/06  1:36 PM  Page 93



The print() method is itself kind of generic. While it does offer you the interactive
printer-selection dialog, you don’t get a footer or header on each page. In order to do
this, you need to use the second variety of the method: print(MessageFormat header,
MessageFormat footer).

The most interesting of all the print() methods is the full-featured one:

public boolean print(MessageFormat headerFormat,

MessageFormat footerFormat,

boolean showPrintDialog,

PrintService service,

PrintRequestAttributeSet attributes,

boolean interactive)

This last version lets you decide on more configuration options, like the inclusion or
exclusion of the printer dialog, and the initial set of printer attributes. This version is the
most flexible, and is what the other two varieties actually call to do their work.

■Note All three print() methods of JTextComponent will block until the print job is queued. If you want
this queuing operation to happen in the background, you’ll need to fork off another thread.

Drag-and-Drop Support

After cleaning up my desktop machine, I discovered that I’ve been writing about drag-
and-drop support in Java since May 12, 1998. With Mustang, drag-and-drop support has
undergone another significant set of changes—for the better, it looks like. There are two
enhancements in this area with Mustang: 

• Customizable drop modes that don’t have to use selection to indicate drop
location.

• Additional information is now available during transferable operations. This added
information provides sufficient context to make a more informed decision about
whether or not you should be able to perform a drop operation, like location-
sensitive drop targets.

CHAPTER 4 ■ AWT AND SWING UPDATES94

6609CH04.qxd  6/23/06  1:36 PM  Page 94



First off are the customizable drop modes. JList, JTable, JTextComponent, and JTree
have a new setDropMode() method, which accepts a DropMode argument. Each particular
component has a specific set of drop modes that it considers acceptable.

All components support a drop mode of USE_SELECTION; this is the historical way of
indicating where to drop something. For instance, a text component will move the caret
to indicate drop position. This is the default drop mode setting. The remaining options
do not have an effect on component selection.

A DropMode of ON is supported by JList, JTable, and JTree. It allows you to drop objects
on top of other items. This is useful for such tasks as dropping a file on a trash can to
delete it, or on a JTree node to create a subtree. A drop mode of INSERT works for all four
component types and allows you to drop items between other items, like between nodes
of a tree or elements of a list. The ON_OR_INSERT mode goes back to the first three, JList,
JTable, and JTree, and supports either mode of operation.

The JTable component has four additional drop mode options: INSERT_COLS,
INSERT_ROWS, ON_OR_INSERT_COLS, and ON_OR_INSERT_ROWS. These restrict dropping over a
JTable to one-directional changes if desired.

To demonstrate the different drop mode options, Figure 4-26 shows the program’s
window. It provides a draggable JTextField at the top, a droppable JTree in the middle,
and a JComboBox at the bottom for selection of drop mode options.

Basically, you can type something in the JTextField, highlight it, and drag it over the
JTree. You can then drop the text and see the different behaviors for the different drop
mode settings. Figure 4-27 shows the USE_SELECTION behavior. As you move the mouse
over the tree, you lose any indication of selection prior to the drop initiation. Figure 4-28
shows the ON behavior. Here, you see both the previously selected item and the current
drop location. The INSERT drop mode is shown in Figure 4-29. When dragging an object
above a tree with the drop mode set to INSERT, you get a narrow line that appears between
two nodes of the tree. When the drop mode is set to ON_OR_INSERT, the tree acts like a com-
bination of ON and INSERT, and doesn’t require its own screen dump, as the drop indicator
depends upon the position of the mouse and alternates between the two options based
on position.

CHAPTER 4 ■ AWT AND SWING UPDATES 95

6609CH04.qxd  6/23/06  1:36 PM  Page 95



Figure 4-26. A JTree with support for Figure 4-27. USE_SELECTION drop mode
dropping items

Figure 4-28. ON drop mode Figure 4-29. INSERT drop mode

CHAPTER 4 ■ AWT AND SWING UPDATES96

6609CH04.qxd  6/23/06  1:36 PM  Page 96



While Java 5 added built-in drag-and-drop support for several components, it didn’t
define drop behavior for a JTree. Java 6 doesn’t help there, either. If you want to be able
to drop items on a JTree, you have to do it yourself. The way to do this is to define a
TransferHandler and associate it with the JTree. TransferHandler has many methods, but
thankfully you don’t have to override many to create a handler for a JTree—in fact, only
two: public boolean canImport(TransferHandler.TransferSupport support) and public
boolean importData(TransferHandler.TransferSupport support).

The canImport() method of TransferHandler lets you define when, where, and what
you can import. The method returns a boolean, where true indicates that it is OK to trans-
fer and false indicates that it is not. To keep things simple in the following code snippet,
only strings will be transferable and only drop operations will be supported. The cut-and-
paste operation will not be supported, even though it uses the same mechanism. Lastly, if
the tree path is empty, that too is a failure case.

public boolean canImport(TransferHandler.TransferSupport support) {

if (!support.isDataFlavorSupported(DataFlavor.stringFlavor) ||

!support.isDrop()) {

return false;

}

JTree.DropLocation dropLocation =

(JTree.DropLocation)support.getDropLocation();

return dropLocation.getPath() != null;

}

The importData() method is a little more complicated. Essentially, you have to get the
data, find the right place in the TreePath for the insertion, create the node, insert it, and,
to be nice, make sure that the newly inserted node is visible. Listing 4-12 includes the
importData() definition, along with the complete source used to generate Figure 4-26.

Listing 4-12. Demonstrating Drop Modes with a JTree

import java.awt.*;

import java.awt.datatransfer.*;

import java.awt.event.*;

import java.io.*;

import javax.swing.*;

import javax.swing.tree.*;

CHAPTER 4 ■ AWT AND SWING UPDATES 97

6609CH04.qxd  6/23/06  1:36 PM  Page 97



public class DndTree {

public static void main(String args[]) {

Runnable runner = new Runnable() {

public void run() {

JFrame f = new JFrame("D-n-D JTree");

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel top = new JPanel(new BorderLayout());

JLabel dragLabel = new JLabel("Drag me:");

JTextField text = new JTextField();

text.setDragEnabled(true);

top.add(dragLabel, BorderLayout.WEST);

top.add(text, BorderLayout.CENTER);

f.add(top, BorderLayout.NORTH);

final JTree tree = new JTree();

final DefaultTreeModel model = (DefaultTreeModel)tree.getModel();

tree.setTransferHandler(new TransferHandler() {

/**

* Returns true if flavor of data is string, operation is

* a drop operation, and path is non-null.

*/

public boolean canImport(TransferHandler.TransferSupport support) {

if (!support.isDataFlavorSupported(DataFlavor.stringFlavor) ||

!support.isDrop()) {

return false;

}

JTree.DropLocation dropLocation =

(JTree.DropLocation)support.getDropLocation();

return dropLocation.getPath() != null;

}

/**

* Performs actual import operation. Returns true on success

* and false otherwise.

*/

public boolean importData(TransferHandler.TransferSupport support) {

if (!canImport(support)) {

return false;

}

CHAPTER 4 ■ AWT AND SWING UPDATES98

6609CH04.qxd  6/23/06  1:36 PM  Page 98



// Fetch the drop location

JTree.DropLocation dropLocation =

(JTree.DropLocation)support.getDropLocation();

// Fetch the tree path

TreePath path = dropLocation.getPath();

// Fetch the transferable object

Transferable transferable = support.getTransferable();

// Fetch the transfer data in the proper format

// from the transferable object

String transferData;

try {

transferData = (String)transferable.getTransferData(

DataFlavor.stringFlavor);

} catch (IOException e) {

return false;

} catch (UnsupportedFlavorException e) {

return false;

}

// Fetch the drop location

int childIndex = dropLocation.getChildIndex();

// -1 means drop location is parent node, which is translated to end

if (childIndex == -1) {

childIndex = model.getChildCount(path.getLastPathComponent());

}

// Create new node

DefaultMutableTreeNode newNode = 

new DefaultMutableTreeNode(transferData);

// Insert new node at proper location

DefaultMutableTreeNode parentNode =

(DefaultMutableTreeNode)path.getLastPathComponent();

model.insertNodeInto(newNode, parentNode, childIndex);

// Make new node visible

TreePath newPath = path.pathByAddingChild(newNode);

tree.makeVisible(newPath);

tree.scrollRectToVisible(tree.getPathBounds(newPath));

CHAPTER 4 ■ AWT AND SWING UPDATES 99

6609CH04.qxd  6/23/06  1:36 PM  Page 99



return true;

}

});

JScrollPane pane = new JScrollPane(tree);

f.add(pane, BorderLayout.CENTER);

JPanel bottom = new JPanel();

JLabel comboLabel = new JLabel("DropMode");

String options[] = {"USE_SELECTION",

"ON", "INSERT", "ON_OR_INSERT"

};

final DropMode mode[] = {DropMode.USE_SELECTION,

DropMode.ON, DropMode.INSERT, DropMode.ON_OR_INSERT};

final JComboBox combo = new JComboBox(options);

combo.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

int selectedIndex = combo.getSelectedIndex();

tree.setDropMode(mode[selectedIndex]);

}

});

bottom.add(comboLabel);

bottom.add(combo);

f.add(bottom, BorderLayout.SOUTH);

f.setSize(300, 400);

f.setVisible(true);

}

};

EventQueue.invokeLater(runner);

}

}

■Note You can override the public boolean shouldIndicate(TransferHandler.TransferSupport
support, boolean canImport) method of TransferHandler to say whether the drop location should
be indicated when over a potential drop target. This is different than performing location-sensitive drop
operations, which would involve getting the drop location from the TransferSupport object passed to the
canImport() method, and performing some check based on that location.

CHAPTER 4 ■ AWT AND SWING UPDATES100

6609CH04.qxd  6/23/06  1:36 PM  Page 100



The second half to the new drag-and-drop support in Java 6 is actually demonstrated
in this example. It is the TransferHandler.TransferSupport object passed into the
importData() method. It defines several properties that you can use when deciding
whether to allow data importing. These properties are as follows:

• Component: The target component of the transfer

• Data flavors: The supported data formats available

• Drop actions: The action being performed, the source drop actions, and the user
drop action

• Drop location: The possible location of a drop, or null if not a drop operation

• Transferable: The actual Transferable object

• Drop: The current operation type (drop, as opposed to cut and paste)

In addition to these properties of TransferSupport, there is a method for checking
whether the TransferHandler supports the flavor: isDataFlavorSupported(DataFlavor).
It no longer is necessary to loop through all available flavors to see if there is a match.
This inner class of TransferHandler should allow developers to enable more informed
decision-making when designing drop zones for data transfers. 

More Miscellaneous Stuff

The Swing packages had more “big” idea changes than little additions here and there.
Some smaller-scale changes include the addition of Cursor support to JInternalFrame
objects, the addition of fields that can be associated with an Action, and the addition of
TableStringConverter, a helper class that lets you convert TableModel cells to an appropri-
ate string representation. There is even a new FileNameExtensionFilter for working with
the JFileChooser.

Summary
This chapter has introduced some of the more visual items added to the latest desktop
Java release. You learned about having fun with splash screens and the system tray. You
explored the new modality options for pop-up windows, and discovered that you can
now write GIF images without the risk of patent violations. Also on the AWT front were
the latest antialiasing enhancements. In the Swing world, you explored the sorting and

CHAPTER 4 ■ AWT AND SWING UPDATES 101

6609CH04.qxd  6/23/06  1:36 PM  Page 101



filtering enhancements to the JTable component, how the SwingWorker class was finally
introduced to the standard platform libraries, and how to place components on tabs of a
JTabbedPane. Printing text components is another feature added to Mustang, along with
another round of improvements to drag-and-drop support.

The next chapter takes you to the latest improvements to JDBC (the trademarked
name that is not an acronym for Java Database Connectivity). You’ll see how the 4.0
version of the API to access SQL data stores makes life even easier for you.

CHAPTER 4 ■ AWT AND SWING UPDATES102

6609CH04.qxd  6/23/06  1:36 PM  Page 102



JDBC 4.0

Need to access a database? Since the original JDBC API was added to JDK 1.1, the JDBC
API has offered support for connecting your Java programs to SQL-based data sources.
And, while JDBC is not an acronym for Java Database Connectivity (at least according to
Sun), what you may be tired of doing with JDBC is loading database drivers. One of the
many new features added to Mustang is the ability to access JDBC connections without
having to explicitly load the driver, provided it is packaged properly. As Tables 5-1 and 5-2
show, the java.sql package has grown quite a bit, while javax.sql and its subpackages
have barely grown at all.

Table 5-1. java.sql.* Package Sizes

Package Version Interfaces Classes Enums Throwable Annotations Total

sql 5.0 18 7 0 0+4 0 29

sql 6.0 27 8 3 0+19 4 61

Delta 9 1 3 0+15 4 32

Table 5-2. javax.sql.* Package Sizes

Package Version Interfaces Classes Throwable Total

sql 5.0 12 2 0+0 14

sql 6.0 14 3 0+0 17

sql.rowset 5.0 7 2 0+1 10

sql.rowset 6.0 7 2 0+1 10

sql.rowset.serial 5.0 0 9 0+1 10

sql.rowset.serial 6.0 0 9 0+1 10

sql.rowset.spi 5.0 4 2 0+2 8

sql.rowset.spi 6.0 4 2 0+2 8

Delta 2 1 0+0 3
103

C H A P T E R  5

6609CH05.qxd  6/23/06  1:37 PM  Page 103



There are many different areas to explore what’s new and different with JDBC 4.0.
In addition to the new driver-loading capabilities, you’ll discover many other features
added to Mustang via JSR 221, many times to add support for new SQL 2003 features.
According to the original Java Specification Request, one of the primary goals of the new
release is ease of use. You be the judge on how well Sun did.

■Note The examples in this chapter are purposely just code snippets, not complete programs. This was
done to avoid spending too much time in setup of your system and identifying whether all the features are
supported with your installed database selection, in favor of actually learning what’s new and different with
Java 6.

The java.sql and javax.sql Packages
The java.sql package is the primary package for JDBC. It offers the main classes for inter-
acting with your data sources. Since the changes to javax.sql are so small, I’ll cover the
two together. The new features in these packages for Mustang include changes in the fol-
lowing areas:

• Database driver loading

• Exception handling improvements

• Enhanced BLOB/CLOB functionality

• Connection and statement interface enhancements

• National character set support

• SQL ROWID access

• SQL 2003 XML data type support

• Annotations

Database Driver Loading

Mustang changes the requirement that you must explicitly load/register the database
driver that your JDBC program needs. Since Chapter 1, there have been several examples
of using the new service provider interface introduced with Mustang. Create a subdirec-
tory named services under the META-INF directory for your JAR file and place an

CHAPTER 5 ■ JDBC 4.0104

6609CH05.qxd  6/23/06  1:37 PM  Page 104



appropriately named text file in the directory for the service provider to be discovered,
and the Java runtime environment will locate it when requested (specifics to be shown
shortly). This is exactly how the new support for loading JDBC drivers has been added to
Mustang. Provided the vendor for your JDBC driver packages up the driver in this new
way, you don’t have to explicitly load the driver yourself.

Before Mustang, the way to load the JDBC driver wasn’t difficult; it just required you
to learn what the right class name was for the driver from a particular vendor.

Class.forName("oracle.jdbc.driver.OracleDriver");

// or DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Connection con = DriverManager.getConnection(url, username, password);

Now, you can drop that first line there, and essentially just use the driver directly.

Connection con = DriverManager.getConnection(url, username, password);

One question comes up frequently when people hear about this new feature: what
happens when multiple drivers installed as services are available for the same database
connection type? It works in CLASSPATH order. The first JAR file with a matching connec-
tion from the DriverManager will be used. This is really no different than before if you
called Class.forName(), passing in a driver name found in multiple JAR files.

What happened to creating connections using a DataSource? It still works, though it
isn’t necessary in stand-alone applications. According to a blog entry from Amit Handa of
Sun (http://blogs.sun.com/roller/page/blogAmit?entry=jdbc_driver_loading_with_mustang),
“Nothing changes in the Java EE world. This driver loading is primarily for non managed
scenarios or stand alone applications. The way you get a connection from a DataSource
stays as it is.”

If you are interested in doing this for your own JDBC driver, place the name of the
java.sql.Driver implementation class in the file META-INF/services/java.sql.Driver.

> cat META-INF/services/java.sql.Driver

net.zukowski.revealed.sql.MyDriver

Exception Handling Improvements

There are three areas in which exception handling for your JDBC code has improved
with the changes in JDBC 4.0. First off, you can use the Java 5 enhanced for loop to easily
iterate through the cause of an exception. Secondly, there are new constructors for
SQLException to pass in the underlying reason for the SQLException. And, lastly, there are
many new subclasses of SQLException for cleaner handling of exceptions with their own
catch clauses.

CHAPTER 5 ■ JDBC 4.0 105

6609CH05.qxd  6/23/06  1:37 PM  Page 105



In order to support the enhanced for loop, the SQLException class now implements
the Iterable<T> interface, where T is Throwable. The internal vector of SQLException objects
can be looped through easily in the catch clause of your JDBC code.

try {

...

} catch (SQLException sqle) {

for(Throwable t : sqle) {

System.out.println("Throwable: " + t);

}

}

Not only does the class implement Iterable, but there are four new constructors for
SQLException, passing in the cause of the underlying SQL exception:

• SQLException(Throwable cause)

• SQLException(String reason, Throwable cause)

• SQLException(String reason, String sqlState, Throwable cause)

• SQLException(String reason, String sqlState, int vendorCode, Throwable cause)

This allows you to discover that, say, an IOException caused the SQLException. This
changes the earlier code snippet a little bit to check for causes, and not just loop through
all the SQL exceptions.

try {

...

} catch (SQLException sqle) {

for(Throwable t : sqle) {

System.out.println("Throwable: " + t);

Throwable cause = t.getCause();

while (cause != null) {

System.out.println("Cause: " + cause);

cause = cause.getCause();

}

}

}

The last set of exceptional changes are the new subclasses of SQLException, which
allow you to handle each type differently and with ease in its own catch clause, without
having to try to figure out what really went wrong based on associated error codes.

Since the beginning of JDBC time, the SQLException class has had a getSQLState()
method to get the associated SQL state string for the exception, and a vendor-specific

CHAPTER 5 ■ JDBC 4.0106

6609CH05.qxd  6/23/06  1:37 PM  Page 106



error code, accessible from the getErrorCode() method. These methods are still there
and can be used; but in addition to these methods, there are now subclasses specific to
common SQL states. There are also two new categories for SQL exceptions: transient
and nontransient. These are represented by the new SQLTransientException and
SQLNonTransientException classes.

Transient exceptions are those that when retried could succeed without changing
anything. These exceptions include the following subclasses:

• SQLTimeoutException: Expired statement timeout

• SQLTransactionRollbackException: Database rolled back statement automatically,
possibly due to deadlock (SQLState 40)

• SQLTransientConnectionException: Communication layer problem (SQLState 08)

Nontransient exceptions are those that will fail again on retry until the underlying
cause of the problem is corrected. There are six subclasses of SQLNonTransientException:

• SQLDataException: Data error, such as an invalid argument (SQLState 22)

• SQLFeatureNotSupportedException: JDBC driver doesn’t support feature (SQLState 0A)

• SQLIntegrityConstraintViolationException: Constraint on a key was violated
(SQLState 23)

• SQLInvalidAuthorizationSpecException: Invalid authorization credentials presented
during connection (SQLState 28)

• SQLNonTransientConnectionException: Communication layer problem that cannot
be corrected (SQLState 08)

• SQLSyntaxErrorException: Query violated SQL syntax (SQLState 42)

In some cases, such as SQLFeatureNotSupportedException, the fix for the problem is to
get a new database driver, not to necessarily change anything in code. The connection
exception can be transient or nontransient, depending upon what the problem is—hence
the shared SQLState value of 08.

Enhanced BLOB/CLOB Functionality

BLOBs and CLOBs can be fun. They represent binary and character large objects stored
in the database system. Prior to JDBC 4.0, there were some areas of the API that could
lead to some ambiguity. Changes in Mustang fix these. For instance, instead of having
to call setCharacterStream(int parameterIndex, Reader reader, int length) on a
PreparedStatement and letting the system possibly incorrectly determine whether the

CHAPTER 5 ■ JDBC 4.0 107

6609CH05.qxd  6/23/06  1:37 PM  Page 107



column was a LONGVARCHAR or a CLOB, you can now explicitly call setClob(int parameterIndex,
Reader reader, long length). Other changes include the following methods for creating
empty objects in the Connection interface: createBlob(), createClob(), and createNClob().
In addition, methods were added to the Blob/Clob interfaces for freeing the object and
fetching pieces of it. Lastly, we can’t forget the new NClob interface. This works like the
Blob and Clob interfaces when working with result sets, callable statements, and prepared
statements.

Connection and Statement Interface Enhancements

The Connection and Statement interfaces are important in the world of JDBC. For
Connection, an instance of the interface still describes a database session. Statement is
still a SQL statement to get a ResultSet. You can now do just a little bit more with both.

The Connection interface has two significant changes, covered by five methods. The
first change has to do with checking whether a connection hasn’t been closed and is still
valid. You can now do that with the new isValid() method.

public boolean isValid(int timeout)

The timeout here represents the number of seconds to wait for a reply. If no reply is
acquired during this time, false is returned and the caller is unblocked. A timeout value
of 0 means it will wait forever.

The other new feature of Connection is the ability to query for and set the connection’s
client info properties. This is a Properties object and works much the same as the System
class does with system properties. The getter methods return all the properties, or that
for one particular name.

• public Properties getClientInfo()

• public String getClientInfo(String name)

The setter methods go in the opposite direction. The first version allows you to set
multiple name/value pairs simultaneously.

• public void setClientInfo(Properties props)

• public void setClientInfo(String name, String value)

That isn’t quite it yet for client info properties. You can actually ask the
DatabaseMetaData for the set of properties supported, via its getClientInfoProperties()
method. This method returns a sorted ResultSet by name, not just a list of names. For
each property, you can get its name, maximum length, default value, and a description
of the property.

CHAPTER 5 ■ JDBC 4.0108

6609CH05.qxd  6/23/06  1:37 PM  Page 108



While the Statement object has a new isClosed() method to indicate whether a state-
ment is closed, the more important changes have to do with the PreparedStatement
interface. Two new methods are isPoolable() and setPoolable(). You can now request a
PreparedStatement to either be pooled or not. Pooled statements can be shared by the
statement pool manager across multiple connections. The request is just a hint, though,
and may be ignored.

Over on the javax.sql side, you’ll find the PooledConnection interface. This now allows
you to register a StatementEventListener with the connection. Any registered listeners
of the connection would then be notified when a prepared statement is closed or has
become invalid. The listener notification includes a StatementEvent, which includes the
SQLException that is about to be thrown and the PreparedStatement that is being closed or
is invalid.

National Character Set Support

National character set types are new to SQL 2003. They offer direct support in the data-
base of a character set that is different than the database character set. They allow you to
mix content—such as a variable-width multibyte character set with one that is fixed-
width, for instance. JDBC 4.0 adds support for these new set types: NCHAR, NVARCHAR,
LONGNVARCHAR, and NCLOB, where the N here represents the national character set
version of the data type without the N. The NCHAR, NVARCHAR, and LONGNVARCHAR
types are automatically converted to the Java runtime’s character set, and back, as
needed. NCLOB does not support an automatic conversion between CLOB and NCLOB.

Existing core interfaces have been modified to deal with the new national character
set support. It has been added to the PreparedStatement and CallableStatement interfaces
through their new setNString(), setNCharacterStream(), and setNClob() methods. In
addition, the ResultSet interface has new getNString(), getNCharacterStream(), and
getNClob() methods, along with updateNString(), updateNCharacterStream(), and
updateNClob() methods.

To demonstrate, the following query fetches two columns from a table, one involving
the national character set, and the other not:

Console console = System.console();

String nString = ...;

String query = "select ncol, name from students where ncol=?";

PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setNString(1, nString);

ResultSet rs = pstmt.executeQuery();

while(rs.next) {

console.printf("ncol= %s, name=%s%n", rs.getNString(1), rs.getString(2));

}

CHAPTER 5 ■ JDBC 4.0 109

6609CH05.qxd  6/23/06  1:37 PM  Page 109



SQL ROWID Access

Yet another interesting feature of JDBC 4.0 is support for accessing the SQL built-in type
ROWID, for uniquely identifying the table row. One key thing to mention here: it is only
available if the underlying database supports giving it to you. To find this out, you must
ask DatabaseMetaData. Its getRowIdLifetime() method returns a RowIdLifetime, which has
an enumeration of possible values:

• ROWID_UNSUPPORTED

• ROWID_VALID_FOREVER

• ROWID_VALID_SESSION

• ROWID_VALID_TRANSACTION

• ROWID_VALID_OTHER

Most of the values are fairly self-explanatory. ROWID_UNSUPPORTED means the data
source doesn’t support the feature. ROWID_VALID_FOREVER is, like a diamond, forever.
ROWID_VALID_SESSION means for at least the session, while ROWID_VALID_TRANSACTION means
for the transaction. ROWID_VALID_OTHER means you can get a row ID from the system but
have no clue how long it will last. Effectively, you should treat this as ROWID_UNSUPPORTED,
as it can go away at any time.

If the data sources returns a RowId, you can get its value as either bytes via getBytes()
or as a String with toString(). Which of the two you work with depends on your needs. Of
course, sometimes just RowId is sufficient. Here’s a simple look at its usage:

ResultSet rs = stmt.executeQuery("select name, rank, ROWID from people");

while (rs.next()) {

String name = getString(1);

String rank = getString(2);

RowId rowid = getRowId(3);

...

}

SQL 2003 XML Data Type Support

Another big feature added to SQL 2003 is support for XML as a native data type in the
database. From your Java programs, you no longer have to use CLOBs to access the XML
data elements. You get a JDBC 4.0 mapping direct to the SQL XML type with Mustang.

CHAPTER 5 ■ JDBC 4.0110

6609CH05.qxd  6/23/06  1:37 PM  Page 110



When querying a database with an XML column, the type returned from the result
set is of type SQLXML. While Chapter 6 looks more at the updated XML support in Mustang,
we’ll look at the database side more here; not actually reading/writing the contents, just
fetching.

The SQLXML interface is rather small, with just nine methods:

• public void free()

• public InputStream getBinaryStream()

• public Reader getCharacterStream()

• public <T extends Source> T getSource(Class<T> sourceClass)

• public String getString()

• public OutputStream setBinaryStream()

• public Writer setCharacterStream()

• public <T extends Result> T setResult(Class<T> resultClass)

• public void setString(String value)

Working with the String representation is relatively easy. The StAX stream represen-
tation of the XML value is the more interesting bit (it’s saved for a later chapter). StAX is
the Streaming API for XML added with JSR 173. Here’s what a simple retrieval loop might
look like:

ResultSet rs = ...;

while (rs.next()) {

SQLXML xmlField = st.getSQLXML("xml_field");

String string = xmlField.getString()

xmlField.free();

}

The loop gets more interesting and involved once you work with the XMLStreamWriter.
Creation of data for an XML column is a little more involved than for non-XML

columns. You must create the SQLXML item first, fill it, and then associate it with
the statement. Not complicated, but it really depends upon what you do with the
XMLStreamWriter.

CHAPTER 5 ■ JDBC 4.0 111

6609CH05.qxd  6/23/06  1:37 PM  Page 111



// Assuming you have a table with an integer column and an XML column

String sql ="insert into blogTable (userid, blog) values (?, ?)";

PreparedStatement prep =connection.prepareStatement(sql);

int userId = 12345;

prepStmt.setInt(1, userId);

SQLXML blogvalue = connection.createSQLXML();

Writer writer = blogvalue.setCharacterStream();

// write to stream, code not supplied

...

writer.close();

prepStmt.setSQLXML(2, blogvalue);

int rowCount = prepStmt.executeUpdate();

Another aspect of the XML support available with Mustang includes the SQL syntax
changes when making SQL/XML queries. Through careful use of the new xmlelement()
SQL function, the results you get back from non-XML-based data sources can be well-
formed XML documents. For instance, here’s an SQL query that generates a well-formed
XML document for each row of a result set, where the outermost tag is user and the two
columns are id and name:

select xmlelement(name "user", xmlelement(name "id", p.userid),

xmlelement(name "name", p.username)) from passwords p

■Tip For more information on XML support within SQL 2003, see the SQL/XML tutorial at
www.stylusstudio.com/sqlxml_tutorial.html.

Annotations

While Chapter 10 covers the new annotation support found in Java 6, some annotations
are specific to JDBC, and so are covered here. There happen to be four new JDBC-related
annotations added to Java 6.0: Select, Update, ResultColumn, and AutoGeneratedKeys.

■Note If you aren’t familiar with annotations, you might want to read up on this Java 5 feature before
reading more of this section. Chapter 10 will cover annotations in more depth—but hey, this book is about
Java 6, not Java 5.

CHAPTER 5 ■ JDBC 4.0112

6609CH05.qxd  6/23/06  1:37 PM  Page 112



The annotations found in the java.sql package are meant to simplify object-relational
mappings. They allow you to place an annotated SQL statement in code, flagging it with
an annotation so you know what type of statement it is, and thus what it can return.

To demonstrate, you need to define a class to represent the DataSet to work with. In
this particular case, it’s a simple student definition that maps to a database table. DataSet
is itself an interface of the java.sql package that you’ll see used shortly.

public class Student {

public int id;

public String first;

public String last;

}

In your class definition, if the columns don’t match the database column names
exactly, you’ll need to use the @Select annotation to connect the mismatched columns—
as in public @ResultColumn("last") String lastName; if the database column name is last
but you want to access it in the Student class as lastName. Here is an interface to query for
all the students and delete them all:

interface MyQueries extends BaseQuery {

@Select("select id, first, last from students")

DataSet<Student> getAllStudents();

@Update("delete * from students")

int deleteAllStudents();

}

The BaseQuery interface of the java.sql package is needed for all queries. Just extend
it with the annotated SQL operations you plan on performing. The @Select annotation
returns a DataSet—not a ResultSet—while @Update returns a count. The DataSet interface
extends the List interface from the collections framework, so you can use the results of
the getAllStudents() call in an enhanced for loop. For instance, here’s some sample code
that deletes any student name of John:

MyQueries mq = con.createQueryObject(MyQueries.class);

DataSet rows = mq.getAllStudents();

for (Student student: rows) {

if (student.firstName.equals("John")) {

rows.delete();

}

}

CHAPTER 5 ■ JDBC 4.0 113

6609CH05.qxd  6/23/06  1:37 PM  Page 113



The parameterized DataSet allows you to manipulate the results of your query. Inser-
tion is done by creating a new element and calling the insert() method of the returned
DataSet. Updates are done with the modify() method. Disconnected data sets can be syn-
chronized back to the underlying data store using the sync() method.

Summary
JDBC 4.0 adds many interesting new features to the database world. Ease of use has defi-
nitely come to the forefront with the latest changes. While database driver loading is one
less thing you need to do with Mustang, the other changes add to what you can do with
JDBC. Enhancements seem to be everywhere—from the improvements to exception han-
dling and BLOBs, to CLOBs, connections, and statements. You can get notification of new
statement events, and you can check for connection closure now where you couldn’t
before. Most of the rest of the changes involve the addition of SQL 2003–related support
to the Java platform, with its new national character set support, SQL ROWID access,
and the very popular XML data type support. Also, the new annotations available with
JDBC 4.0 can greatly simplify your life.

As promised, in the next chapter you’ll jump into the updates to the XML world of
Java 6. Added with JSR 173, you’ll learn about the Streaming API for XML; with JSR 222,
you’ll take a look at JAXB 2.0 support; and with JSR 105, you’ll learn about the new API
supporting XML digital signatures.

■Note As this book went to press, the build 88 drop of Mustang came out. One big addition included
with this release is the open source Apache Derby project (http://db.apache.org/derby). This is a 
100-percent Java database shipping with the runtime. Sun’s distribution of Derby is called Java DB. You
can read more about the project at http://developers.sun.com/prodtech/javadb. The inclusion of
the database with the runtime offers a lightweight database solution.

CHAPTER 5 ■ JDBC 4.0114

6609CH05.qxd  6/23/06  1:37 PM  Page 114



Extensible Markup Language
(XML)

What’s new with Extensible Markup Language (XML)? As XML seems to evolve on a
separate path from the Java platform, each new release of the Java Standard Edition
brings the latest versions of the different parts of the XML stack into the mainline. Typi-
cally, these have evolved through their own JSR process or standard outside the Java
Community Process (JCP); and releases like Merlin, Tiger, and now Mustang just bless the
latest release of some XML piece for their individual release. With Mustang, three pieces
to the XML puzzle are added: the Java Architecture for XML Binding (JAXB) 2.0, XML digi-
tal signatures, and the Streaming API for XML.

Looking at the packages related to XML in Java 6, it is a little difficult to present
what’s new and different in table form. The JAXB libraries are new, and are found in
javax.xml.bind and its subpackages. The XML digital signature libraries are new, and
found in javax.xml.crypto and its subpackages, and the libraries for the Streaming API
for XML are found in javax.xml.stream and its subpackages. You even get a new
javax.xml.soap package for classes to help you build up SOAP messages—but more on
that in Chapter 7, in which I’ll discuss the new javax.xml.ws package and subpackages
for the web services APIs. For those packages that exist in both Java 5 and 6, Table 6-1
shows off their single difference: yet another new package for the Streaming API for XML,
javax.xml.transform.stax.

115

C H A P T E R  6

6609CH06.qxd  6/23/06  1:38 PM  Page 115



Table 6-1. javax.xml.* Package Sizes

Package Version Interfaces Classes Throwable Total

xml 5.0 0 1 0+0 1

xml 6.0 0 1 0+0 1

xml.datatype 5.0 0 5 1+0 6

xml.datatype 6.0 0 5 1+0 6

xml.namespace 5.0 1 1 0+0 2

xml.namespace 6.0 1 1 0+0 2

xml.parsers 5.0 0 4 1+1 6

xml.parsers 6.0 0 4 1+1 6

xml.transform 5.0 6 3 2+1 12

xml.transform 6.0 6 3 2+1 12

xml.transform.dom 5.0 1 2 0+0 3

xml.transform.dom 6.0 1 2 0+0 3

xml.transform.sax 5.0 2 3 0+0 5

xml.transform.sax 6.0 2 3 0+0 5

xml.transform.stax 6.0 0 2 0+0 2

xml.transform.stream 5.0 0 2 0+0 2

xml.transform.stream 6.0 0 2 0+0 2

xml.validation 5.0 0 6 0+0 6

xml.validation 6.0 0 6 0+0 6

xml.xpath 5.0 5 2 4+0 11

xml.xpath 6.0 5 2 4+0 11

Delta 0 2 0+0 2

For all these packages, the bulk of the changes from 5.0 to 6.0 were related to docu-
mentation. The only code change outside of the javadoc comments was the addition of
an overloaded newInstance() method for several factory classes: javax.xml.datatype.
DatatypeFactory, javax.xml.parsers.DocumentBuilderFactory, javax.xml.parsers.
SAXParserFactory, javax.xml.transform.TransformerFactory, and javax.xml.validation.
SchemaFactory. While these classes had a newInstance() method already, the overloaded
variety allows you to pass in the class loader to load the factory class, and not assume
that the class loader for the context of the executing thread is appropriate.

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)116

6609CH06.qxd  6/23/06  1:38 PM  Page 116



The javax.xml.bind Package
JSR 31 defined the first release of the XML Data Binding Specification. According to its
JSR description, its goal was to offer “a facility for compiling an XML Schema into one or
more Java classes which can parse, generate, and validate documents that follow the
schema.” In overly simple terms, it lets you map JavaBeans components to XML docu-
ments, and vice versa. This was first made available as part of the Java Web Services
Developer Pack (WSDP) and became standard fare for J2EE developers.

JSR 222 updates the original version of JAXB to the 2.0 release, and Mustang brings
JAXB 2.0 into the Java 6 release with the javax.xml.bind package and its subpackages. In
other words, as web services have become more mainstream and not limited to full-scale
server-side applications, pieces of the web services pack, like JAXB, have joined the ranks
of standard APIs in the desktop release of the Java platform. See Chapter 7 for more infor-
mation on the web services support available with Mustang.

Many tutorials on JAXB 2.0 have been available online for some time for use with
Java EE 5. With minimal changes, you can use these tutorials with Java SE 6. But, before
jumping right into the how-to bit, it is important to point out what exactly JAXB 2.0
offers. Essentially, JAXB offers a mapping from a JavaBeans component to XML Schema,
and vice versa. The 2.0 release of JAXB adds the Java-to-XML Schema support that wasn’t
found with 1.0. With 1.0, you can do XML Schema to Java, but not vice versa. Now, you
can go both ways with JAXB 2.0.

Before digging too deeply into the details, it is important to show a quick example.
Then I’ll explain it, with more details of the API. Listing 6-1 defines an inner Point class
whose state will be saved to an XML file. The important bit about the inner class is the
@XmlRootElement annotation. As the name implies, the Point class will be used as an XML
root element. Each JavaBeans property of the class will then become an element inside
the root element.

Listing 6-1. Using JAXB for Java-to-XML Generation

import java.io.*;

import javax.xml.bind.*;

import javax.xml.bind.annotation.*;

public class J2S {

public static void main(String[] args) {

try {

JAXBContext context = JAXBContext.newInstance(Point.class);

Marshaller m = context.createMarshaller();

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 117

6609CH06.qxd  6/23/06  1:38 PM  Page 117



m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

Point p = new Point(3, 4);

m.marshal(p, System.out);

} catch (JAXBException jex) {

System.out.println("JAXB Binding Exception");

jex.printStackTrace();

}

}

@XmlRootElement

private static class Point {

int x;

int y;

public Point() {

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

public void setX(int x) {

this.x = x;

}

public void setY(int y) {

this.y = y;

}

public int getX() {

return x;

}

public int getY() {

return y;

}

}

}

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)118

6609CH06.qxd  6/23/06  1:38 PM  Page 118



Compile and run the program to see the following output:

> java J2S

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<point>

<x>3</x>

<y>4</y>

</point>

As revealed by the generated XML, the newly defined Point class has two JavaBeans
component properties: x and y. Their values were initialized to 3 and 4, respectively,
before the Point was passed off to the Marshaller. It is the responsibility of the Marshaller
to discover the necessary property names and values, and write them to the stream pro-
vided (System.out, in this case).

■Note If the JAXB_FORMATTED_OUTPUT property in Listing 6-1 isn’t set to true, all the output will be sent
to a single line, without the benefit of new lines or spacing.

In addition to the @XmlRootElement annotation used in Listing 6-1, there are many
other annotations found in the javax.xml.bind.annotation package. Table 6-2 lists them
all, with brief descriptions of their purposes. Essentially, they all help to define how the
JavaBeans components will be serialized and deserialized (or, in JAXB speak, marshalled
and unmarshalled).

Table 6-2. XML Schema Mapping Annotations

Name Description

XmlAccessorOrder Controls ordering of fields and properties for a class

XmlAccessorType Used in conjunction with the XmlAccessType Enum to indicate if a field or
property should be serialized

XmlAnyAttribute Acts as a map of wildcard attributes for java.util.Map properties or
fields

XmlAnyElement Serves to identify the catchall property during unmarshalling

XmlAttachmentRef Used to identify mime types and URIs for external content

XmlAttribute Allows renaming of a JavaBeans property to/from an XML attribute

Continued

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 119

6609CH06.qxd  6/23/06  1:38 PM  Page 119



Table 6-2. Continued

Name Description

XmlElement Allows mapping of a JavaBeans property to a complex type

XmlElementDecl Works to map an object factory to an XML element

XmlElementRef Works to map a JavaBeans property to an XML element derived from
the property’s type

XmlElementRefs Marks a property that refers to classes with @XmlElement

XmlElements Acts as a container for multiple @XmlElement annotations

XmlElementWrapper Generates a wrapper element for XML representation

XmlEnum Maps an Enum to an XML representation

XmlEnumValue Identifies an enumerated constant

XmlID Maps a property to an XML ID

XmlIDREF Maps a property to an XML IDREF

XmlInlineBinaryData Causes XOP encoding to be disabled for binary data types, such as
Image

XmlList Used to map a property to a list

XmlMimeType Identifies a textual representation of the mime type for a property

XmlMixed Identifies a multivalued property with mixed content

XmlNs Identifies an XML namespace

XmlRegistry Marks a class that has @XmlElementDecl

XmlRootElement Maps a class or enumeration to an XML element

XmlSchema Identifies a target namespace for a package

XmlSchemaType Maps a Java type to a built-in schema type

XmlSchemaTypes Acts as a container for multiple @XmlSchemaType annotations

XmlTransient Flags a property that shouldn’t be saved

XmlType Maps a class or enumeration to a schema type

XmlValue Allows the mapping of a class to a simple schema content or type

There are a lot of annotations listed in Table 6-2. There are also two other annotations,
@XmlJavaTypeAdapter and @XmlJavaTypeAdapters, found in the javax.xml.bind.annotation.
adapters package for custom marshalling. As JAXB 2.0 could be a book unto itself, I’m not
going to describe how they all work together. What typically happens is that you write the
XML Schema for your dataset, and the new xjc command-line tool generates the associ-
ated JavaBeans component classes. It places the annotations in the class files for you to
get the right XML.

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)120

6609CH06.qxd  6/23/06  1:38 PM  Page 120



To demonstrate the xjc tool, Listing 6-2 shows a simple XML Schema document that
describes courses as part of a student’s schedule at a university. A schedule consists of a
sequence of courses and a location. (This university restricts students to taking courses
at a single campus location.) Each course has an ID, name, and description. The course
location comes from an enumeration of north, south, east, and west.

Listing 6-2. An XML Schema for a Course Schedule

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:Revealed="http://www.jzventures.net"

targetNamespace="http://www.jzventures.net"

>

<element name="Schedule">

<complexType>

<sequence>

<element name="course" type="Revealed:Course"

minOccurs="1" maxOccurs="unbounded"/>

<element name="location" type="Revealed:Location"/>

</sequence>

</complexType>

</element>

<complexType name="Course">

<sequence>

<element name="courseId" type="string"/>

<element name="name" type="string"/>

<element name="description" type="string"/>

</sequence>

</complexType>

<simpleType name="Location">

<restriction base="string">

<enumeration value="north"></enumeration>

<enumeration value="south"></enumeration>

<enumeration value="east"></enumeration>

<enumeration value="west"></enumeration>

</restriction>

</simpleType>

</schema>

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 121

6609CH06.qxd  6/23/06  1:38 PM  Page 121



■Tip Use a tool to generate the schema. It is best not to try to generate it by hand.

After you save the XML Schema, run it through the xjc tool to generate the associated
Java classes.

> xjc course.xsd

parsing a schema...

compiling a schema...

net\jzventures\Course.java

net\jzventures\Location.java

net\jzventures\ObjectFactory.java

net\jzventures\Schedule.java

net\jzventures\package-info.java

As a result of running xjc, five class definitions were generated. Three of them are
JavaBeans components. An object factory was also generated, along with a supporting
class called package-info. The latter class is used to save off the namespace.

First look at the generated enumeration class, Location, shown in Listing 6-3.

Listing 6-3. The Generated Enumeration Class

//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) ➥

Reference Implementation, vJAXB 2.0 in JDK 1.6 

// See <a href="http://java.sun.com/xml/jaxb">http://java.sun.com/xml/jaxb</a> 

// Any modifications to this file will be lost upon recompilation of the source ➥

schema. 

// Generated on: 2006.05.23 at 08:22:36 AM EDT 

//

package net.jzventures;

import javax.xml.bind.annotation.XmlEnum;

import javax.xml.bind.annotation.XmlEnumValue;

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)122

6609CH06.qxd  6/23/06  1:38 PM  Page 122



/**

* <p>Java class for Location.

* 

* <p>The following schema fragment specifies the expected content contained ➥

within this class.

* <p>

* <pre>

* &lt;simpleType name="Location">

*   &lt;restriction base="{http://www.w3.org/2001/XMLSchema}string">

*     &lt;enumeration value="north"/>

*     &lt;enumeration value="south"/>

*     &lt;enumeration value="east"/>

*     &lt;enumeration value="west"/>

*   &lt;/restriction>

* &lt;/simpleType>

* </pre>

* 

*/

@XmlEnum

public enum Location {

@XmlEnumValue("east")

EAST("east"),

@XmlEnumValue("north")

NORTH("north"),

@XmlEnumValue("south")

SOUTH("south"),

@XmlEnumValue("west")

WEST("west");

private final String value;

Location(String v) {

value = v;

}

public String value() {

return value;

}

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 123

6609CH06.qxd  6/23/06  1:38 PM  Page 123



public static Location fromValue(String v) {

for (Location c: Location.values()) {

if (c.value.equals(v)) {

return c;

}

}

throw new IllegalArgumentException(v.toString());

}

}

Here, the namespace specified in the schema (targetNamespace) is used to identify the
package name. The class name comes from the simpleType name of the schema, and gets
an XmlEnum annotation. Each element of the enumeration then gets an XmlEnumValue.

Next up comes the complex type class Course, shown in Listing 6-4.

Listing 6-4. The Generated Complex Type Class

//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) ➥

Reference Implementation, vJAXB 2.0 in JDK 1.6 

// See <a href="http://java.sun.com/xml/jaxb">http://java.sun.com/xml/jaxb</a> 

// Any modifications to this file will be lost upon recompilation of the source ➥

schema. 

// Generated on: 2006.05.23 at 08:38:43 AM EDT 

//

package net.jzventures;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlType;

/**

* <p>Java class for Course complex type.

* 

* <p>The following schema fragment specifies the expected content contained ➥

within this class.

* 

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)124

6609CH06.qxd  6/23/06  1:38 PM  Page 124



* <pre>

* &lt;complexType name="Course">

*   &lt;complexContent>

*     &lt;restriction base="{http://www.w3.org/2001/XMLSchema}anyType">

*       &lt;sequence>

*         &lt;element name="courseId" ➥

type="{http://www.w3.org/2001/XMLSchema}string"/>

*         &lt;element name="name" type="{http://www.w3.org/2001/XMLSchema}string"/>

*         &lt;element name="description" ➥

type="{http://www.w3.org/2001/XMLSchema}string"/>

*       &lt;/sequence>

*     &lt;/restriction>

*   &lt;/complexContent>

* &lt;/complexType>

* </pre>

* 

* 

*/

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "Course", propOrder = {

"courseId",

"name",

"description"

})

public class Course {

@XmlElement(required = true)

protected String courseId;

@XmlElement(required = true)

protected String name;

@XmlElement(required = true)

protected String description;

/**

* Gets the value of the courseId property.

* 

* @return

*     possible object is

*     {@link String }

*     

*/

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 125

6609CH06.qxd  6/23/06  1:38 PM  Page 125



public String getCourseId() {

return courseId;

}

/**

* Sets the value of the courseId property.

* 

* @param value

*     allowed object is

*     {@link String }

*     

*/

public void setCourseId(String value) {

this.courseId = value;

}

/**

* Gets the value of the name property.

* 

* @return

*     possible object is

*     {@link String }

*     

*/

public String getName() {

return name;

}

/**

* Sets the value of the name property.

* 

* @param value

*     allowed object is

*     {@link String }

*     

*/

public void setName(String value) {

this.name = value;

}

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)126

6609CH06.qxd  6/23/06  1:38 PM  Page 126



/**

* Gets the value of the description property.

* 

* @return

*     possible object is

*     {@link String }

*     

*/

public String getDescription() {

return description;

}

/**

* Sets the value of the description property.

* 

* @param value

*     allowed object is

*     {@link String }

*     

*/

public void setDescription(String value) {

this.description = value;

}

}

The order of elements within the schema defined the order of properties for the
JavaBeans component. The getter and setter methods were generated for all three prop-
erties here, along with javadocs. Again, the class name came from the initial complex
type name.

The Schedule class in Listing 6-5 represents the third JavaBeans component generated.

Listing 6-5. The Generated Top-Level-Element Class

//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) ➥

Reference Implementation, vJAXB 2.0 in JDK 1.6 

// See <a href="http://java.sun.com/xml/jaxb">http://java.sun.com/xml/jaxb</a> 

// Any modifications to this file will be lost upon recompilation of the source ➥

schema. 

// Generated on: 2006.05.23 at 09:11:23 AM EDT 

//

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 127

6609CH06.qxd  6/23/06  1:38 PM  Page 127



package net.jzventures;

import java.util.ArrayList;

import java.util.List;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlType;

/**

* <p>Java class for Schedule element declaration.

* 

* <p>The following schema fragment specifies the expected content contained ➥

within this class.

* 

* <pre>

* &lt;element name="Schedule">

*   &lt;complexType>

*     &lt;complexContent>

*       &lt;restriction base="{http://www.w3.org/2001/XMLSchema}anyType">

*         &lt;sequence>

*           &lt;element name="course" type="{http://www.jzventures.net}Course" ➥

maxOccurs="unbounded"/>

*           &lt;element name="location" ➥

type="{http://www.jzventures.net}Location"/>

*         &lt;/sequence>

*       &lt;/restriction>

*     &lt;/complexContent>

*   &lt;/complexType>

* &lt;/element>

* </pre>

* 

* 

*/

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "", propOrder = {

"course",

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)128

6609CH06.qxd  6/23/06  1:38 PM  Page 128



"location"

})

@XmlRootElement(name = "Schedule")

public class Schedule {

@XmlElement(required = true)

protected List<Course> course;

@XmlElement(required = true)

protected Location location;

/**

* Gets the value of the course property.

* 

* <p>

* This accessor method returns a reference to the live list,

* not a snapshot. Therefore any modification you make to the

* returned list will be present inside the JAXB object.

* This is why there is not a <CODE>set</CODE> method for the course property.

* 

* <p>

* For example, to add a new item, do as follows:

* <pre>

*    getCourse().add(newItem);

* </pre>

* 

* 

* <p>

* Objects of the following type(s) are allowed in the list

* {@link Course }

* 

* 

*/

public List<Course> getCourse() {

if (course == null) {

course = new ArrayList<Course>();

}

return this.course;

}

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 129

6609CH06.qxd  6/23/06  1:38 PM  Page 129



/**

* Gets the value of the location property.

* 

* @return

*     possible object is

*     {@link Location }

*     

*/

public Location getLocation() {

return location;

}

/**

* Sets the value of the location property.

* 

* @param value

*     allowed object is

*     {@link Location }

*     

*/

public void setLocation(Location value) {

this.location = value;

}

}

Again, accessor methods are generated for the component properties, with the class
name coming from the element name. Since the course property is a List object, no set-
ter method is provided. You must get the list and add/remove elements from it yourself to
adjust the collection.

The final class, ObjectFactory in Listing 6-6, just offers factory methods to create
Course and Schedule objects. The Course and Schedule objects are those elements that can
be contained within the outermost object; but there is no factory method for the outer-
most object itself.

Listing 6-6. The Generated ObjectFactory Class

//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) ➥

Reference Implementation, vJAXB 2.0 in JDK 1.6 

// See <a href="http://java.sun.com/xml/jaxb">http://java.sun.com/xml/jaxb</a> 

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)130

6609CH06.qxd  6/23/06  1:38 PM  Page 130



// Any modifications to this file will be lost upon recompilation of the source ➥

schema. 

// Generated on: 2006.05.23 at 08:38:43 AM EDT 

//

package net.jzventures;

import javax.xml.bind.annotation.XmlRegistry;

/**

* This object contains factory methods for each 

* Java content interface and Java element interface 

* generated in the net.jzventures package. 

* <p>An ObjectFactory allows you to programatically 

* construct new instances of the Java representation 

* for XML content. The Java representation of XML 

* content can consist of schema derived interfaces 

* and classes representing the binding of schema 

* type definitions, element declarations and model 

* groups.  Factory methods for each of these are 

* provided in this class.

* 

*/

@XmlRegistry

public class ObjectFactory {

/**

* Create a new ObjectFactory that can be used to create new instances of ➥

schema derived classes for package: net.jzventures

* 

*/

public ObjectFactory() {

}

/**

* Create an instance of {@link Course }

* 

*/

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 131

6609CH06.qxd  6/23/06  1:38 PM  Page 131



public Course createCourse() {

return new Course();

}

/**

* Create an instance of {@link Schedule }

* 

*/

public Schedule createSchedule() {

return new Schedule();

}

}

■Note There is no factory method provided for Location because it is an enumeration.

At this point, you could use the Course, Location, and Schedule classes to create a
schedule loaded with courses for a student, and then dump it to XML; or you could create
the XML file and read it in, in order to get the Schedule with its associated Course and
Location objects, as defined in the XML. Reading content in (unmarshalling) is similar to
the earlier marshalling example shown in Listing 6-1, but instead requires you to get the
Unmarshaller from the JAXBContext, instead of the Marshaller.

JAXBContext jc = JAXBContext.newInstance();

Unmarshaller u = jc.createUnmarshaller();

Schedule s = (Schedule)u.unmarshal(new File("schedule.xml"));

For more information on JAXB, see its project page at https://jaxb.dev.java.net.
Several tutorials that offer more explanations on the technology are offered there. For
those coming to Java SE 6 from a Java EE environment, the API here should already be
familiar, as much of this has been around since 2004.

The javax.xml.crypto Package
JSR 105 created the javax.xml.crypto package as part of the XML Digital Signature APIs
specification. The XML digital signature specification is defined by the W3C (and avail-
able from www.w3.org/2000/09/xmldsig). This is just a Java implementation of the
specification. The JSR and its associated API has been final since June of 2005.

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)132

6609CH06.qxd  6/23/06  1:38 PM  Page 132



While the javax.xml.crypto package offers several packages and isn’t that small, there
are really just two key tasks here that you need to know how to do: how to sign an XML
document, and how to validate that signature. To examine this, you’ll create a fictitious
SOAP message to be signed and validated. Many of the APIs necessary for the task are
standard Java security APIs, not specific to the newer XML digital signature APIs.

The basic process of signing is shown in Listing 6-7. You need something to sign, so
get a DOM node from a SOAP message, or from some other place. Next, generate the
XML signature with the help of a DSA key pair. The last two method calls are the real
work to sign and validate. Obviously, in real life you wouldn’t do everything at one time—
however, I believe the tasks are separated out enough so that you can understand things
fully and will be able to reuse the pieces in your own programs.

Listing 6-7. Framework for Signing an XML Document

SOAPMessage soapMessage = createSOAPMessage();

SOAPPart soapPart = soapMessage.getSOAPPart();

Source source = soapPart.getContent();

Node root = generateDOM(source);

KeyPair keypair = generateDSAKeyPair();

XMLSignature sig = generateXMLSignature(keypair);

signTree(root, keypair.getPrivate(), sig);

boolean valid = validateXMLSignature(keypair.getPublic(), root, sig);

The first task of generating the SOAP message is shown in Listing 6-8. It uses the new
javax.xml.soap package to generate the message (more on this package in Chapter 7).
There’s nothing really special here—just a bogus message with a body area identified by a
Body attribute to be used later.

Listing 6-8. Generating the SOAP Message

private static SOAPMessage createSOAPMessage() throws SOAPException {

SOAPMessage soapMessage = MessageFactory.newInstance().createMessage();

SOAPPart soapPart = soapMessage.getSOAPPart();

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 133

6609CH06.qxd  6/23/06  1:38 PM  Page 133



SOAPHeader soapHeader = soapEnvelope.getHeader();

SOAPHeaderElement headerElement = soapHeader.addHeaderElement(

soapEnvelope.createName("Signature", "SOAP-SEC",

"http://schemas.xmlsoap.org/soap/security/2000-12"));

SOAPBody soapBody = soapEnvelope.getBody();

soapBody.addAttribute(soapEnvelope.createName("id", "SOAP-SEC",

"http://schemas.xmlsoap.org/soap/security/2000-12"), "Body");

Name bodyName =soapEnvelope.createName("FooBar", "z", "http://example.com");

SOAPBodyElement gltp = soapBody.addBodyElement(bodyName);

return soapMessage;

}

Listing 6-9 converts the SOAP message content to a DOM (Document Object Model).
This does not just take the results of createSOAPMessage(), but instead works with the con-
tent from SOAPPart. None of these concepts are new to Java 6, so I’ll spare you the details.

Listing 6-9. Generating the DOM

private static Node generateDOM(Source source)

throws ParserConfigurationException, SAXException, IOException {

Node root;

if (source instanceof DOMSource) {

root = ((DOMSource)source).getNode();

} else if (source instanceof SAXSource) {

InputSource inSource = ((SAXSource)source).getInputSource();

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);  // so parser supports namespaces

DocumentBuilder db = null;

synchronized (dbf) {

db = dbf.newDocumentBuilder();

}

Document doc = db.parse(inSource);

root = (Node) doc.getDocumentElement();

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)134

6609CH06.qxd  6/23/06  1:38 PM  Page 134



} else {

throw new IllegalArgumentException(

"Class type: " + source.getClass().getName());

}

return root;

}

The last of the “old” code usage is Listing 6-10, in which a Digital Signature Algorithm
(DSA) key pair is generated to do the XML tree signing. From this key pair, you would typ-
ically share the public key so that others can validate items that you’ve signed. It is this
PublicKey that is passed into the final validateXMLSignature() method.

Listing 6-10. Generating the DSA Key Pair

private static KeyPair generateDSAKeyPair() throws NoSuchAlgorithmException {

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");

kpg.initialize(1024, new SecureRandom());

return kpg.generateKeyPair();

}

At this point, the code starts to get a little more interesting. You need an XMLSignature
to sign the tree. This class is found in the new javax.xml.crypto.dsig package, and you get
it with the help of an XMLSignatureFactory. Its getInstance() method has several varieties.
By default, it fetches the default DOM mechanism with no arguments. You can also ask
for the DOM explicitly, as shown in Listing 6-11. Two other versions let you explicitly
specify the provider. Once you have the factory, you need to configure it before asking to
create the new XMLSignature with newXMLSignature(). The W3C Recommendation for XML-
Signature Syntax and Processing documentation (www.w3.org/TR/xmldsig-core) offers
information on available configuration options, though you’ll need to look for the spe-
cific Java configuration classes to match.

Listing 6-11. Generating the XML Signature

private static XMLSignature generateXMLSignature(KeyPair keypair) 

throws NoSuchAlgorithmException, InvalidAlgorithmParameterException,

KeyException {

XMLSignatureFactory sigFactory = XMLSignatureFactory.getInstance("DOM");

Reference ref = sigFactory.newReference("#Body", 

sigFactory.newDigestMethod(DigestMethod.SHA1, null));

SignedInfo signedInfo = sigFactory.newSignedInfo(

sigFactory.newCanonicalizationMethod(

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 135

6609CH06.qxd  6/23/06  1:38 PM  Page 135



CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS, 

(C14NMethodParameterSpec) null),

sigFactory.newSignatureMethod(SignatureMethod.DSA_SHA1, null),

Collections.singletonList(ref));

KeyInfoFactory kif = sigFactory.getKeyInfoFactory();

KeyValue kv = kif.newKeyValue(keypair.getPublic());

KeyInfo keyInfo = kif.newKeyInfo(Collections.singletonList(kv));

return sigFactory.newXMLSignature(signedInfo, keyInfo);

}

By now, the hard part is over. Listing 6-12 shows how to identify where to insert the
signature and connect back to the previously used body ID. The last sig.sign() call is
what does the signing.

Listing 6-12. The Signing Tree

private static void signTree(Node root, PrivateKey privateKey, XMLSignature sig) 

throws MarshalException, XMLSignatureException {

Element envelope = getFirstChildElement(root);

Element header = getFirstChildElement(envelope);

DOMSignContext sigContext = new DOMSignContext(privateKey, header);

sigContext.putNamespacePrefix(XMLSignature.XMLNS, "ds");

sigContext.setIdAttributeNS(getNextSiblingElement(header),

"http://schemas.xmlsoap.org/soap/security/2000-12","id");

sig.sign(sigContext);

}

Similar to signing, validation (see Listing 6-13) isn’t that complicated once you have
the necessary pieces. Again, this requires you to find the signature element before locat-
ing the body element to validate. Finally, the validate() method of XMLSignature is called
to see if the tree passes.

Listing 6-13. Validating the XML Signature

private static boolean validateXMLSignature(

PublicKey publicKey, Node root, XMLSignature sig)

throws XMLSignatureException {

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)136

6609CH06.qxd  6/23/06  1:38 PM  Page 136



Element envelope = getFirstChildElement(root);

Element header = getFirstChildElement(envelope);

Element sigElement = getFirstChildElement(header);

DOMValidateContext valContext = new DOMValidateContext(publicKey, sigElement);

valContext.setIdAttributeNS(getNextSiblingElement(header),

"http://schemas.xmlsoap.org/soap/security/2000-12", "id");

return sig.validate(valContext);

}

Listing 6-14 shows the complete program in action. A couple of DOM tree dumps are
shown before and after the tree is signed.

Listing 6-14. The Complete XML Signing Example

import java.io.*;

import java.security.*;

import java.util.*;

import javax.xml.crypto.*;

import javax.xml.crypto.dsig.*;

import javax.xml.crypto.dom.*;

import javax.xml.crypto.dsig.dom.*;

import javax.xml.crypto.dsig.keyinfo.*;

import javax.xml.crypto.dsig.spec.*;

import javax.xml.soap.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.sax.*;

import javax.xml.transform.stream.*;

import org.w3c.dom.*;

import org.w3c.dom.Node;

import org.xml.sax.*;

public class Signing {

public static void main(String[] args) throws Exception {

SOAPMessage soapMessage = createSOAPMessage();

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 137

6609CH06.qxd  6/23/06  1:38 PM  Page 137



SOAPPart soapPart = soapMessage.getSOAPPart();

Source source = soapPart.getContent();

Node root = generateDOM(source);

dumpDocument(root);

KeyPair keypair = generateDSAKeyPair();

XMLSignature sig = generateXMLSignature(keypair);

System.out.println("Signing the message...");

signTree(root, keypair.getPrivate(), sig);

dumpDocument(root);

System.out.println("Validate the signature...");

boolean valid = validateXMLSignature(keypair.getPublic(), root, sig);

System.out.println("Signature valid? " + valid);

}

private static SOAPMessage createSOAPMessage() throws SOAPException {

SOAPMessage soapMessage = MessageFactory.newInstance().createMessage();

SOAPPart soapPart = soapMessage.getSOAPPart();

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

SOAPHeader soapHeader = soapEnvelope.getHeader();

SOAPHeaderElement headerElement = soapHeader.addHeaderElement(

soapEnvelope.createName("Signature", "SOAP-SEC",

"http://schemas.xmlsoap.org/soap/security/2000-12"));

SOAPBody soapBody = soapEnvelope.getBody();

soapBody.addAttribute(soapEnvelope.createName("id", "SOAP-SEC",

"http://schemas.xmlsoap.org/soap/security/2000-12"), "Body");

Name bodyName =soapEnvelope.createName("FooBar", "z", "http://example.com");

SOAPBodyElement gltp = soapBody.addBodyElement(bodyName);

return soapMessage;

}

private static Node generateDOM(Source source)

throws ParserConfigurationException, SAXException, IOException {

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)138

6609CH06.qxd  6/23/06  1:38 PM  Page 138



Node root;

if (source instanceof DOMSource) {

root = ((DOMSource)source).getNode();

} else if (source instanceof SAXSource) {

InputSource inSource = ((SAXSource)source).getInputSource();

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

DocumentBuilder db = null;

synchronized (dbf) {

db = dbf.newDocumentBuilder();

}

Document doc = db.parse(inSource);

root = (Node) doc.getDocumentElement();

} else {

throw new IllegalArgumentException(

"Class type: " + source.getClass().getName());

}

return root;

}

private static KeyPair generateDSAKeyPair() throws NoSuchAlgorithmException {

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");

kpg.initialize(1024, new SecureRandom());

return kpg.generateKeyPair();

}

private static XMLSignature generateXMLSignature(KeyPair keypair) 

throws NoSuchAlgorithmException, InvalidAlgorithmParameterException,

KeyException {

XMLSignatureFactory sigFactory = XMLSignatureFactory.getInstance();

Reference ref = sigFactory.newReference("#Body", 

sigFactory.newDigestMethod(DigestMethod.SHA1, null));

SignedInfo signedInfo = sigFactory.newSignedInfo(

sigFactory.newCanonicalizationMethod(

CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS, 

(C14NMethodParameterSpec) null),

sigFactory.newSignatureMethod(SignatureMethod.DSA_SHA1, null),

Collections.singletonList(ref));

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 139

6609CH06.qxd  6/23/06  1:38 PM  Page 139



KeyInfoFactory kif = sigFactory.getKeyInfoFactory();

KeyValue kv = kif.newKeyValue(keypair.getPublic());

KeyInfo keyInfo = kif.newKeyInfo(Collections.singletonList(kv));

return sigFactory.newXMLSignature(signedInfo, keyInfo);

}

private static void signTree(Node root, PrivateKey privateKey, XMLSignature sig) 

throws MarshalException, XMLSignatureException {

Element envelope = getFirstChildElement(root);

Element header = getFirstChildElement(envelope);

DOMSignContext sigContext = new DOMSignContext(privateKey, header);

sigContext.putNamespacePrefix(XMLSignature.XMLNS, "ds");

sigContext.setIdAttributeNS(getNextSiblingElement(header),

"http://schemas.xmlsoap.org/soap/security/2000-12","id");

sig.sign(sigContext);

}

private static boolean validateXMLSignature(

PublicKey publicKey, Node root, XMLSignature sig)

throws XMLSignatureException {

Element envelope = getFirstChildElement(root);

Element header = getFirstChildElement(envelope);

Element sigElement = getFirstChildElement(header);

DOMValidateContext valContext = new DOMValidateContext(publicKey, sigElement);

valContext.setIdAttributeNS(getNextSiblingElement(header),

"http://schemas.xmlsoap.org/soap/security/2000-12", "id");

return sig.validate(valContext);

}

private static void dumpDocument(Node root) throws TransformerException {

Console console = System.console();

console.printf("%n");

Transformer transformer = TransformerFactory.newInstance().newTransformer();

transformer.setOutputProperty(OutputKeys.INDENT, "yes");

transformer.transform(new DOMSource(root), new StreamResult(console.writer()));

console.printf("%n");

}

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)140

6609CH06.qxd  6/23/06  1:38 PM  Page 140



private static Element getFirstChildElement(Node node) {

Node child = node.getFirstChild();

while ((child != null) && (child.getNodeType() != Node.ELEMENT_NODE)) {

child = child.getNextSibling();

}

return (Element) child;

}

public static Element getNextSiblingElement(Node node) {

Node sibling = node.getNextSibling();

while ((sibling != null) && (sibling.getNodeType() != Node.ELEMENT_NODE)) {

sibling = sibling.getNextSibling();

}

return (Element) sibling;

}

}

When run, you’ll see both tree dumps, and hopefully a note showing that the valida-
tion passed. The “before” tree, shown following, is rather small:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>

<SOAP-SEC:Signature xmlns:SOAP-SEC=➥

"http://schemas.xmlsoap.org/soap/security/2000-12"/>

</SOAP-ENV:Header>

<SOAP-ENV:Body xmlns:SOAP-SEC=➥

"http://schemas.xmlsoap.org/soap/security/2000-12" SOAP-SEC:id="Body">

<z:FooBar xmlns:z="http://example.com"/>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The “after” tree has grown somewhat. Your output is apt to be different, unless
SecureRandom generated the same random number. All the digital signature–related fields
have a namespace of ds because of the earlier putNamespacePrefix() call.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>

<SOAP-SEC:Signature xmlns:SOAP-SEC=➥

"http://schemas.xmlsoap.org/soap/security/200-12"/>

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 141

6609CH06.qxd  6/23/06  1:38 PM  Page 141



<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=➥

"http://www.w3.org/TR/2001/REC-xml-c14n-2010315#WithComments"/>

<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

<ds:Reference URI="#Body">

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>9x0mZhajy9dHKuIXh7bm0khuC7M=</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>KF36gdqKiFN6J4Yzj8tI9jtuenlQbtT95hdbS5olBJcPByp2BjAupA==</ds

SignatureValue>

<ds:KeyInfo>

<ds:KeyValue>

<ds:DSAKeyValue>

<ds:P>/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9subVWzXguA

HTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVUE1oWkTL2dfOu

K2HXKu/yIgMZndFIAcc=</ds:P>

<ds:Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</ds:Q>

<ds:G>9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6EwoFO3

zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKL

Zl6Ae1UlZAFMO/7PSSo=</ds:G>

<ds:Y>pX4PwF5u7xqoIv4wgk/zq7CaNHwLgFXxZncbqHU9vL1oZttOmADKKSsRsnLsHw67Q7KktzN16am

o/2YHCGJ4r4iTNTxiOgAlGRg6CD/Em4c5tRcu/Qi8/Ck31BIT2B8EgzcY1SfXc1gqLRYFNwfLUBp

mOXJ/8JJ4n/mCZp+PIw=</ds:Y>

</ds:DSAKeyValue>

</ds:KeyValue>

</ds:KeyInfo>

</ds:Signature>

</SOAP-ENV:Header>

<SOAP-ENV:Body xmlns:SOAP-SEC=➥

"http://schemas.xmlsoap.org/soap/security/2000-12 SOAP-SEC:id="Body">

<z:FooBar xmlns:z="http://example.com"/>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

That’s pretty much it for the basics of the XML Digital Signature API and JSR 105. For
more information on the API, see the Java Web Services Developer Pack tutorial, available
at http://java.sun.com/webservices/docs/1.6/tutorial/doc/XMLDigitalSignatureAPI8.html.
Just realize that since you’re using Java 6, you don’t need to install any supplemental
packages that might be mentioned.

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)142

6609CH06.qxd  6/23/06  1:38 PM  Page 142



The javax.xml.stream Package
Another facet of the new XML-related APIs in Java 6 has to do with JSR 173 and the
Streaming API for XML, or StAX. It is like SAX parsing, but works on pulling events from
the parser, instead of the parser throwing events at you. It definitely does not follow the
tree model of DOM, but does allow you to pause the parsing and skip ahead if necessary;
and unlike SAX, it does allow writing of XML documents, not just reading.

There are two parts to the StAX API: a Cursor API for walking the document from
beginning to end, and an Iterator API for handling events in the order that they appear in
the source document. You’ll see how to use both, but first you need an XML document to
read. Listing 6-15 shows one that represents a series of points, with x and y coordinates
for each.

Listing 6-15. A Simple XML Document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<points>

<point>

<x>1</x>

<y>2</y>

</point>

<point>

<x>3</x>

<y>4</y>

</point>

<point>

<x>5</x>

<y>6</y>

</point>

</points>

Listing 6-16 shows a demonstration of the Cursor API. There is no Cursor class for the
Streaming API for XML—it is just called that for its manner of going through the XML
file. The class basically gets an XMLStreamReader from the XMLInputFactory and then starts
looping through the stream. For each event the system runs across, the cursor stops for
processing. You can check the event type against one of the XMLEvent interface constants,
or rely on methods like isStartElement() or isCharacters() of the same interface to test
for event type. By working with the integer constants, you can create a switch statement
like the one in Listing 6-16 for handling different element types.

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 143

6609CH06.qxd  6/23/06  1:38 PM  Page 143



Listing 6-16. Cursor API Usage

import java.io.*;

import javax.xml.stream.*;

import javax.xml.stream.events.*;

public class CursorRead {

public static void main(String args[]) throws Exception {

Console console = System.console();

XMLInputFactory xmlif = XMLInputFactory.newInstance();

XMLStreamReader xmlsr = xmlif.createXMLStreamReader(

new FileReader("points.xml"));

int eventType;

while (xmlsr.hasNext()) {

eventType = xmlsr.next();

switch (eventType) {

case XMLEvent.START_ELEMENT:

console.printf("%s", xmlsr.getName());

break;

case XMLEvent.CHARACTERS:

console.printf("\t>%s", xmlsr.getText());

break;

default:

break;

}

} 

}

}

The Cursor API and its XMLStreamReader interface don’t implement the Iterator inter-
face; however, the events are iterated through in the same way—with hasNext() and
next() methods. Be sure to call next() after hasNext() has returned true to move to the
next element in the stream.

Running Listing 6-16 against the XML file in Listing 6-15 produces the following
results:

> java CursorRead

points

point

x        1

y        2

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)144

6609CH06.qxd  6/23/06  1:38 PM  Page 144



point

x        3

y        4

point

x        5

y        6

This is nothing fancy, but it does walk through the tree for you. Feel free to add more
output options for different event types.

The second half of the StAX API is the Iterator API (Listing 6-17), which works slightly
differently from the Cursor API. Instead of having to go back to the stream to get the asso-
ciated data for each element you get from the cursor, you instead get an XMLEvent back as
you walk through the iteration. Each XMLEvent thus has its associated data with it, like the
name for the start element or the text data for the characters.

Listing 6-17. Iterator API Usage

import java.io.*;

import javax.xml.stream.*;

import javax.xml.stream.events.*;

public class IteratorRead {

public static void main(String args[]) throws Exception {

Console console = System.console();

XMLInputFactory xmlif = XMLInputFactory.newInstance();

XMLEventReader xmler = xmlif.createXMLEventReader(

new FileReader("points.xml"));

XMLEvent event;

while (xmler.hasNext()) {

event = xmler.nextEvent();

if (event.isStartElement()) {

console.printf("%s", event.asStartElement().getName());

} else if (event.isCharacters()) {

console.printf("\t%s", event.asCharacters().getData());

}

} 

}

}

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 145

6609CH06.qxd  6/23/06  1:38 PM  Page 145



The output produced with Listing 6-17 is identical to that of 6-16. While the output is
the same, there are many differences between the two APIs. First, the Iterator API allows
you to peek ahead without actually reading the stream. This allows you to check ahead to
see what to do next before committing to reading the element. While the Cursor API is
more efficient in memory-constrained environments, the Iterator API supports modifica-
tions, and is best when pipelining streams. If the Iterator API is sufficient, it is typically
best to stick with that for desktop and web applications.

For more information on StAX parsing, visit its java.net home at https://sjsxp.dev.
java.net. The Java Web Services tutorial (http://java.sun.com/webservices/docs/1.6/
tutorial/doc) includes a good introduction to the technology, too.

Summary
If you’ve been doing Java EE–related development, many of the new XML-related APIs for
Mustang won’t be new and different for you. All they are now is standard with Java SE.
The JAXB 2.0 libraries give you Java-to-XML and XML-to-Java data bindings, the XML
Digital Signature API gives you signing of your XML files, and the StAX processing gives
you yet another way to parse your XML files—this time in a streaming fashion with the
possibility to write and not just read the stream.

The next chapter takes you to even more familiar APIs for the Java EE developer:
those related to web services. With the ever-growing popularity of web services, they
aren’t just for enterprise developers anymore. Thanks to their inclusion in Java 6, you too
can use them without adding any optional packages to your Java SE environment.

CHAPTER 6 ■ EXTENSIBLE MARKUP LANGUAGE (XML)146

6609CH06.qxd  6/23/06  1:38 PM  Page 146



Web Services

Who doesn’t use web services these days? Due to the increasing popularity of web serv-
ices, the Java APIs for taking advantage of the functionality are moving from the latest
Java EE release into the Java SE 6 platform. In other words, there are no add-on kits for
web services, and both platforms have the same API. Mustang adds a handful of different
web services–related APIs to the standard tool chest: Web Services Metadata for the Java
Platform with JSR 181, the Java API for XML-Based Web Services (JAX-WS) 2.0 via JSR 224,
and the SOAP with Attachments API for Java (SAAJ) 1.3 as part of JSR 67.

Before continuing with the chapter, it is necessary to point out one very important
point: this is not a book about web services. I’ve seen 1,000-plus-page books on web serv-
ices that still require you to understand some level of XML, SOAP, or some other Java API
to take full advantage of the described capabilities. In this chapter, I’ll do my best to show
examples of using the new APIs in the context of a Java SE program. If you need more
information about creating web services, consider getting one of Apress’s other titles or
some of the many online tutorials on the topic. You will need to “convert” the online
tutorial to Mustang, but the web services APIs are pretty much the same, just in a new
environment: Java SE, instead of Java EE.

The packages associated with the three web services APIs are new to Java SE, so no
need for tables showing the differences between Java 5 and 6. The JAX-WS API is found in
the javax.xml.ws packages, the SAAJ classes are in javax.xml.soap, and the Web Services
Metadata classes are found under javax.jws.

The javax.jws Package
JSR 181 and its specification of Web Services Metadata for the Java Platform provide a
mechanism to utilize annotations in classes to design and develop web services. For
those unfamiliar with annotations, they were introduced with J2SE 5.0 and have been
expanded somewhat with Java 6. They are described more fully in Chapter 10; but they
essentially allow you to add @tags to classes, methods, and properties to describe associ-
ated metadata. A parser can then locate the tags and act appropriately; though when that
action happens is dependent upon the tag itself.

147

C H A P T E R  7

6609CH07.qxd  6/23/06  1:38 PM  Page 147



The two packages involved here are javax.jws and javax.jws.soap. Both packages
only define enumerations and annotations. There are neither classes nor interfaces here.
By importing the appropriate package for the annotations, you can annotate the classes
that represent web services, and their methods, as shown in Listing 7-1. Be sure to
include a package statement. If you don’t, when you run the wsgen tool later, you’ll get
an error message, as follows:

modeler error: @javax.jws.Webservice annotated classes that do not belong to a

package must have the @javax.jws.Webservice.targetNamespace element.

Class: HelloService

Listing 7-1. An Annotated Hello World Service

package net.zukowski.revealed;

import javax.jws.WebService;

import javax.jws.WebMethod;

@WebService

public class HelloService {

@WebMethod

public String helloWorld() {

return "Hello, World";

}

}

There are two basic annotations specified here: @WebService and @WebMethod. The
@WebService annotation identifies the HelloService class as a web service. If not specified
otherwise, the @WebService annotation assumes the name is that of the class. You can also
specify a namespace, service name, WSDL location, and endpoint interface.

But what can you do with the source file? Running the javac compiler against the
source just spits out a .class file—nothing else special. You still need to do that. But after
compiling the class, you also need to run the wsgen command-line tool (wsgen is short for
web service generator).

The wsgen tool generates a handful of source files and then compiles. Since the pack-
age name of the example here is net.zukowski.revealed, the new classes are generated
into the net/zukowski/revealed/jaxws directory. Listings 7-2 and 7-3 show the source for
the classes generated from running the following command:

> wsgen -cp . net.zukowski.revealed.HelloService

CHAPTER 7 ■ WEB SERVICES148

6609CH07.qxd  6/23/06  1:38 PM  Page 148



Listing 7-2. The First Generated Class for the Web Service

package net.zukowski.revealed.jaxws;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlType;

@XmlRootElement(name = "helloWorld", namespace = "http://revealed.zukowski.net/")

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "helloWorld", namespace = "http://revealed.zukowski.net/")

public class HelloWorld {

}

Listing 7-3. The Second Generated Class for the Web Service

package net.zukowski.revealed.jaxws;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlType;

@XmlRootElement(name = "helloWorldResponse", ➥

namespace = "http://revealed.zukowski.net/")

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "helloWorldResponse", namespace = "http://revealed.zukowski.net/")

public class HelloWorldResponse {

@XmlElement(name = "return", namespace = "")

private String _return;

/**

* 

* @return

*     returns String

*/

public String get_return() {

return this._return;

}

CHAPTER 7 ■ WEB SERVICES 149

6609CH07.qxd  6/23/06  1:38 PM  Page 149



/**

* 

* @param _return

*     the value for the _return property

*/

public void set_return(String _return) {

this._return = _return;

}

}

There is certainly much more you can do with annotations here. In fact, the annota-
tions found in the javax.jws.soap package are where you get the SOAP bindings, which
takes us to the next section.

The javax.xml.ws and javax.xml.soap Packages
The JAX-WS API is very closely associated with JAXB. Where JAXB is the Java-to-XML
mapping, and vice versa, JAX-WS is the mapping of Java objects to and from the Web Ser-
vices Description Language (WSDL). Together, with the help of the SAAJ, the trio gives
you the API stack for web services.

What does all that mean? With the help of last chapter’s JAXB, you can use the SAAJ
and JAX-WS APIs to generate SOAP messages to connect to web services to get results.
You’re not going to deploy web services with Mustang. Instead, you’re going to connect to
preexisting services to get answers. The available APIs are what you get with Java EE 5.

SOAP Messages

In the last chapter, you saw an example creating a SOAP message. The javax.xml.soap
package provides a MessageFactory, from which you get an instance to create the message.

SOAPMessage soapMessage = MessageFactory.newInstance().createMessage();

This generates a SOAP 1.2 message format. If you need to create a message for the
SOAP 1.1 protocol, you can pass the protocol name to the createMessage() method.

SOAPMessage soapMessage =

MessageFactory.newInstance().createMessage(SOAPConstants.SOAP_1_1_PROTOCOL);

The SOAP message in turn consists of a series of other objects: SOAPPart,
SOAPEnvelope, SOAPBody, and SOAPHeader. All of these bits are in XML format. To include
non-XML data within the message, you would use one or more AttachmentPart type
objects. These are created from either an Activation Framework DataHandler, or directly

CHAPTER 7 ■ WEB SERVICES150

6609CH07.qxd  6/23/06  1:38 PM  Page 150



from an Object and mime type. Think of e-mail attachments here. There is built-in
support in SAAJ 1.3 for mime types of type text/plain, multipart/*, and text/xml or
application/xml. For other mime types, that’s where the DataHandler comes into play.

AttachmentPart attachment = soapMessage.createAttachmentPart();

attachment.setContent(textContent, "text/plain");

soapMessage.addAttachmentPart(attachment);

What you put in your SOAP message really depends upon the service you are con-
necting to. Just be sure to identify the destination in the SOAPEnvelope.

Table 7-1 includes a list of the key interfaces and classes found in the javax.xml.soap
package.

Table 7-1. Key SOAP Classes and Interfaces

Name Description

AttachmentPart SOAPMessage attachment

Detail DetailEntry container

DetailEntry SOAPFault details

MessageFactory SOAPMessage factory

MimeHeader Mime type details

MimeHeaders MimeHeader container

Name XML name

Node Element of XML document

SAAJMetaFactory SAAJ API factory

SAAJResult JAXP transformation or JAXB marshalling results holder

SOAPBody SOAP body part of SOAPMessage

SOAPBodyElement SOAPBody contents

SOAPConnection Point-to-point connection for client

SOAPConnectionFactory SOAPConnection factory

SOAPConstants SOAP 1.1 protocol constants

SOAPElement SOAPMessage element

SOAPElementFactory SOAPElement factory

SOAPEnvelope SOAPMessage header information

SOAPException Standard exception for SOAP-related operations

SOAPFactory SOAPMessage elements factory

Continued

CHAPTER 7 ■ WEB SERVICES 151

6609CH07.qxd  6/23/06  1:38 PM  Page 151



Table 7-1. Continued

Name Description

SOAPFault SOAPMessage element for error status information

SOAPFaultElement SOAPFault contents

SOAPHeader SOAPMessage header element

SOAPHeaderElement SOAPHeader contents

SOAPMessage Base class for SOAP messages

SOAPPart SOAPMessage element for SOAP-specific pieces

Text Textual node contents

The contents of the SOAPMessage generated really depend upon the web service you
are connecting to. Similar to how the example from Chapter 6 was built up, you just cre-
ate the different elements and put the pieces together. As the javadoc for the package
states, there are lots of things you can do with the javax.xml.soap package:

• Create a point-to-point connection to a specified endpoint

• Create a SOAP message

• Create an XML fragment

• Add content to the header of a SOAP message

• Add content to the body of a SOAP message

• Create attachment parts and add content to them

• Access/add/modify parts of a SOAP message

• Create/add/modify SOAP fault information

• Extract content from a SOAP message

• Send a SOAP request-response message

The JAX-WS API

The next identical packages shared with Java EE 5 are the javax.xml.ws package and sub-
packages, which include JAX-WS. Again, there are whole books written just about this
API, so I’ll just show off some highlights. Since the API is identical to that of Java EE 5,

CHAPTER 7 ■ WEB SERVICES152

6609CH07.qxd  6/23/06  1:38 PM  Page 152



those books go into much more detail of the API than can be shown in a Mustang quick
start–type book. The key difference now is that the JAX-WS libraries are standard with the
Java SE platform, so no additional libraries are needed.

The key thing to understand when using the JAX-WS API with Mustang—outside
the context of Java EE—is that you need to think in the context of a consumer of web
services, not as a developer of them. For instance, take Google, which is a rather popular
search engine. Google offers a set of web services to utilize its services from your pro-
grams. You can now use these programs directly in your program, provided you get a free
key from them, which is limited to 1,000 usages a day.

Listing 7-4 provides the source for a simple web services client. Provided that you
pass the file name for the SOAP request to the program, it will connect to the Google site
to get results.

Listing 7-4. Connecting to Google Web Services

import java.io.*;

import java.net.*;

import javax.xml.ws.*;

import javax.xml.namespace.*;

import javax.xml.soap.*;

public class GoogleSearch {

public static void main(String args[]) throws Exception {

URL url = new URL("http://api.google.com/GoogleSearch.wsdl");

QName serviceName = new QName("urn:GoogleSearch", "GoogleSearchService");

QName portName = new QName("urn:GoogleSearch", "GoogleSearchPort");

Service service = Service.create(url, serviceName);

Dispatch<SOAPMessage> dispatch = service.createDispatch(portName,

SOAPMessage.class, Service.Mode.MESSAGE);

SOAPMessage request = MessageFactory.newInstance().createMessage(

null, new FileInputStream(args[0]));

SOAPMessage response = dispatch.invoke(request);

response.writeTo(System.out);

}

}

That’s a typical web services client. You can either build up the SOAP message with
the previously described javax.xml.soap package, or, as the program does, just place the
XML for the SOAP request in a file (with your Google key) as part of the SOAP message.
Then, you can query Google from your program.

> java GoogleSearch search.xml

CHAPTER 7 ■ WEB SERVICES 153

6609CH07.qxd  6/23/06  1:38 PM  Page 153



■Note For more information on using Google’s APIs, see www.google.com/apis.

To change this client to use another web service, you’ll need to change the URL you
connect to, as well as the qualified name, QName, for the service. And, of course, adjust the
XML of the SOAP request accordingly. Not to belittle the JAX-WS API, but that is really all
there is to using the API for a client, as opposed to creating the service itself.

■Note Information on web services available from Amazon can be found at http://developer.
amazonwebservices.com, if you want another source to try out.

Summary
The web services support added to Mustang is meant purely for the client-side aspect
of web services. There is no web server to deploy your services to. Through the three-
pronged approach of JAXB, JAX-WS, and SAAJ, you can connect to any preexisting
services for tasks that used to be done with RMI and CORBA, among many other pre-
existing remote procedure call (RPC)–like services. The APIs themselves aren’t new to
the Java platform—they’re just new to the standard edition.

Chapter 8 moves beyond what you can think of as standard libraries into the APIs
related to directly using the platform toolset. Working with JSR 199, you can now compile
your Java programs from your Java programs to create new Java programs, or at least new
classes. The API even allows you to compile straight from memory, without files. Turn the
page to learn about the javax.tools API.

CHAPTER 7 ■ WEB SERVICES154

6609CH07.qxd  6/23/06  1:38 PM  Page 154



The Java Compiler API

Care to compile your source from source? Thanks to JSR 199 and the Java Compiler API,
you can now initiate the standard compiler from your own code. No longer do you have
to call the nonstandard Main class of the com.sun.tools.javac package to compile your
code (the class/package is found in the tools.jar file in the lib subdirectory). Now you
can access the compiler through the javax.tools package, without adding an extra JAR
file to your classpath. As the package is brand new for Java 6, Table 8-1 shows the size of
the package in the new release only.

Table 8-1. javax.tools.* Package Size

Package Version Interfaces Classes Enums Total

tools 6.0 11 6 3 20

Compiling Source, Take 1
The API to compile source has a couple of different options. First, let’s look at the quick-
and-dirty way of compiling source. With this manner, compilation errors are sent to
standard error (stderr) to be processed outside the context of the compiling program.

To invoke the Java compiler from your Java programs, you need to access the
JavaCompilerTool interface. Among other things, accessing the interface allows you to set
the source path, the classpath, and the destination directory. Specifying each of the files
to compile as a JavaFileObject allows you to compile them all—but you’re not going to
need all those options just yet.

To access the default implementation of the JavaCompilerTool interface, you 
need to ask something called the ToolProvider. The ToolProvider class provides a
getSystemJavaCompilerTool() method, which returns an instance of some class that
implements the JavaCompilerTool interface.

JavaCompilerTool tool = ToolProvider.getSystemJavaCompilerTool();

155

C H A P T E R  8

6609CH08.qxd  6/23/06  1:40 PM  Page 155



■Note The JavaCompilerTool interface is not related to the java.lang.Compiler class, which serves
as a placeholder for a just-in-time (JIT) compiler implementation.

The simple way to compile with the JavaCompilerTool relies on only the Tool interface
it implements—more specifically, its run() method.

int run(InputStream in, OutputStream out, OutputStream err, String... arguments)

The stream arguments can all be passed in null to use the defaults of System.in,
System.out, and System.err, respectively, for the first three arguments. The variable set of
String arguments represents the file names to pass into the compiler. Technically speak-
ing, you can pass any command-line arguments into javac here.

So, if your source code for the Foo class is located in the current subdirectory, the way
to compile its source would be as follows:

int results = tool.run(null, null, null, "Foo.java");

There are two ways to see the results of a compilation. The first way is the obvious
one: look for the necessary .class file in the destination directory. The third null argu-
ment passed into the run() method of JavaCompilerTool says to send output to standard
error (stderr). This is for the compilation error messages, not just messages like those you
get from not passing any files to compile to the run() method. The second way to check is
via the returned integer. This method returns an int indicating success or failure of the
operation. On error, you would get a nonzero value. On success, you would get a zero.
The javadoc for the class gives no significance to what the non-zero error value is. If
multiple source files are passed into the run() method, 0 will be returned only if all files
compile successfully. Listing 8-1 puts all these pieces together for a first look at initiating
the Java compiler from source.

Listing 8-1. Using the Java Compiling Tool

import java.io.*;

import javax.tools.*;

public class FirstCompile {

public static void main(String args[]) throws IOException {

JavaCompilerTool compiler = ToolProvider.getSystemJavaCompilerTool();

int results = compiler.run(null, null, null, "Foo.java");

System.out.println("Success: " + (results == 0));

}

}

CHAPTER 8 ■ THE JAVA COMPILER API156

6609CH08.qxd  6/23/06  1:40 PM  Page 156



Compiling and running the program without a Foo.java file in the current directory
will produce the following results:

>java FirstCompile

error: cannot read: Foo.java

1 error

Success: false

If instead you have the Foo class source defined in the current directory (as in
Listing 8-2), running the program will generate a Foo.class file. By default, the compiled
class file will be placed in the same directory as the source. On successful completion,
the program displays a Success: true message.

Listing 8-2. Simple Class to Compile

public class Foo {

public static void main(String args[]) {

System.out.println("Hello, World");

}

}

To see what happens when the program to compile has an error, add a problem to
the Foo source file, such as renaming the println() method to be pritnln(). You don’t
need to recompile the FirstCompile program; just save the updated Foo.java file. Then,
rerunning the program gives the following output:

>java FirstCompile

Foo.java:3: cannot find symbol

symbol  : method pritnln(java.lang.String)

location: class java.io.PrintStream

System.out.pritnln("Hello, World");

^

1 error

Success: false

You’re seeing here exactly what javac spits out, since all Listing 8-1 does is use the
default stdout and stderr when running the compiler.

CHAPTER 8 ■ THE JAVA COMPILER API 157

6609CH08.qxd  6/23/06  1:40 PM  Page 157



javac Foo.java

Foo.java:3: cannot find symbol

symbol  : method pritnln(java.lang.String)

location: class java.io.PrintStream

System.out.pritnln("Hello, World");

^

1 error

Compiling Source, Take 2
The FirstCompile program in Listing 8-1 shows one way of using the JavaCompilerTool
class. It compiles your source files to generate .class files. For that example, all default
options of the JavaCompilerTool were used for compilation—just as in doing javac
Foo.java from the command line. While it certainly works, you can do a little more work
up front to generate better results, or at least a potentially better user experience.

Introducing StandardJavaFileManager

The “Compiling Source, Take 1” section took the easy way out to compile source code.
Yes, it worked, but it didn’t really offer a way to see or do much with the results from
within the program, short of reading standard error/output, that is. The better approach
at compiling source from source is to take advantage of the StandardJavaFileManager
class. The file manager provides a way to work with regular files for both input and
output operations, and to get diagnostic messages reported through the help of a
DiagnosticListener. The DiagnosticCollector class is just one such implementation
of that listener that you’ll be using.

Before identifying what needs to be compiled, the basic two-step process to get the
file manager is to create a DiagnosticCollector and then ask the JavaCompilerTool for
the file manager with getStandardFileManager(), passing in DiagnosticListener. This
listener reports non-fatal problems and can be shared with the compiler by passing it
into the getTask() method.

DiagnosticCollector<JavaFileObject> diagnostics = 

new DiagnosticCollector<JavaFileObject>();

StandardJavaFileManager fileManager = 

compiler.getStandardFileManager(diagnostics);

CHAPTER 8 ■ THE JAVA COMPILER API158

6609CH08.qxd  6/23/06  1:40 PM  Page 158



Providing a null listener works, but that puts you back to where you were before,
without a way to monitor diagnostic messages. I’ll discuss more on DiagnosticCollector
and DiagnosticListener later, though.

Before getting into the depths of StandardJavaFileManager, I want to discuss the
getTask() method of the JavaCompilerTool class, an important part of the compilation
process. It takes six arguments and passes back an instance of an inner class of itself,
called CompilationTask.

JavaCompilerTool.CompilationTask getTask(

Writer out,

JavaFileManager fileManager,  

DiagnosticListener<? super JavaFileObject> diagnosticListener,

Iterable<String> options,

Iterable<String> classes,

Iterable<? extends JavaFileObject> compilationUnits)

Most of these arguments can be null, with logical defaults. 

• out: System.err

• fileManager: The compiler’s standard file manager

• diagnosticListener: The compiler’s default behavior

• options: No command-line options given to the compiler

• classes: No class names provided for annotation processing

The last argument, compilationUnits, really shouldn’t be null, as that is what you
want to compile. And that brings us back to StandardJavaFileManager. Notice the
argument type: Iterable<? extends JavaFileObject>. There are two methods of
StandardJavaFileManager that give you these results. You can either start with a List
of File objects, or a List of String objects, representing the file names.

Iterable<? extends JavaFileObject> getJavaFileObjectsFromFiles(

Iterable<? extends File> files)

Iterable<? extends JavaFileObject> getJavaFileObjectsFromStrings(

Iterable<String> names)

Actually, anything that implements Iterable can be used to identify the collection of
items to compile here—not just a List—it just happens to be the easiest to create.

String[] filenames = ...;

Iterable<? extends JavaFileObject> compilationUnits =

fileManager.getJavaFileObjectsFromFiles(Arrays.asList(filenames));

CHAPTER 8 ■ THE JAVA COMPILER API 159

6609CH08.qxd  6/23/06  1:40 PM  Page 159



You now have all the bits to do the actual compilation of your source files. The
JavaCompilerTool.CompilationTask returned from getTask() implements Runnable. You
can either pass it off to a Thread to execute separately or call the run() method directly
for synchronous execution.

JavaCompilerTool.CompilationTask task = 

compiler.getTask(null, fileManager, null, null, null, compilationUnits);

task.run();

Assuming there are no compilation warnings or errors, you’ll get all the files identi-
fied by the compilationUnits variable compiled (and their dependencies). To find out if
everything succeeded, call the getResult() method of CompilationTask. This returns true
if all the compilation units compiled without errors, and false if one or more fail.

As a last task, remember to release the resources of the file manager with its close()
method. You can call getTask() multiple times to reuse the compiler, in order to reduce
any overhead during multiple compilation requests. Just close things up when you’re
done.

fileManager.close();

Putting all the pieces together and doing nothing special with the DiagnosticListener/
DiagnosticCollector produces Listing 8-3. If you’re following the source examples in the
book, don’t forget to rename the pritnln() method to be println() again.

Listing 8-3. More Advanced Compilation Options

import java.io.*;

import java.util.*;

import javax.tools.*;

public class SecondCompile {

public static void main(String args[]) throws IOException {

JavaCompilerTool compiler = ToolProvider.getSystemJavaCompilerTool();

DiagnosticCollector<JavaFileObject> diagnostics = 

new DiagnosticCollector<JavaFileObject>();

StandardJavaFileManager fileManager = 

compiler.getStandardFileManager(diagnostics);

Iterable<? extends JavaFileObject> compilationUnits =

fileManager.getJavaFileObjectsFromStrings(Arrays.asList("Foo.java"));

JavaCompilerTool.CompilationTask task = compiler.getTask(

null, fileManager, diagnostic, null, null, compilationUnits);

task.run();

boolean success = task.getResult();

CHAPTER 8 ■ THE JAVA COMPILER API160

6609CH08.qxd  6/23/06  1:40 PM  Page 160



fileManager.close();

System.out.println("Success: " + success);

}

}

Assuming there are no compilation errors, compiling and running the program in
Listing 8-3 produces the following output and a compiled Foo class:

java SecondCompile

Success: true

With a compilation error, you would see false there, instead of true, but no
diagnostics about the problems—which takes us to DiagnosticListener and its
DiagnosticCollector implementation.

Working with DiagnosticListener

Compilation errors are reported to the registered DiagnosticListener. The
DiagnosticListener interface has a single method, public void report(Diagnostic<?
extends S> diagnostic), which you must implement. Actually, you don’t have to
implement it yourself. The standard libraries offer one such implementation in the
DiagnosticCollector class. As the name implies, the DiagnosticCollector class collects
the diagnostic problems it encounters. You can then loop through the information with
a simple enhanced for loop.

for (Diagnostic diagnostic : diagnostics.getDiagnostics())

System.console().printf(

"Code: %s%n" +

"Kind: %s%n" +

"Position: %s%n" +

"Start Position: %s%n" +

"End Position: %s%n" +

"Source: %s%n" +

"Message:  %s%n",

diagnostic.getCode(), diagnostic.getKind(),

diagnostic.getPosition(), diagnostic.getStartPosition(),

diagnostic.getEndPosition(), diagnostic.getSource(),

diagnostic.getMessage(null));

Of course, if you want to create your own DiagnosticListener, you can do that, too. As
previously mentioned, it gets a Diagnostic passed into its report() method, too.

CHAPTER 8 ■ THE JAVA COMPILER API 161

6609CH08.qxd  6/23/06  1:40 PM  Page 161



Changing the Output Directory

One of the typical things developers do is maintain separate source and destination
directories, into which the source and the compiled .class files are respectively placed.
The JavaCompilerTool class supports this by setting the output directory via the options
argument passed into its getTask() method. Configuring the compilation task appropri-
ately will tell the tool to place the compiled class files into a different location than the
source files.

Iterable<String> options = Arrays.asList("-d", "classes");

JavaCompilerTool.CompilationTask task = compiler.getTask(

null, fileManager, diagnostics, options, null, compilationUnits);

As it probably appears, you’re just configuring the command-line options, just as if
you used the -d command-line switch with the javac compiler.

Changing the Input Directory

The JavaFileObject class is used to identify each source file to compile. You provide the
file name as a string to the getJavaFileObjectsFromStrings() method, or as a File to the
getJavaFileObjectsFromFiles() method of your StandardJavaFileManager. For instance,
"Foo.java" would be used to compile the Foo class located in the default package. As soon
as the source code belongs to a package, you then maintain that package structure within
the argument of the getJavaFileObjectsFromStrings() method call. For instance, had the
Foo class been in the com.example package, the argument to getJavaFileObjectsFromStrings()
would have been "com/example/Foo.java" instead.

■Tip Even on Windows platforms, the path elements should be separated by Unix-style file separators.

If compiling one class reveals that a second class needs to be compiled, where does
the system look for it? By default, it looks in the current directory, or at least relative to the
top-level package directory when in a package.

From the command-line compiler, you can provide an additional set of locations for
the compiler to look, via the -sourcepath option. With the JavaCompilerTool class, you just
need to add more options for the getTask() method to identify those locations.

Iterable<String> options = Arrays.asList("-d", "classes", "-sourcepath", "src");

This doesn’t help in locating the actual JavaFileObject being compiled, only in find-
ing the source files for its dependent classes.

CHAPTER 8 ■ THE JAVA COMPILER API162

6609CH08.qxd  6/23/06  1:40 PM  Page 162



To demonstrate these new options, Listings 8-4 and 8-5 provide two classes to use.
Place the Bar class of Listing 8-4 in the current directory, and the Baz class of Listing 8-5 in
a subdirectory named src.

Listing 8-4. Simple Class to Compile with Dependency

import java.util.*;

public class Bar {

public static void main(String args[]) {

System.out.println("Move that Bus");

new Baz();

List list = new ArrayList();

list.add("Hello");

new Thread().suspend();

}

}

Listing 8-5. Dependent Class to Compile

public class Baz {

}

Before creating a new program to compile this with JSR 199 and the Java Compiler
API, it is important to see what happens when you compile with javac and the extended
lint option enabled.

> javac -d classes -sourcepath src -Xlint:all Bar.java

Bar.java:8: warning: [unchecked] unchecked call to add(E) as a member of the raw

type java.util.List

list.add("Hello");

^

Bar.java:9: warning: [deprecation] suspend() in java.lang.Thread has been

deprecated

new Thread().suspend();

^

2 warnings

CHAPTER 8 ■ THE JAVA COMPILER API 163

6609CH08.qxd  6/23/06  1:40 PM  Page 163



In the first case, the usage of the List object does not properly identify that it is a list
of String objects via generics, so the compiler issues a warning. In the latter case, the
suspend() method of Thread has been deprecated, so it shouldn’t be used.

■Note At this point, you should delete the generated .class files for both the Bar and Baz classes.

Listing 8-6 puts all these pieces of JavaCompilerTool together with its
DiagnosticCollector and changes to the default source and destination directories.
Be sure to change the file to be compiled from Foo.java to Bar.java. Along with the new
output from the DiagnosticCollection, the three bold source lines are the ones that
changed from the earlier example.

Listing 8-6. Compiling with a DiagnosticListener

import java.io.*;

import java.util.*;

import javax.tools.*;

public class SecondCompile {

public static void main(String args[]) throws IOException {

JavaCompilerTool compiler = ToolProvider.getSystemJavaCompilerTool();

DiagnosticCollector<JavaFileObject> diagnostics = 

new DiagnosticCollector<JavaFileObject>();

StandardJavaFileManager fileManager = 

compiler.getStandardFileManager(diagnostics);

Iterable<? extends JavaFileObject> compilationUnits =

fileManager.getJavaFileObjectsFromStrings(Arrays.asList("Bar.java"));

Iterable<String> options = Arrays.asList(

"-d", "classes", "-sourcepath", "src");

JavaCompilerTool.CompilationTask task = compiler.getTask(

null, fileManager, diagnostics, options, null, compilationUnits);

task.run();

boolean success = task.getResult();

for (Diagnostic diagnostic : diagnostics.getDiagnostics())

System.console().printf(

"Code: %s%n" +

"Kind: %s%n" +

"Position: %s%n" +

"Start Position: %s%n" +

"End Position: %s%n" +

CHAPTER 8 ■ THE JAVA COMPILER API164

6609CH08.qxd  6/23/06  1:40 PM  Page 164



"Source: %s%n" +

"Message:  %s%n",

diagnostic.getCode(), diagnostic.getKind(),

diagnostic.getPosition(), diagnostic.getStartPosition(),

diagnostic.getEndPosition(), diagnostic.getSource(),

diagnostic.getMessage(null));

fileManager.close();

System.out.println("Success: " + success);

}

}

After compiling SecondCompile, running the program will generate .class files for the
Bar and Baz classes in the classes subdirectory. It will also display information from the
Diagnostic of the warning messages, as shown here:

> java SecondCompile

Code: compiler.note.deprecated.filename

Kind: NOTE

Position: -1

Start Position: -1

End Position: -1

Source: null

Message:  Note: Bar.java uses or overrides a deprecated API.

Code: compiler.note.deprecated.recompile

Kind: NOTE

Position: -1

Start Position: -1

End Position: -1

Source: null

Message:  Note: Recompile with -Xlint:deprecation for details.

Code: compiler.note.unchecked.filename

Kind: NOTE

Position: -1

Start Position: -1

End Position: -1

Source: null

Message:  Note: Bar.java uses unchecked or unsafe operations.

Code: compiler.note.unchecked.recompile

Kind: NOTE

Position: -1

Start Position: -1

End Position: -1

CHAPTER 8 ■ THE JAVA COMPILER API 165

6609CH08.qxd  6/23/06  1:40 PM  Page 165



Source: null

Message:  Note: Recompile with -Xlint:unchecked for details.

Success: true

Compiling from Memory
My favorite use of JavaCompilerTool isn’t just compiling source files found on disk.
The class also allows you to generate files in memory, compile them, and then,
using reflection, run them. The javadoc for the JavaCompilerTool interface
defines a JavaSourceFromString class that makes this so much easier. Basically, the 
JavaSourceFromString class is a JavaFileObject that defines an in-memory source file.
Once created, you can then pass it on to the compiler to define a CompilationTask. You
can then compile that source directly using the same run() call as before, to get a gener-
ated .class file. Compiling source from memory sounds like a lot of work, but as Listing
8-7 shows, it isn’t really that hard at all. The in-memory class definition is shown in bold.
While the compiler doesn’t care about whitespace, it is best to format the source in a logi-
cal way for readability’s sake. The definition of the JavaSourceFromString class follows in
Listing 8-8. The source file is literally in-memory only, without anything stored to disk.

Listing 8-7. Compiling from Memory

import java.lang.reflect.*;

import java.io.*;

import javax.tools.*;

import javax.tools.JavaCompilerTool.CompilationTask;

import java.util.*;

public class CompileSource {

public static void main(String args[]) throws IOException {

JavaCompilerTool compiler = ToolProvider.getSystemJavaCompilerTool();

DiagnosticCollector<JavaFileObject> diagnostics = 

new DiagnosticCollector<JavaFileObject>();

// Define class

StringWriter writer = new StringWriter();

PrintWriter out = new PrintWriter(writer);

out.println("public class HelloWorld {");

out.println("  public static void main(String args[]) {");

out.println("    System.out.println(\"Hello, World\");");

CHAPTER 8 ■ THE JAVA COMPILER API166

6609CH08.qxd  6/23/06  1:40 PM  Page 166



out.println("  }");

out.println("}");

out.close();

JavaFileObject file =

new JavaSourceFromString("HelloWorld", writer.toString());

// Compile class

Iterable<? extends JavaFileObject> compilationUnits =

Arrays.asList(file);

CompilationTask task = compiler.getTask(

null, null, diagnostics, null, null, compilationUnits);

task.run();

boolean success = task.getResult();

for (Diagnostic diagnostic : diagnostics.getDiagnostics())

System.console().printf(

"Code: %s%n" +

"Kind: %s%n" +

"Position: %s%n" +

"Start Position: %s%n" +

"End Position: %s%n" +

"Source: %s%n" +

"Message:  %s%n",

diagnostic.getCode(), diagnostic.getKind(),

diagnostic.getPosition(), diagnostic.getStartPosition(),

diagnostic.getEndPosition(), diagnostic.getSource(),

diagnostic.getMessage(null));

System.out.println("Success: " + success);

// Invoke new class

if (success) {

try {

System.out.println("-----Output-----");

Class.forName("HelloWorld").getDeclaredMethod("main",

new Class[] {String[].class}).invoke(null, new Object[] {null});

System.out.println("-----Output-----");

} catch (ClassNotFoundException e) {

System.err.println("Class not found: " + e);

} catch (NoSuchMethodException e) {

System.err.println("No such method: " + e);

} catch (IllegalAccessException e) {

System.err.println("Illegal access: " + e);

} catch (InvocationTargetException e) {

CHAPTER 8 ■ THE JAVA COMPILER API 167

6609CH08.qxd  6/23/06  1:40 PM  Page 167



System.err.println("Invocation target: " + e);

}

}

}

}

Listing 8-8. The JavaSourceFromString Class Definition

import javax.tools.*;

import java.net.*;

public class JavaSourceFromString extends SimpleJavaFileObject {

final String code;

JavaSourceFromString(String name, String code) {

super(URI.create(

"string:///" + name.replace('.','/') + Kind.SOURCE.extension),

Kind.SOURCE);

this.code = code;

}

@Override

public CharSequence getCharContent(boolean ignoreEncodingErrors) {

return code;

}

}

Running the CompileSource program generates the following output:

> java CompileSource

Success: true

-----Output-----

Hello, World

-----Output-----

CHAPTER 8 ■ THE JAVA COMPILER API168

6609CH08.qxd  6/23/06  1:40 PM  Page 168



Summary
The Java Compiler API isn’t needed by everyone. In fact, it isn’t needed by most people.
It’s great for those creating tools like editors, or something like JSP engines, which require
real-time compilation. Thanks to JSR 199, you can do this with Java 6.

Chapter 9 moves on to JSR 223, which incorporates even more new features into
Mustang. This JSR defines a framework for combining the scripting world with the Java
world, enabling scripting languages to interact with full-fledged Java objects in a stan-
dard way. No longer will you have to explore any vendor-specific options, thanks to the
new javax.script and javax.script.http packages.

CHAPTER 8 ■ THE JAVA COMPILER API 169

6609CH08.qxd  6/23/06  1:40 PM  Page 169



6609CH08.qxd  6/23/06  1:40 PM  Page 170



Scripting and JSR 223

What can it be now? When I first heard about scripting support in Java 6, I understood
it to mean that the Mozilla Rhino JavaScript interpreter would be embedded in the plat-
form. Using a JEditorPane, you would be able to not only show HTML in the component,
but also have it execute the JavaScript on the web pages your users visit, allowing the
component to be more like a full-fledged browser than just an HTML viewer for help text.
But, that isn’t where the scripting support in Mustang went. Instead, while Rhino is pres-
ent, JSR 223 adds to Mustang a common interface to integrate any scripting language
(like PHP or Ruby—not just JavaScript), a framework for those scripting languages to
access the Java platform, and a command-line scripting shell program, jrunscript.

Before looking at the different elements offered by JSR 223, take a look at Table 9-1,
which shows the relatively small size of the javax.script package, which provides the
public APIs to the new scripting support library.

Table 9-1. javax.script.* Package Sizes

Package Version Interfaces Classes Throwable Total

script 6.0 6 5 0+1 12

While I haven’t been involved with JSR 223 since its beginning in 2003, I’ve gathered
that the JSR originated from a desire for a language for scripting web servlets with some-
thing comparable to the Bean Scripting Framework (or BSF for short). Yes, BSF is an
Apache project (see http://jakarta.apache.org/bsf). BSF offered (offers?) a tag library for
JavaServer Pages (JSP), allowing you to write web pages in languages other than the Java
programming language. A package named something like javax.script.http would inte-
grate with your servlets for execution on your web servers, with the script results passed
back to the browser.

At least for Mustang, what seems to have morphed out of the deal is something more
appropriate for the standard edition of Java than for the enterprise edition. So, instead of
a new javax.script.http package, you get just javax.script with no real direct web hooks,
yet. And as best as can be found, it has little to no direct servlet or JSP relationship. Surely

171

C H A P T E R  9

6609CH09.qxd  6/28/06  9:24 AM  Page 171



the framework is there for tighter enterprise integration; it is just that Mustang only
requires Mustang to run its classes, not some enterprise edition of the Java platform.
At least with Mustang, you won’t find any servlet objects related to JSR 223.

Scripting Engines
The scripting package added with Mustang is rather small, at least from the public API
perspective: six interfaces, five classes, and an exception. Looking behind the scenes,
though, there are many nonpublic elements involved. For instance, the embedded Rhino
JavaScript engine has over 140 classes—you just never see them or know that you’re
working with them, thanks to those six interfaces that are defined in the javax.script
package. What you’ll learn here is how to use the interfaces, not how to create your own
engine.

The main class of the javax.script package is called ScriptEngineManager. The class
provides a discovery mechanism to the installed ScriptEngineFactory objects, which in
turn provide access to an actual ScriptEngine. Listing 9-1 demonstrates this relationship
from ScriptEngineManager to ScriptEngineFactory to ScriptEngine, displaying information
about each factory found. Nothing is actually done with the engine just yet.

Listing 9-1. Listing Available Scripting Engine Factories

import javax.script.*;

import java.io.*;

import java.util.*;

public class ListEngines {

public static void main(String args[]) {

ScriptEngineManager manager = new ScriptEngineManager();

List<ScriptEngineFactory> factories = manager.getEngineFactories();

for (ScriptEngineFactory factory: factories) {

Console console = System.console();

console.printf("Name: %s%n" +

"Version: %s%n" +

"Language name: %s%n" +

"Language version: %s%n" +

"Extensions: %s%n" +

"Mime types: %s%n" +

"Names: %s%n",

factory.getEngineName(),

factory.getEngineVersion(),

factory.getLanguageName(),

CHAPTER 9 ■ SCRIPTING AND JSR 223172

6609CH09.qxd  6/28/06  9:24 AM  Page 172



factory.getLanguageVersion(),

factory.getExtensions(),

factory.getMimeTypes(),

factory.getNames());

ScriptEngine engine = factory.getScriptEngine();

}

}

}

Running the program demonstrates that the only installed engine is version 1.6,
release 2, of the Mozilla Rhino engine.

> java ListEngines

Name: Mozilla Rhino

Version: 1.6 release 2

Language name: ECMAScript

Language version: 1.6

Extensions: [js]

Mime types: [application/javascript, application/ecmascript, text/javascript,

text/ecmascript]

Names: [js, rhino, JavaScript, javascript, ECMAScript, ecmascript]

The last line represents the different names that can be used to locate this engine
from the manager.

While getting the scripting engine from the factory that was acquired from the script-
ing manager certainly works, you don’t need to go through that level of indirection.
Instead, you can ask the manager directly for the engine associated with a particular
extension, mime type, or name, as follows:

ScriptEngine engine1 = manager.getEngineByExtension("js");

ScriptEngine engine2 = manager.getEngineByMimeType("text/javascript");

ScriptEngine engine3 = manager.getEngineByName("javascript");

The getEngineByXXX() methods are not static methods of ScriptEngineManager, so you
have to create an instance first; but if you know you want to evaluate a JavaScript expres-
sion, just ask for the JavaScript engine, and then use the returned engine to evaluate the
expression.

■Note There are two constructors for ScriptEngineManager, with a class loader passed into one, allow-
ing you to provide multiple contexts for where to locate additional engines.

CHAPTER 9 ■ SCRIPTING AND JSR 223 173

6609CH09.qxd  6/28/06  9:24 AM  Page 173



To have a scripting engine evaluate an expression, you would use one of the six ver-
sions of its eval() method, all of which can throw a ScriptException if there are errors in
the script:

• public Object eval(String script)

• public Object eval(Reader reader)

• public Object eval(String script, ScriptContext context)

• public Object eval(Reader reader, ScriptContext context)

• public Object eval(String script, Bindings bindings)

• public Object eval(Reader reader, Bindings bindings)

The script to evaluate can either be in the form of a String object or come from a
Reader stream. The ScriptContext allows you to specify the scope of any Bindings objects,
as well as get input, output, and error streams. There are two predefined context scopes:
ScriptContext.GLOBAL_SCOPE and ScriptContext.ENGINE_SCOPE. The Bindings objects are just
a mapping from a String name to a Java instance, with global scope meaning that names
are shared across all engines.

■Tip To set the default context for an engine, for when a ScriptContext isn’t passed into eval(), call
the setContext() method of ScriptEngine.

Listing 9-2 demonstrates the evaluation of a simple JavaScript expression from a
string. It gets the current hour and displays an appropriate message. The JavaScript code
itself is in bold.

Listing 9-2. Evaluating JavaScript

import javax.script.*;

import java.io.*;

public class RunJavaScript {

public static void main(String args[]) {

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("javascript");

try {

Double hour = (Double)engine.eval(

CHAPTER 9 ■ SCRIPTING AND JSR 223174

6609CH09.qxd  6/28/06  9:24 AM  Page 174



"var date = new Date();" +

"date.getHours();");

String msg;

if (hour < 10) {

msg = "Good morning";

} else if (hour < 16) {

msg = "Good afternoon";

} else if (hour < 20) {

msg = "Good evening";

} else {

msg = "Good night";

} 

Console console = System.console();

console.printf("Hour %s: %s%n", hour, msg);

} catch (ScriptException e) {

System.err.println(e);

}

}

}

Depending upon the current time of day, you’ll get different results.

> java RunJavaScript

Hour 8.0: Good morning

The last thing to really demonstrate in the API here is Bindings. First off is the primary
reason to use Bindings: they offer the means of passing Java objects into the scripting
world. While you can certainly get the Bindings object for a ScriptEngine and work with it
as a Map, the ScriptEngine interface has get() and put() methods that work directly with
the bindings of the engine. 

The FlipBindings class in Listing 9-3 shows the indirect use of the Bindings class. The
program accepts a single command-line argument, which is passed into the JavaScript
engine via a binding. In turn, the JavaScript reverses the string and passes the results out
as a different binding. The reversed string is then displayed to the user.

Listing 9-3. Reversing a String Through ScriptEngine Bindings

import javax.script.*;

import java.io.*;

CHAPTER 9 ■ SCRIPTING AND JSR 223 175

6609CH09.qxd  6/28/06  9:24 AM  Page 175



public class FlipBindings {

public static void main(String args[]) {

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("javascript");

if (args.length != 1) {

System.err.println("Please pass name on command line");

System.exit(-1);

}

try {

engine.put("name", args[0]);

engine.eval(

"var output = '';" + 

"for (i = 0; i <= name.length; i++) {" +

"  output = name.charAt(i) + output" +

"}");

String name = (String)engine.get("output");

Console console = System.console();

console.printf("Reversed: %s%n", name);

} catch (ScriptException e) {

System.err.println(e);

}

}

}

Passing in the book name to the program shows the reversed title:

> java FlipBindings "Java 6 Platform Revealed"

Reversed: delaeveR mroftalP 6 avaJ

■Note Errors in the JavaScript source are handled by the caught ScriptException. It is best to at least
print out this exception, as it will reveal errors in the script code. You can also get the file name, line number,
and column number in which the error happened.

CHAPTER 9 ■ SCRIPTING AND JSR 223176

6609CH09.qxd  6/28/06  9:24 AM  Page 176



The Compilable Interface
Typically, scripting languages are interpreted. What this means is that each time the
scripting source is read, it is evaluated before executing. To optimize execution time, you
can compile some of that source such that future executions are faster. That is where
the Compilable interface comes into play. If a specific scripting engine also implements
Compilable, then you can precompile scripts before execution. The compilation process
involves the compile() method of Compilable, and returns a CompiledScript upon success.
As shown in Listing 9-4, execution of the compiled script is now done with the eval()
method of CompiledScript, instead of the ScriptEngine.

Listing 9-4. Working with Compilable Scripts

import javax.script.*;

import java.io.*;

public class CompileTest {

public static void main(String args[]) {

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("javascript");

engine.put("counter", 0);

if (engine instanceof Compilable) {

Compilable compEngine = (Compilable)engine;

try {

CompiledScript script = compEngine.compile(

"function count() { " +

"  counter = counter +1; " +

"  return counter; " +

"}; count();");

Console console = System.console();

console.printf("Counter: %s%n", script.eval());

console.printf("Counter: %s%n", script.eval());

console.printf("Counter: %s%n", script.eval());

} catch (ScriptException e) {

System.err.println(e);

}

} else {

System.err.println("Engine can't compile code");

}

}

}

CHAPTER 9 ■ SCRIPTING AND JSR 223 177

6609CH09.qxd  6/28/06  9:24 AM  Page 177



The CompileTest example here just adds 1 to a counter variable stored in the bindings
of the ScriptEngine. Since the script is evaluated three times, its final value is 3.

> java CompileTest

Counter: 1.0

Counter: 2.0

Counter: 3.0

Compiling scripts can also be done from files, or more specifically, from Reader
strings. Compilation is most beneficial for both large code blocks and those that execute
repeatedly.

The Invocable Interface
Invocable is another optional interface that a scripting engine can implement. An invoca-
ble engine supports the calling of functions scripted in that engine’s language. Not only
can you call functions directly, but you can also bind functions of the scripting language
to interfaces in Java space.

Once a method/function has been evaluated by the engine, it can be invoked via the
invoke() method of Invocable—assuming of course that the engine implements the inter-
face. Invocable functions can also be passed parameters that don’t have to come through
bindings; just pass in the method name to be executed and its arguments. To demon-
strate, Listing 9-5 takes the earlier string reversal example from Listing 9-3 and makes
the reversal code an invocable function.

Listing 9-5. Using Invocable to Reverse Strings

import javax.script.*;

import java.io.*;

public class InvocableTest {

public static void main(String args[]) {

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("javascript");

if (args.length == 0) {

System.err.println("Please pass name(s) on command line");

System.exit(-1);

}

CHAPTER 9 ■ SCRIPTING AND JSR 223178

6609CH09.qxd  6/28/06  9:24 AM  Page 178



try {

engine.eval(

"function reverse(name) {" +

"  var output = '';" + 

"  for (i = 0; i <= name.length; i++) {" +

"    output = name.charAt(i) + output" +

"  }" +

"  return output;" +

"}");

Invocable invokeEngine = (Invocable)engine;

Console console = System.console();

for (Object name: args) {

Object o = invokeEngine.invoke("reverse", name);

console.printf("%s / %s%n", name, o);

}

} catch (NoSuchMethodException e) {

System.err.println(e);

} catch (ScriptException e) {

System.err.println(e);

}

}

}

Running this program involves passing multiple strings via the command-line argu-
ments. Each one passed along the command line will be displayed in both a forward and
backward fashion.

> java InvocableTest one two three

one / eno

two / owt

three / eerht

■Caution There are two invoke() methods of Invocable. Sometimes the arguments can be ambigu-
ous, and the compiler can’t determine which of the two methods to use, as they both accept a variable
number of arguments. In Listing 9-5, the enhanced for loop said each element was an Object, even though
we knew it to be a String. This was to appease the compiler without adding a casting operation.

CHAPTER 9 ■ SCRIPTING AND JSR 223 179

6609CH09.qxd  6/28/06  9:24 AM  Page 179



By itself, this doesn’t make Invocable that great of an operation—but it has a second
side: its getInterface() method. With the getInterface() method, you can dynamically
create new implementations of interfaces by defining the implementations of an inter-
face’s methods in the scripting language.

Let’s take this one a little more slowly by looking at a specific interface. The Runnable
interface has one method: run(). If your scripting language has made a run() method
invocable, you can acquire an instance of the Runnable interface from the Invocable
engine.

First, evaluate a no-argument run() method to make it invocable:

engine.eval("function run() {print('wave');}");

Next, associate it to an instance of the interface:

Runnable runner = invokeEngine.getInterface(Runnable.class);

You can now pass this Runnable object to a Thread constructor for execution:

Thread t = new Thread(runner);

t.start();

Listing 9-6 puts all these pieces together. There is an added Thread.join() call to
ensure that the newly created thread finishes before the program exits.

Listing 9-6. Using Invocable to Implement Interfaces

import javax.script.*;

public class InterfaceTest {

public static void main(String args[]) {

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("javascript");

try {

engine.eval("function run() {print('wave');}");

Invocable invokeEngine = (Invocable)engine;

Runnable runner = invokeEngine.getInterface(Runnable.class);

Thread t = new Thread(runner);

t.start();

t.join();

} catch (InterruptedException e) {

CHAPTER 9 ■ SCRIPTING AND JSR 223180

6609CH09.qxd  6/28/06  9:24 AM  Page 180



System.err.println(e);

} catch (ScriptException e) {

System.err.println(e);

}

}

}

Running the program just displays the string sent to the JavaScript print() method.

> java InterfaceTest

wave

jrunscript
Mustang includes some new programs in the bin directory of the JDK. Many of these are
considered experimental, at least in the beta release. One such program is jrunscript.
Think of it as command-line access to the installed scripting engines. You can try out
anything with jrunscript that you would pass into the eval() method of a ScriptEngine.

First, to see what engines are installed, you can pass a -q option to jrunscript:

jrunscript -q

Language ECMAScript 1.6 implemention "Mozilla Rhino" 1.6 release 2

■Tip To see all the available commands from jrunscript, use the -? or -help command-line options.

With only one available in the default installation from Sun, you don’t have to explic-
itly request to use a specific engine. But, if multiple were available, you could explicitly
request a language with the -l option. The language string to pass in would be one of
those returned from the scripting engine factory’s getNames() method. As Listing 9-1
showed, any of the following will work for the provided ECMAScript 1.6 engine: js, rhino,
JavaScript, javascript, ECMAScript, or ecmascript. Yes, the names are case sensitive.

> jrunscript -l javascripT

script engine for language javascripT can not be found

CHAPTER 9 ■ SCRIPTING AND JSR 223 181

6609CH09.qxd  6/28/06  9:24 AM  Page 181



Assuming you start with a matching language, you are then in interactive mode with
the script runner.

> jrunscript

js>

Just enter your JavaScript interactively and it will be evaluated. You can also have the
tool evaluate whole files by using the -f option from the command line.

Get Your Pnuts Here
JavaScript isn’t the only scripting engine available, just the only one that ships with
Mustang. Pronounced like peanuts, Pnuts is another engine that works with JSR 223. It’s
available from https://pnuts.dev.java.net. You can find configuration information at
http://pnuts.org/snapshot/latest/extensions/jsr223/doc/index.html.

Hopefully, by the time Mustang ships, other scripting languages, such as Ruby or
PHP, will be available in a JSR 223 installable configuration.

■Note JSR 274 is about the BeanShell scripting language. It’s not part of Mustang, but supposedly works
alongside JSR 223. The Groovy programming language is JSR 241. It’s not part of Mustang, either.

Summary
From what appears to be a long way from where JSR 223 started, Mustang gets a
common scripting framework for integrating scripting engines with the Java platform.
From evaluating the scripting source, to compiling and invoking, your Java programs can
be bilingual with full object transparency between the two languages. In fact, you can
even implement interfaces on the fly in the scripting language if you want to, without
even generating .class files. As you get started with scripting, be sure to test your scripts
in the command-line support tool.

The book’s final chapter looks at the last big additions to Mustang—improvements in
the pluggable annotation processing area. First introduced with Java 1.5, the metadata
facility allows the marking of attributes for classes, interfaces, fields, and methods. In
Chapter 10, you’ll discover the additional features available for the processing of your
types and elements.

CHAPTER 9 ■ SCRIPTING AND JSR 223182

6609CH09.qxd  6/28/06  9:24 AM  Page 182



Pluggable Annotation
Processing Updates

Are you apt to use the apt tool? Annotations are a concept introduced with the 5.0
release of J2SE and JSR 175. In this chapter, you’ll explore those annotations added to
Java SE 6. Although this is a Java 6 book, since annotations are so new, it is best to start
with a description of what exactly they are and how to use them, and not just focus on
the new ones.

Confused yet? First, apt stands for the annotation processing tool. It is a new com-
mand-line tool that comes with the JDK. (Well, it was new for the 5.0 release.) You use
annotations to annotate your source code, and apt to make new annotations. Annotations
are @ tags that appear in source, not javadoc-style comments. They have corresponding
classes in the system, either as part of the core libraries or created by you. For instance,
the @deprecated javadoc tag can be thought of as an annotation, although it isn’t exactly.
It acts as metadata that affects how tools and libraries interact with your classes. The
@deprecated tag tells the compiler to generate a compilation warning when you use the
method or class.

Before digging too deeply into annotations, though, it is important to repeat a line
from the Java documentation: “Typical application programmers will never have to
define an annotation type” (see http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html). However, defining annotations is different than using them. So, let’s
look at using a few first.

Before going into the specifics of what to do with annotations, here’s what an annota-
tion declaration looks like:

package java.lang;

import java.lang.annotation.*;

@Documented

@Retention(RetentionPolicy.RUNTIME)

public @interface Deprecated {

} 183

C H A P T E R  1 0

6609CH10.qxd  6/23/06  1:41 PM  Page 183



That is the whole annotation declaration; it is like a class definition. It is for the pre-
defined annotation Deprecated, to be described shortly.

JDK 5.0 Annotations
JDK 5.0 introduces three annotations: @Deprecated, @SuppressWarnings, and @Override. Let’s
take a quick look at what was available to us before Java SE 6.0.

The @Deprecated Annotation

One of the JDK 5.0 annotations is @Deprecated. Notice the difference in case. It is different
from the javadoc @deprecated tag, as it doesn’t go in javadoc comments. Instead, you
place @Deprecated above the method or class you want to flag as out of date. The position-
ing of both tags is shown in Listing 10-1.

Listing 10-1. @Deprecated Annotation Usage

public class Dep {

/**

* @deprecated Don't use this method any more.

*/

@Deprecated

public static void myDeprecatedMethod() {

System.out.println("Why did you do that?");

}

}

class DeprecatedUsage {

public void useDeprecatedMethod() {

Dep.myDeprecatedMethod();

}

}

There is a second class in Listing 10-1 that uses the deprecated method:
DeprecatedUsage. When you compile the source code with the javac compiler, 
you get a warning:

> javac Dep.java

Note: Dep.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES184

6609CH10.qxd  6/23/06  1:41 PM  Page 184



Then, compiling with the specified -Xlint option shows the details:

> javac -Xlint:deprecation Dep.java

Dep.java:11: warning: [deprecation] myDeprecatedMethod() in Dep has been deprecated

Dep.myDeprecatedMethod();

^

1 warning

Nothing new here. This is the JDK 5.0 @Deprecate annotation—just another way of
doing what @deprecated does.

The @SuppressWarnings Annotation

There are two types of annotations: those that accept arguments and those that don’t.
The @Deprecated annotation is an example of one that doesn’t. The @SuppressWarnings
annotation is one that does. With the @Deprecated annotation, a method or class is either
deprecated or it isn’t. Adding the metadata is an on/off flag. On the other hand, the
@SuppressWarnings annotation says you would like to either suppress a specific type of
warning or not. The types will be specific to the compiler vendor. For Sun’s compiler,
there are two warnings that can be suppressed: deprecation and unchecked. An unchecked
value has to do with compile-time checks for generics. If you don’t want to update legacy
code to avoid warnings related to generics, you can add an @SuppressWarnings annotation
to your source:

@SuppressWarnings({"unchecked"})

■Note You can add the suppression at the class or method level. If at the class level, all warnings of
unchecked usages in the class will be suppressed.

The argument to the annotation is an array of strings—hence the extra set of {}s
in there. If instead of suppressing warnings related to generics you want to avoid the
warning generated by compiling the source in Listing 10-1, you would add an
@SuppressWarnings({"deprecation"}) annotation to where the deprecated method 
call was made. Listing 10-2 shows an updated DeprecatedUsage class.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 185

6609CH10.qxd  6/23/06  1:41 PM  Page 185



Listing 10-2. @SuppressWarnings Annotation Usage

class DeprecatedUsage {

@SuppressWarnings("deprecation")

public void useDeprecatedMethod() {

Dep.myDeprecatedMethod();

}

}

After adding the annotation, the compiler won’t complain anymore.

The @Override Annotation

The third JDK 5.0 annotation is @Override. Use of this annotation tells the compiler that
the method is supposed to be overriding a method in the superclass. The compiler will
warn you if it doesn’t. This will catch common mistakes, such as a method with the wrong
case—for example, hashcode() versus hashCode(). In such a case, a quick scan through the
code may look right, and the compiler won’t complain at compilation time. Only after
your resultant program produces odd results when hashCode() should be called does the
problem of the incorrect case in your method reveal itself. Well, it doesn’t exactly reveal
itself, but you know something is wrong, and you have to hunt down the problem. By
using the annotation, errors of this nature will be caught much sooner in the develop-
ment process.

Listing 10-3 shows a program with a poorly overridden method.

Listing 10-3. @Override Annotation Usage

public class Over {

public void overrideMe() {

}

}

class SubOver extends Over {

@Override

public void overrideme() {

}

}

Notice the poorly capitalized method without camelcase for the m in me. Had the
source code not included the @Override annotation, the compiler would not have com-
plained, producing a SubOver class with an overrideme() method. Any call to the
overrideMe() method of SubOver would then result in the version in the parent class
being called instead.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES186

6609CH10.qxd  6/23/06  1:41 PM  Page 186



However, because of the @Override, you learn at compile time that there are problems,
as shown in the following snippet:

> javac Over.java

Over.java:6: method does not override a method from its superclass

@Override

^

1 error

Thus, you can fix the problem sooner and more cheaply because it is identified much
earlier in the process.

JDK 6.0 Annotations
JSR 175 defined the original metadata facility of JDK 5.0. JSR 269 introduces the Pluggable
Annotation Processing API, which is a part of JDK 6.0. This standardizes some processing
that was difficult at best with JDK 5.0 when creating your own annotations. In addition to
this standardization, JDK 6.0 adds its own set of new annotations, many of which have
been described in earlier chapters. We’ll look at the new annotations first.

New Annotations

There is no single place I could find that listed all the annotations, new and old. The best
you can do is grep through the source and find the classes defined with an @interface, as
in the following line:

public @interface ResultColumn {

When defining your own annotations, that is the syntax for how they are declared.
Here is information about all the annotations in JDK 6.0. Why use them for your

classes? Because tools that know about them can be made smarter to make your life as
a developer easier.

The java.beans Package

The first annotation, @ConstructorProperties, is used in conjunction with a JavaBeans
component constructor. If you are using a third-party library with an IDE and don’t nec-
essarily know the names or order of the arguments to the constructor (but you do know
their types), the @ConstructorProperties annotation can be used to designate their appro-
priate order by name. Thus, the IDE can present names for arguments, not just types.
Listing 10-4 shows what using the @ConstructorProperties annotation might look like for
a fictitious Point class with two properties, x and y, of the same type.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 187

6609CH10.qxd  6/23/06  1:41 PM  Page 187



Listing 10-4. @ConstructorProperties Annotation Usage

import java.beans.ConstructorProperties;

public class Point {

private double x, y;

public Point() {

}

@ConstructorProperties({"x", "y"})

public Point(double x, double y) {

this.x = x;

this.y = y;

}

public double getX() {

return x;

}

public double getY() {

return y;

}

public void setX(double x) {

this.x = x;

}

public void setY(double y) {

this.y = y;

}

}

By specifying the names x and y as arguments to @ConstructorProperties, you are
saying that methods named getX() and getY() are available to access the property values.
And, of course, that x comes first in the argument list.

■Tip As in Listing 10-4 with the import java.beans.ConstructorProperties; line, don’t forget to
import the classes for the annotations. Without the import line, the compiler will look in the default package
for the annotation class (@ConstructorProperties here). The compiler has no internal mapping of annota-
tions to classes in other packages.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES188

6609CH10.qxd  6/23/06  1:41 PM  Page 188



At least for the early access releases of JDK 6.0, Sun has yet to add
@ConstructorProperties lines to the core library classes that are typically used as
JavaBeans components. So, if you use an IDE, the core classes won’t act smart 
and show the extra information about parameter order for constructors.

The java.lang Package

No new annotations here. Just the original three: @Deprecated, @Override, and
@SuppressWarnings.

The java.lang.annotation Package

This package is primarily for the library support for the annotation facility. It includes
four annotations that help annotation creators document the proper usage of their
annotations. These were part of JDK 5.0, and are not new to Mustang.

• Documented: States whether the annotation should be documented by javadoc.

• Inherited: States that a parent class should be queried when an annotation is not
found in main class.

• Retention: Identifies how long the annotation is retained. The enumeration
RetentionPolicy offers three possible settings: SOURCE, CLASS, and RUNTIME. A setting
of SOURCE means that the annotation is only needed to compile; CLASS means that
the data is stored in the class file, but isn’t necessarily used by the virtual machine
(VM); and RUNTIME means that the VM retains it and thus can be read if requested.

• Target: Identifies the program element associated with the metadata. The
ElementType enumeration offers eight possible values: ANNOTATION_TYPE, CONSTRUCTOR,
FIELD, LOCAL_VARIABLE, METHOD, PACKAGE, PARAMETER, and TYPE.

The java.sql Package

The four java.sql annotations were explored in Chapter 5: @AutoGeneratedKeys,
@ResultColumn, @Select, and @Update. See Chapter 5 for more information on them.

The javax.annotation Package

Six annotations are found in the javax.annotation package. These are heavily weighted
toward usage with the enterprise edition of the Java platform, but are a standard part of
Java SE 6. When used, they can provide additional information to the application server.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 189

6609CH10.qxd  6/23/06  1:41 PM  Page 189



• Generated: Used to flag autogenerated source. Usage would include the value of the
source generator:

@Generated("net.zukowski.revealed.FooGenerator")

• InjectionComplete: Used to flag methods to be called after insertion into the
container.

• PostConstruct: Used to flag initialization methods to be called after construction.

• PreDestroy: Used to flag methods that release resources upon finalization of
class usage—such as when removed from an EJB container. For instance, if
PostConstruct got a database connection, then PreDestroy would probably 
close it.

private DataSource aDB;

private Connection connection;

@Resource

private void setADB(DataSource ds) {

aDB = ds;

}

@PostConstruct

private void initialize() {

connection = aDB.getConnection();

}

@PreDestroy

private void cleanup() {

connection.close();

}

• Resource: Used to declare a reference to a resource. The name specified would be
the JNDI name of the resource. For instance, to look up the JNDI resource named
fooDB, use the following:

@Resource(name="fooDB")

private DataSource aDB;

• Resources: Used to block multiple Resource declarations together.

@Resources ({

@Resource(name="fooDB" type=javax.sql.DataSource),

@Resource(name="fooMQ" type=javax.jms.ConnectionFactory)

})

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES190

6609CH10.qxd  6/23/06  1:41 PM  Page 190



■Tip If you declare your own annotations, keep in mind the pattern shown here. Repeated annotations are
not allowed, so they must be grouped together into a single annotation.

The javax.annotation.processing Package

The annotations found in the javax.annotation.processing package are used by the capa-
bilities added with JSR 269 for annotation processing. There are three annotations there:
SupportedAnnotationTypes, SupportedOptions, and SupportedSourceVersion. Each of these
will be described later in the chapter, in the “Annotation Processing” section.

The javax.management Package

The two annotations found in the javax.management package are DescriptorKey and MXBean.
If you are familiar with the Java Management Extensions, their usage will prove helpful.

The DescriptorKey annotation is for describing annotation elements related to a field.
For an attribute, operation, or construction, you can add descriptors such that when
the resulting descriptor is created, you can configure its values. See the javadoc for the
DescriptorKey annotation for more information about auto-conversion of annotation
elements, such as rules for how a primitive becomes an object.

The MXBean annotation is used to explicitly tag an interface as an MXBean interface or
not. If the interface name ends in MXBean, it is an MXBean interface by default. If it doesn’t,
then the interface isn’t an MXBean-related interface. The @MXBean annotation allows you to
tag an interface as an MXBean if it doesn’t end with MXBean, and allows you to reject the
automatic association if you don’t want it.

For the positive case, the following three declarations in Listing 10-5 are defined to
be MXBean interfaces, assuming proper imports.

Listing 10-5. @MXBean Annotation Usage

// Default naming

public interface MyMXBean {

}

@MXBean

public interface MyInterface1 {

}

@MXBean(true)

public interface MyInterface2 {

}

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 191

6609CH10.qxd  6/23/06  1:41 PM  Page 191



For the negative cases, there are only two:

// Default naming

public interface MyClass {

}

@MXBean(false)

public interface MyMXBean {

}

The javax.xml.bind.annotation Package

The javax.xml.bind.annotation package is for customizing Java program elements to an
XML Schema mapping, as shown in Chapter 6. It defines the annotations shown in
Table 10-1.

Table 10-1. Annotations Found in the javax.xml.bind.annotation Package

Annotation Description

XmlAccessorOrder Controls the ordering of fields and properties in a class

XmlAccessorType Controls whether fields or JavaBean properties are serialized by default

XmlAnyAttribute Maps a JavaBean property to a map of wildcard attributes

XmlAnyElement Maps a JavaBean property to an XML infoset representation and/or
JAXB element

XmlAttachmentRef Marks a field/property to indicate that its XML form is a URI reference
to mime content

XmlAttribute Maps a JavaBean property to an XML attribute

XmlElement Maps a JavaBean property to an XML element derived from the
property name

XmlElementDecl Maps a factory method to an XML element

XmlElementRef Maps a JavaBean property to an XML element derived from the
property’s type

XmlElementRefs Marks a property that refers to classes with XmlElement or JAXBElement

XmlElements Contains multiple @XmlElement annotations

XmlElementWrapper Generates a wrapper element around an XML representation

XmlEnum Maps an enumeration of type Enum to an XML representation

XmlEnumValue Maps an enumerated constant in an Enum type to XML representation

XmlID Maps a JavaBean property to XML ID

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES192

6609CH10.qxd  6/23/06  1:41 PM  Page 192



Annotation Description

XmlIDREF Maps a JavaBean property to XML IDREF

XmlInlineBinaryData Disables consideration of XOP encoding for data types that are bound
to base64-encoded binary data in XML

XmlList Maps a property to a list simple type

XmlMimeType Associates the mime type that controls the XML representation of the
property

XmlMixed Annotates a JavaBean multivalued property to support mixed content

XmlNs Associates a namespace prefix with an XML namespace URI

XmlRegistry Marks a class that has XML element factories

XmlRootElement Maps a class or an enumerated type to an XML element

XmlSchema Maps a package name to an XML namespace

XmlSchemaType Maps a Java type to a simple schema built-in type

XmlSchemaTypes Contains multiple @XmlSchemaType annotations

XmlTransient Prevents the mapping of a JavaBean property to an XML representation

XmlType Maps a class or an Enum type to an XML Schema type

XmlValue Enables mapping a class to an XML Schema complex type with a
simpleContent type or an XML Schema simple type

The javax.xml.bind.annotation.adapters Package

The javax.xml.bind.annotation.adapters package is for allowing Java classes to be used
with JAXB. Again, this was shown in Chapter 6. There are two annotations in this package:

• XmlJavaTypeAdapter

• XmlJavaTypeAdapters

The javax.xml.ws Package

There are nine annotations found in the javax.xml.ws package. They are as follows:

• BindingType

• RequestWrapper

• ResponseWrapper

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 193

6609CH10.qxd  6/23/06  1:41 PM  Page 193



• ServiceMode

• WebEndpoint

• WebFault

• WebServiceClient

• WebServiceProvider

• WebServiceRef

These annotations are part of the core Java API for XML Web Services (JAX-WS) APIs.
These were also explored in Chapter 6.

Annotation Processing

Enough about what annotations are out there. Let’s take a look at what you can do with
them when writing them yourself. First, we’ll take a quick look at the 5.0 way of annota-
tion processing. Then we’ll move on to the new way.

J2SE 5.0 Processing

The way to process annotations with J2SE 5.0 was to use a library called the Mirror API.
The Mirror API contains two parts: one for the processor, in the com.sun.mirror.apt
package; and the other for a series of support classes that model the language. The
language modeling piece stays put for Java SE 6, while the apt pieces relocate to the
javax.annotation.processing package, with a few changes.

■Note For information on the Mirror API, visit http://java.sun.com/j2se/1.5.0/docs/guide/
apt/mirror/overview-summary.html. It is now released under a BSD license and available at
https://aptmirrorapi.dev.java.net.

To learn about the language modeling piece, you’ll write a short little processor that
walks through the classes found in the classpath and generates a list of all methods of
all classes found. This doesn’t involve writing any new tags, just processing information
already made available by the runtime environment. A slightly different form of this
example is part of the documentation that comes with the apt tool.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES194

6609CH10.qxd  6/23/06  1:41 PM  Page 194



To get started, you need to create an implementation of the com.sun.mirror.apt.
AnnotationProcessorFactory interface. There are three methods to the interface, as
follows:

• AnnotationProcessor getProcessorFor(Set<AnnotationTypeDeclaration> atds,

AnnotationProcessorEnvironment env)

• Collection<String> supportedAnnotationTypes()

• Collection<String> supportedOptions()

■Note For Java SE 6.0, the latter two methods here, supportedAnnotationTypes() and
supportedOptions(), have become annotations themselves.

The first method is what is used to “look up” the annotation processor. All the
method needs to do is return a new instance of your class, which implements
AnnotationProcessor.

The processor interface implementation is the worker bee. It has a single method to
implement: process(). If you use the AnnotationProcessorEnvironment implementation
passed into the constructor of your AnnotationProcessor, your process() method loops
through all the declarations requested.

The AnnotationProcessorEnvironment offers different ways to request declarations. The
Collection<Declaration> getDeclarationsAnnotatedWith(AnnotationTypeDeclaration a)

method allows you to ask for those declarations (methods, classes, and fields) defined
with a particular annotation. The Collection<TypeDeclaration> getSpecifiedType➥

Declarations() method essentially allows you to get all of them, giving you access to
everything passed from the command line. Lastly, Collection<TypeDeclaration>
getTypeDeclarations() doesn’t require you to specify everything. For the sample in
Listing 10-6, use the getSpecifiedTypeDeclarations() variety.

To process each declaration, you need a “visitor.” The com.sun.mirror.util package
offers the DeclarationVisitor interface and SimpleDeclarationVisitor implementation to
help. The DeclarationVisitor interface offers a series of visitXXXDeclaration() methods
so that you can choose to work with only certain types of declarations, such as all the
classes, all the interfaces, or all the methods. For instance, to print out the name of each
class, you would override the visitClassDeclaration() method.

public void visitClassDeclaration(ClassDeclaration d) {

System.out.println(d.getQualifiedName());

}

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 195

6609CH10.qxd  6/23/06  1:41 PM  Page 195



Listing 10-6 puts all the pieces together to define an annotation processor that
prints out the specified classes and interfaces, along with the names of their methods
(though not the constructors, which requires another visitXXXDeclaration() method
implemented).

Listing 10-6. J2SE 5.0 Annotation Processor

import com.sun.mirror.apt.*;

import com.sun.mirror.declaration.*;

import com.sun.mirror.type.*;

import com.sun.mirror.util.*;

import static com.sun.mirror.util.DeclarationVisitors.*;

import java.util.*;

public class DumpFactory implements AnnotationProcessorFactory {

// Process all annotations

private static final Collection<String> supportedAnnotations

= Collections.unmodifiableCollection(Arrays.asList("*"));

// No options support

private static final Collection<String> supportedOptions = Collections.emptySet();

public Collection<String> supportedAnnotationTypes() {

return supportedAnnotations;

}

public Collection<String> supportedOptions() {

return supportedOptions;

}

public AnnotationProcessor getProcessorFor(Set<AnnotationTypeDeclaration> atds,

AnnotationProcessorEnvironment env) {

return new DumpProcessor(env);

}

private static class DumpProcessor implements AnnotationProcessor {

private final AnnotationProcessorEnvironment env;

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES196

6609CH10.qxd  6/23/06  1:41 PM  Page 196



DumpProcessor(AnnotationProcessorEnvironment env) {

this.env = env;

}

public void process() {

for (TypeDeclaration typeDecl : env.getSpecifiedTypeDeclarations()) {

typeDecl.accept(getDeclarationScanner(new DumpVisitor(), NO_OP));

}

}

private static class DumpVisitor extends SimpleDeclarationVisitor {

public void visitMethodDeclaration(MethodDeclaration d) {

System.out.println("\t" + d.getSimpleName());

}

public void visitClassDeclaration(ClassDeclaration d) {

System.out.println(d.getQualifiedName());

}

public void visitInterfaceDeclaration(InterfaceDeclaration d) {

System.out.println(d.getQualifiedName());

}

}

}

}

Defining the class is the easy part. Compiling it is just step one, and you can’t just use
javac alone (yet). As previously mentioned, you need to include tools.jar in your class-
path to compile an annotation.

javac -cp c:\jdk1.6.0\lib\tools.jar DumpFactory.java

■Note At least for now, you have to manually include tools.jar in your classpath to compile annotation
processors. It is possible that by the time Java SE 6 ships, that could change.

Running of the annotation is not done with the java command. This is where apt
comes into play. But before you can use apt, you have to package up the factory and
processor into a JAR file and “install” it, like other items that use the service API.
Typically, this is done by creating a file in META-INF/services named com.sun.mirror.apt.
AnnotationProcessorFactory to point to the processor just defined. However, to avoid this
step, you can include extra command-line options to the apt command. And, for a little
test, just run the processor on itself.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 197

6609CH10.qxd  6/23/06  1:41 PM  Page 197



> apt -cp c:\jdk1.6.0\lib\tools.jar;. -factory DumpFactory DumpFactory.java

DumpFactory

supportedAnnotationTypes

supportedOptions

getProcessorFor

DumpFactory.DumpProcessor

process

DumpFactory.DumpProcessor.DumpVisitor

visitMethodDeclaration

visitClassDeclaration

visitInterfaceDeclaration

Those are the basics of processing annotations with JDK 5.0.

Java SE 6.0 Processing

Moving to the Java SE 6.0 world changes a few things. The primary difference is the mov-
ing of the annotation processing library into a more standard javax package and doing
away with the factory. Secondly, the javac command-line tool now offers a -processor
option to run a previously created processor.

The removal of the factory is actually an interesting twist and makes total sense. All
the factory did was return a single processor. So now the AbstractProcessor class forms
the basis of all processors and really just is the processor—unlike with 5.0, in which you
had to create an extra class. Ignoring the imports and a few other things, your basic
processor definition is shown here:

public class Dump6Processor extends AbstractProcessor {

public boolean process(Set<? extends TypeElement> annotations,

RoundEnvironment roundEnv) {

return false; // No annotations claimed

}

}

To demonstrate, Listing 10-7 creates a processor that lists the annotations in the
classes specified. This is where new the annotations of the javax.annotation.processing
package are used: SupportedSourceVersion, SupportedAnnotationTypes, and SupportedOptions.
The source version is specified by one of the constants of the SourceVersion enumeration
of the java.lang.model package. The SupportedAnnotationTypes annotation is just like
the supportedAnnotationTypes() method of the JDK 5.0 processor factory, and the
SupportedOptions annotation mirrors supportedOptions(). When not specified, it defaults
to returning an empty set.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES198

6609CH10.qxd  6/23/06  1:41 PM  Page 198



Beyond the annotations, all the processor does is loop through each annotation and
print its name and nesting kind (level of declaration). More typically, if the annotation
was something to be processed, you would use the accept() method on the TypeElement
and “visit” it.

Listing 10-7. Java SE 6.0 Annotation Processor

import javax.annotation.processing.*;

import javax.lang.model.*;

import javax.lang.model.element.*;

import java.util.*;

// Source version

@SupportedSourceVersion(SourceVersion.RELEASE_6)

// Process all annotations

@SupportedAnnotationTypes("*")

// No options support

// Empty set when not annotated with @SupportedOptions

public class Dump6Processor extends AbstractProcessor {

public boolean process(Set<? extends TypeElement> annotations,

RoundEnvironment roundEnv) {

if (!roundEnv.processingOver()) {

for (TypeElement element : annotations) {

System.out.println(element.getQualifiedName() +

"(" + element.getNestingKind() + ")");

}

}

return false; // No annotations claimed

}

}

Again, compilation requires the tools.jar file, as follows:

javac -cp c:\jdk1.6.0\lib\tools.jar Dump6Processor.java

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES 199

6609CH10.qxd  6/23/06  1:41 PM  Page 199



Now compile this with the -processor option to javac:

> javac -processor Dump6Processor Dump6Processor.java

javax.annotation.processing.SupportedSourceVersion(TOP_LEVEL)

javax.annotation.processing.SupportedAnnotationTypes(TOP_LEVEL)

warning: No annotation processors claimed present annotation types:

[javax.annotation.processing.SupportedSourceVersion,

javax.annotation.processing.SupportedAnnotationTypes]

■Note The javac command-line tool is getting “more” like java in Java SE 6.0 through the addition of
command-line options. In fact, some are even nonstandard. Try out the -Xprint option with javac to get
information similar to what you get from javap and -XprintRounds or -XprintProcessorInfo to monitor
processing tasks. Options like -Xmaxerrs and -Xmaxwarns (which limit the maximum number of errors and
warnings, respectively) are not new to Java SE 6.0.

The processingOver() check in process() is necessary, as a processor could be called
multiple times in one javac execution. More typically, a processor would actually do
something with the annotation, such as generate a file. As far as generating the file, the
old AnnotationProcessorEnvironment interface of the com.sun.mirror.apt package is now
the new ProcessingEnvironment interface of the javax.annotation.processing package. In
both cases, you get a Filer to hold the generated output.

Writer out = env.getFiler().createTextFile(

Filer.Location.SOURCE_TREE, package, path, charset)

Summary
Most people aren’t going to create their own annotation processors. They’re more apt to
use annotations created by others, like for JDBC queries. If you only use them, you don’t
need to know anything in this chapter. If you need to process annotations, however, you
need to know how the processing model has changed from J2SE 5.0 to Java SE 6.0. It’s not
that different—just slightly—with classes moving between packages and slightly different
interfaces. Use them with care, and don’t go overboard. Defining your own annotations
really has not changed from J2SE 5.0.

Appendix A wraps up the book with information about acquiring the weekly releases.

CHAPTER 10 ■ PLUGGABLE ANNOTATION PROCESSING UPDATES200

6609CH10.qxd  6/23/06  1:41 PM  Page 200



Licensing, Installation, and
Participation

Just when is the right time to release software to the masses? With Mustang, the masses
have had access since February 2005. With roughly weekly releases since then, one was
able to monitor the progress of both the API development and the completion of the new
feature sets for what would become known as Java SE 6.

■Note The information in this chapter is valid as of spring 2006. When Mustang moved into beta release,
locations didn’t move, but they are apt to move later, and it is unknown how much information will be left
behind on the original java.net site after Java SE 6 is released.

Snapshot Releases
The home for early Mustang access has been the java.net portal. Powered by CollabNet
and co-run by Sun and O’Reilly, developers can visit https://mustang.dev.java.net and
download the latest early access release of Mustang. With a separate download, you can
also download the javadoc for the core classes. And, if you agree to the necessary licens-
ing terms, you can also download the complete source snapshots for all of Mustang—
not just the java and javax packages, but the sun packages, too. With the last download,
instructions are provided to compile the full system and build everything yourself.

Licensing Terms
First off, let me state that I am not a lawyer, and what I say cannot be construed as legal
advice; this is just my understanding of Sun’s licensing terms. As far as licensing goes,

201

A P P E N D I X

6609AppA.qxd  6/23/06  1:42 PM  Page 201



Sun has been reluctant to release the core Java release as open source. While Apache
Harmony (http://incubator.apache.org/harmony) incubates along as an open source
J2SE 5.0 implementation, you can’t get the source for the core system of Mustang unless
you’re in an unrestricted country and you agree to the Java Research License (JRL). Iran,
North Korea, and Cuba: no. United States, Canada, France, and England: yes. (That is not
a complete list in either case.) It appears that Sun doesn’t require you to follow their Sun
Community Source License (SCSL) for research related to java.net projects.

The SCSL is Sun’s attempt to open up source somewhat, but not totally. It is geared
toward the commercial community and allows that community to offer proprietary mod-
ifications and extensions to a particular area, while maintaining compatibility through
technology compatibility kits (TCKs). You can get a more complete overview of the
license at www.sun.com/software/communitysource/overview.xml.

On the other hand, the JRL is geared more toward internal non-production research
and development uses. If or when the project turns into something that is distributed,
either internally or externally, you then must sign something called the Java Distribution
License, which requires its own level of compatibility requirements. While the SCSL does
offer a research section, the JRL is geared more toward the research community and uni-
versities. For more information on it, see www.java.net/jrl.csp.

Getting the Software
While JSR 270 describes Mustang (see http://jcp.org/en/jsr/detail?id=270), access
to the software comes from the previously mentioned snapshot area. Starting at
https://mustang.dev.java.net and following the “Latest Mustang binary snapshots”
link takes you to the weekly binary snapshot drops. You’ll find versions for the 
Microsoft Windows platform, Windows AMD64, Solaris SPARC, Solaris x86, Solaris
AMD64, Linux, and Linux AMD64. Macintosh users will need to wait for Apple to 
release a version.

It is best to get the complete self-extracting JDK file for your platform; though if
you’re only interested in the Java Runtime Environment (JRE), it’s available as a JAR file
(a self-extracting DEBUG JAR file is also available).

Downloading and running the file displays a splash screen (see Figure A-1). Then you
get to agree to the prerelease software evaluation agreement (shown in Figure A-2).

APPENDIX ■ LICENSING, INSTALLATION, AND PARTICIPATION202

6609AppA.qxd  6/23/06  1:42 PM  Page 202



Figure A-1. The splash screen for Mustang installation

Figure A-2. The license agreement

After accepting the terms of the agreement, you’ll see the Custom Setup screen
(shown in Figure A-3). By default, everything gets installed into C:\Program Files\Java\
jdk1.6.0 (on a Windows platform). You can change this directory or choose not to install
the demos, source code, or public JRE. You must install the development tools. Clicking
Next starts the installation, after which you can monitor the progress (as shown in
Figure A-4).

APPENDIX ■ LICENSING, INSTALLATION, AND PARTICIPATION 203

6609AppA.qxd  6/23/06  1:42 PM  Page 203



Figure A-3. The Custom Setup screen for Mustang installation

Figure A-4. Installation progress status

■Note Installation of the public JRE will display even more screenshots and an additional license that
requires acceptance.

APPENDIX ■ LICENSING, INSTALLATION, AND PARTICIPATION204

6609AppA.qxd  6/23/06  1:42 PM  Page 204



Once everything is done, you’ll see a screen telling you that the installation is com-
plete (shown in Figure A-5). You can then choose whether to see the README file or not.
If you do, the README file is then displayed in a browser window. It has taken some time,
but it now finally shows something relevant to Java 6. For the longest time, only Java 5
information was shown in the README. As is expected for prerelease software, some of
the links sometimes didn’t work (for example, the link to the installation instructions).
I guess the links point to where things will be when Mustang is released—the joys of pre-
release software.

Figure A-5. Installation complete

In addition to getting the JDK, it is best to also get the javadocs. These come down in
an installable JAR file. On the Binary Snapshot Releases web page (http://download.java.
net/jdk6/binaries), just follow the first link on the second line, which reads “Java Docs
(XX MB JAR / HTML)” (XX stands for the size of the JAR file).

Downloading and unzipping/unjarring the documentation is surprisingly not what
you do. Instead, after downloading the file, you run it with the java -jar jarfilename
command, replacing jarfilename with the name of the downloaded JAR file. This requires
you to accept another license agreement (shown in Figure A-6) before choosing an instal-
lation directory. Personally, I tend to enter the same directory as the JDK installation. The
documentation will then go into a docs subdirectory. Once installed, you should then
bookmark the top-level javadoc page. Installation takes some time.

APPENDIX ■ LICENSING, INSTALLATION, AND PARTICIPATION 205

6609AppA.qxd  6/23/06  1:42 PM  Page 205



Figure A-6. The documentation license agreement

■Caution When I installed the javadoc, the “install complete” window would hide in the background and
not come to the foreground. I had to hunt it out to click OK to end the installation process.

APPENDIX ■ LICENSING, INSTALLATION, AND PARTICIPATION206

6609AppA.qxd  6/23/06  1:42 PM  Page 206



Participation
The top-level Mustang page on www.java.net has a “How to contribute” link. Sun encour-
ages developers to contribute to the code base for the Java platform and add to the
robustness and stability of the release. While you can always log bugs or feature requests
at http://bugs.sun.com, a more proactive approach has you actually submitting fixes to
the problems. I have heard of developers who submitted fixes for problems lingering
around for some time, but with no urgency to be fixed. You, too, can identify a problem
and fix it. Of course, the job is unpaid and you are contributing to the success of a com-
mercial product, not an open source effort. If it isn’t too late in the release cycle and you
choose to help, here are the steps you need to follow.

After agreeing to the JRL and downloading the source code, you need to apply for
the role of jdk.researcher. You apply on the Project Membership/Role Request page at
http://jdk.dev.java.net/servlets/ProjectMembershipRequest. If you are not yet a java.net
member, you need to apply for membership there first. Terms of the jdk.researcher role
are described on the Joining This Project page (https://jdk.dev.java.net/terms.html).
The terms include acceptance of the JRL and the java.net web site Terms of Participation
(http://java.net/terms.csp).

After your project role request is approved (which supposedly happens within
one business day), you can go to the JDK-Collaboration Project page (http://
jdk-collaboration.dev.java.net). You can’t see the project information until your
role request is approved.

Next, you need to print, read, and sign the Sun Contributor Agreement, and fax it
to (650) 482-6557. The agreement itself can be found at https://jdk.dev.java.net/
Sun_Contributor_Agreement.pdf. It provides Sun with the rights it needs to distribute your
contributions to others. You can also scan the document and e-mail a signed agreement
to jdk-contributions@sun.com. (Sun asks that you please write clearly.)

After you’re accepted into the role of jdk.researcher, and Sun receives the fax, your
project role becomes jdk.contributor. You are now able to submit your contributions.

When you contribute an enhancement or bug fix, you need to provide the necessary
data for a senior Sun engineer to review and validate the correctness of the submission.
You should also include a unit test that verifies the existence of the problem before the
fix, and also verifies that the bug fix indeed fixes the problem. Some example contribu-
tions for bug fixes are shown at https://mustang.dev.java.net/example-contribution.html.
Don’t forget to include the bug number or incident number with the correction. If you
don’t have a bug number or incident number, submit a bug report first.

For additional information on the different roles in a java.net project, see the JDK
Community Governance Guidelines (https://jdk.dev.java.net/governance.html).

When getting started, a good place to get answers to questions about Mustang is in
Sun’s forums, at http://forums.java.net/jive/forum.jspa?forumID=23.

APPENDIX ■ LICENSING, INSTALLATION, AND PARTICIPATION 207

6609AppA.qxd  6/23/06  1:42 PM  Page 207



6609AppA.qxd  6/23/06  1:42 PM  Page 208



A
absolute mouse position coordinates, 80
AbstractProcessor class, 198
AnnotationProcessor, 195
AnnotationProcessorEnvironment

implementation, 195
interface, 200

AnnotationProcessorFactory, 195
annotations

@ tags, 183
AbstractProcessor class, 198
annotation declaration, example of, 183
AnnotationProcessor implementation,

195
AnnotationProcessorEnvironment

implementation, 195
AnnotationProcessorEnvironment

interface, 200
annotations and arguments, 185
annotations, definition of, 183
apt, command-line tool, 183, 197
com.sun.mirror.apt package, 194
com.sun.mirror.apt.AnnotationProcess

orFactory interface, 195
com.sun.mirror.util package, 195
@ConstructorProperties annotation,

code example, 187–188
DeclarationVisitor interface, 195
@DescriptorKey annotation, 191
defining annotations vs. using them,

183
@Deprecated annotation, 184–185
@deprecated javadoc tag, 183–184
DeprecatedUsage class, 184–185
@Generated annotation, 190
importing the classes required for

annotations, 188
including the tools.jar file for

compilation, 199
@InjectionComplete annotation, 190

J2SE 5.0 annotation processor, code
example, 196–197

J2SE 5.0 annotation processor, creating,
194

Java Management Extensions, 191
Java SE 6.0 annotation processor, code

example, 199
java.beans package, 187
java.lang package, 189
java.lang.annotation package, 189
java.sql package, 189
javac command-line tool, 200
javac command-line tool, -processor

option, 198, 200
javax.annotation package, 189
javax.annotation.processing package,

191
javax.management package, 191
javax.xml.bind.annotation package,

192–193
javax.xml.bind.annotation.adapters

package, 193
javax.xml.ws package, 193
manually including tools.jar in a

classpath, 197
Mirror API library, 194
moving the annotation processing

library into a javax package, 198
@MXBean annotation, code examples,

191–192
@Override annotation, code example,

186
packaging the factory and processor

into a JAR file, 197
Pluggable Annotation Processing API,

187
@PostConstruct annotation, 190
@PreDestroy annotation, code example,

190
processing annotations, 194, 198

Index

209

6609Index.qxd  6/23/06  1:46 PM  Page 209



ProcessingEnvironment interface, 200
processor definition, code example, 198
@Resource and @Resources

annotations, 190
SimpleDeclarationVisitor

implementation, 195
@SuppressWarnings annotation,

185–186
syntax for defining your own

annotations, 187
using the javax.annotation.processing

package, 198
antialiasing

antialiasing for printing vs. LCD
displays, 78

antialiasing, definition of, 77
LCD text antialiasing, 77
setting the KEY_TEXT_ANTIALIASING

rendering hint, 79
apt, command-line tool, 183, 197

B
BaseQuery, 113
Bean Scripting Framework (BSF), 171
BeanShell scripting language, 182
bindings

FlipBindings class, 175
Java Architecture for XML Binding

(JAXB) 2.0, 115
reversing a string through ScriptEngine

bindings, code example, 175–176
using Bindings to pass Java objects into

scripts, 175
XML Data Binding Specification, first

release of, 117
BLOBs

createBlob() method, 108
enhanced functionality for BLOBs and

CLOBs, 107

C
Calendar class

display names, 19–20
CLOBs

createClob() method, 108
createNClob() method, 108

enhanced functionality for BLOBs and
CLOBs, 107

setClob() method, 108
Compilable

interface, 177
working with Compilable scripts, code

example, 177
CompilationTask, 159–160, 162, 164,

166–167
CompiledScript

compile() method, 177
compiling scripts from Reader strings,

178
eval() method, 177

ConcurrentSkipListMap, 31
Console class

console() method, 15–16
System.console() input and output,

16–17
CookieHandler

CookieHandler class (Java 5), 43–44
implementing a CookieHandler in

Java 5, code example, 46–48
implementing a CookieHandler in

Java 6, code example, 52
CookieManager class, 43, 48, 53

D
database drivers, loading and registering

of, 104
DataSet, 113
Deque interface, 15, 18, 22

adding elements to a deque, method
sets, 22

ArrayDeque, 22
BlockingDeque interface, 22
code example, 23
examining elements in a deque,

method sets, 23
LinkedBlockingDeque class, 22
removing elements from a deque,

method sets, 22
traversing through deque elements, 23
uses for deques, 24
using a LinkedBlockingDeque, code

example, 24–29

■INDEX210

6609Index.qxd  6/23/06  1:46 PM  Page 210



Desktop class
browse() method, 9
differences from the Activation

Framework, 7
getDesktop() method, 7
HeadlessException, 7
IOException, 9
isDesktopSupported() method, 7
isHeadless() method, 7
java.awt package, 7
mail() method, 9
opening files with native applications,

code example, 8–9
supported actions for files and URIs, 7
UnsupportedOperationException, 7
using the isSupported() method to

check action support, 8
DiagnosticCollector class, 158

code example, 161
DiagnosticListener

compiling with a DiagnosticListener,
code example, 164–165

DiagnosticListener interface and
compilation errors, 161

getting diagnostic messages from
DiagnosticListener, 158

Digital Signature Algorithm (DSA) key
pair, 133, 135

drag-and-drop support
demonstrating drop modes with a JTree,

97–100
drop mode options, 95
enhancements to, 94
setDropMode() method, 95

E
ECMAScript 1.6 engine, 181
Extensible Markup Language (XML)

Java API for XML-Based Web Services
(JAX-WS) 2.0, 147, 150

Java Architecture for XML Binding
(JAXB) 2.0, 115

javax.xml, table of package sizes, 116
Streaming API for XML (StAX), 115, 143

XML Digital Signature, 114, 132, 142
See also javax.xml.bind package;

javax.xml.crypto package;
javax.xml.soap package;
javax.xml.stream package;
javax.xml.ws package

F
file attributes, 41
file system space

checking the availability of, 40–41
Future interface, 15

G
GIF images, writing, 76
Groovy programming language, 182

I
internationalized domain names (IDNs)

converting from ASCII to Unicode, 53
Invocable interface

implementing interfaces, code example,
180–181

passing parameters to invocable
functions, 178

reversing strings, code example,
178–179

J
JapaneseImperialCalendar class, code

example, 21–22
Java 2 Standard Edition (J2SE) 5.0, 1
Java Architecture for XML Binding (JAXB)

2.0, 115, 117
Java Collections Framework, 22, 30
Java Community Process (JCP), 1, 115
Java Compiler API

accessing the Java compiler from the
javax.tools package, 155

advanced compilation options, code
example, 160–161

compilationUnits variable, 160
compiling a simple class, code example,

157
compiling source files from memory,

code example, 166–168

■INDEX 211

Find it faster at http://superindex.apress.com
/

6609Index.qxd  6/23/06  1:46 PM  Page 211



compiling with a DiagnosticListener,
code example, 164–165

compiling with javac, extended lint
option enabled, 163

DiagnosticCollector class, 158
DiagnosticCollector class, code

example, 161
DiagnosticListener interface and

compilation errors, 161
generating a compilation error, code

example, 157
getJavaFileObjectsFromFiles() method,

162
getJavaFileObjectsFromStrings()

method, 162
getSystemJavaCompilerTool() method,

155
getting diagnostic messages from

DiagnosticListener, 158
identifying the collection of items to

compile, 159
implementing the public void report()

method, 161
initiating the Java compiler from source,

code example, 156
JavaCompilerTool class, getTask()

method, 159–160, 162
JavaCompilerTool interface, 155–156,

158, 166
JavaFileObject class, 162
JavaSourceFromString class, 166
JavaSourceFromString class definition,

code example, 168
javax.tools, package size, 155
maintaining separate source and

destination directories, 162
passing command-line arguments into

javac, 156
providing additional input directories

for source files, 162
remembering to use the close() method,

160
setting the output directory for the

compiled class files, 162
simple class to compile with

dependency, code example, 163

StandardJavaFileManager class,
158–159

stderr and compilation errors, 155
ToolProvider class, 155
two ways of checking the results of a

compilation, 156
using the getStandardFileManager()

method, 158
using the -sourcepath option, 162
verifying successful compilation with

the getResult() method, 160
Java Research License (JRL), 202
Java SE 6

announced set of JSRs, 1
applying for membership in java.net,

207
applying for the role of jdk.researcher,

207
becoming a jdk.contributor, 207
code name Mustang, 1
downloading the complete Mustang

source snapshots, 201
downloading the javadoc for the core

classes, 201
home page for early Mustang access

(java.net.portal), 201
Java Community Process (JCP), 1
Java Distribution License, 202
Java Research License (JRL), 202
Java Runtime Environment (JRE),

availability of, 202
Java Runtime Environment (JRE),

installing, 203
Java Specification Request (JSR) 270, 1
javadocs, installing, 205
JDK Community Governance

Guidelines, 207
JDK-Collaboration Project page, 207
Macintosh users and, 202
newly introduced packages, 3–4
Reinhold, Mark, 2
release goals, 2
submitting bug fixes or product

enhancements to Sun, 207
Sun Community Source License (SCSL),

202

■INDEX212

6609Index.qxd  6/23/06  1:46 PM  Page 212



Sun Contributor Agreement, 207
Sun’s early access developer program, 2
Sun’s licensing terms, 201
technology compatibility kits (TCKs),

202
viewing example contributions for bug

fixes, 207
java.awt package

AffineTransform class, 80
antialiasing for printing vs. LCD

displays, 78
antialiasing, definition of, 77
associating an ActionListener with a

MenuItem operation, 67
associating an ActionListener with

TrayIcon, 69
creating a simple GUI window with a

label, 60
creating a system tray that responds to

selection, code example, 69–70
creating dual frames using the

DOCUMENT_MODAL setting,
code example, 73–74

curing the jaggies, 77
Desktop class, 59
detecting a pop-up menu selection, 67
detecting when a tray icon is added or

removed, code example, 67
determining whether a particular

modality is supported, 73
dialog boxes, definition of, 71
Dialog class, 71
Dialog constructor, 71
Dialog.ModalExclusionType

enumeration, 72
Dialog.ModalityType enumeration, four

settings of, 71
displaying a progress bar over a splash

screen, code example, 62
displaying tray icon text messages, code

example, 67
Font class, 80
Image object, 65
JDialog constructor, 71
LCD text antialiasing, 77
Lempel-Ziv-Welch (LZW) compression

algorithm, 75

modal dialog box, 71
modeless dialog box, 72
MouseEvent class, 80
packaging splash screens for users, 61
pre-Mustang dialog box modality, 71
setting the KEY_TEXT_ANTIALIASING

rendering hint, 79
setting the modality type of a window,

71
specifying the main class using the

Main-Class identifier, 61
-splash command-line switch, 60
splash screen, closing, 64
splash screen, image formats

supported, 60
splash screen, specifying, 61
system tray, adding TrayIcon objects to,

65
system tray, uses for, 64
SystemTray class, 64, 67
SystemTray class and the Singleton

pattern, 65
table of package sizes, 57
tray icon, definition of, 65
using a system tray and tray icon, code

example, 65–66
writing GIF images, code example, 76

java.io package
checking available file system space, 41
converting a URI to a URL, 42
File class, changes to, 40, 42
methods for setting access bits, 41
obtaining the correct URL from a File

object, 42
table of package sizes, 39

java.lang package
changes in, 15
checking for empty strings, code

example, 18
Console class, 16
java.lang.management changes, 15
platform-specific newline character, 16
printing high-order bit strings, code

example, 16
reading strings and passwords, code

example, 17
String class, 17

■INDEX 213

Find it faster at http://superindex.apress.com
/

6609Index.qxd  6/23/06  1:46 PM  Page 213



System class, 16
System.console() input and output,

16–17
table of package sizes, 13

java.net package
adding a Set-Cookie header to the

cache, 51
changes in cookie handling, 43
Cookie class, 45, 48
CookieHandler class (Java 5), 43–44
cookieJar variable, 45
CookieManager class, 43, 48, 53
CookiePolicy interface, 43
CookiePolicy interface, predefined

policies, 53
cookies, function of, 43
CookieStore interface, 43, 45
creating a cookie cache, 45
defining a policy for storing cookies,

48, 53
handling cookie expiration, 53
HttpCookie class, 43, 45
IDN class, 53
implementing a Cookie class in Java 5,

code example, 48–51
implementing a CookieHandler in

Java 5, code example, 46–48
implementing a CookieHandler in

Java 6, code example, 52
InterfaceAddress class, 53
NetworkInterface class, code example,

53–55
passing the Map into get(), code

example, 46
running the Fetch5 program, code

example, 51
saving cookies in a cache, code

example, 45
table of package sizes, 39

java.nio package
accessing the backing array, 43
Buffer class, 43

java.security package
Configuration.Parameters interface, 55
Policy class, 55
Policy.Parameters interface, 55

table of package sizes, 40
URIParameter class, 55

java.util package
adding elements to a deque, method

sets, 22
ArrayDeque, 22
Arrays class, 15, 36
BlockingDeque interface, 22
Calendar class, 19
Calendar class, displayable names, 20
Collections class, 15
ConcurrentSkipListMap class, 31
Control class, 33
copying and resizing arrays, 36
creating resource bundle controls, 33
customizing resource bundle loading,

code example, 33–35
DateFormat class, function of, 19
Deque interface, 15, 18, 22
Deque interface, code example, 23
displaying calendar names, code

example, 20–21
examining elements in a deque,

method sets, 23
Future interface, 15
getDisplayNames() method, code

example, 19
IllegalStateException, 22
iterating through all map elements, 31
JapaneseImperialCalendar class, code

example, 21–22
java.text.spi package, 15
java.util.concurrent, 15
java.util.spi package, 15
lazy atomic variables, 37
LinkedBlockingDeque class, 22
LinkedList, 22
navigable maps and sets, 30
NavigableMap interface, code example,

31–32
NavigableMap interface, map keys and

method sets, 30
NavigableSet interface, method sets, 33
NoSuchElementException, 23
Queue interface, 22
removing elements from a deque,

method sets, 22

■INDEX214

6609Index.qxd  6/23/06  1:46 PM  Page 214



resetting the cache and clearing out
loaded bundles, 36

resizing arrays, code example, 36
resource bundles in XML, 33
ResourceBundle class, 33
ResourceBundle.Control subclass,

15, 33
Service class, 15
setting the value of an atomic variable,

37
skip lists, definition of, 31
SortedMap interface, 30
SortedSet interface, 30
Strings.xml resource bundle, code

example, 35
system caching of loaded resource

bundles, 36
table of package sizes, 13
traversing through deque elements, 23
TreeMap class, 31
TreeSet class, 33
uses for deques, 24
using a capacity-limited

LinkedBlockingDeque, code
example, 24–29

XMLResourceBundleControl class,
33, 35

JavaBeans Activation Framework
CommandMap class, 4
creating a DataHandler to associate

content with mime type, 7
FileTypeMap class, 6
getAllCommands(), 4
getDefaultCommandMap() method, 4
getMimeTypes(), 4
getting the command map of mime

types, code example, 4–5
getting the file type map, code example,

6–7
JavaMail API, 7
JavaMail libraries and, 4
javax.activation package, 4
mapping files to mime types, 6
MimetypesFileTypeMap subclass, 6
setDefaultCommandMap(), 5

JavaCompilerTool interface, 155–156, 158,
166

getSystemJavaCompilerTool() method,
155

getTask() method, 159–160, 162
JavaFileObject class, 162
JavaSourceFromString class, 166
javax.jws and javax.jws.soap packages

adding @ tags to classes, methods and
properties, 147

annotated Hello World service, code
example, 148

errors from not including a package
statement, 148

first generated class for the web service,
code example, 149

running the wsgen (web service
generator) command-line tool, 148

second generated class for the web
service, code example, 149–150

using annotations in classes to develop
web services, 147

Web Services Metadata for the Java
Platform, 147

@WebMethod annotation, 148
@WebService annotation, 148

javax.net.ssl package
encapsulating the SSL/TLS connection

parameters, 55
SSLParameters class, 55

javax.script package
Compilable interface, 177
CompiledScript, eval() method, 177
compiling scripts from Reader strings,

178
evaluating a JavaScript expression from

a string, code example, 174–175
FlipBindings class, 175
Invocable interface, 178
listing available scripting engine

factories, code example, 172–173
passing parameters to invocable

functions, 178
precompiling scripts before execution,

177

■INDEX 215

Find it faster at http://superindex.apress.com
/

6609Index.qxd  6/23/06  1:46 PM  Page 215



reversing a string through ScriptEngine
bindings, code example, 175–176

Runnable interface, 180
ScriptContext, 174
ScriptEngine, 172
ScriptEngineFactory objects, 172
ScriptEngineManager class, 172–173
table of package sizes, 171
throwing a ScriptException for script

errors, 174, 176
using a scripting engine to evaluate an

expression, 174
using an invocable function to reverse

strings, code example, 178–179
using Bindings to pass Java objects into

scripts, 175
using Invocable to implement

interfaces, code example, 180–181
working with Compilable scripts, code

example, 177
javax.swing package

accessing Swing components from the
event dispatch thread, 88

changing a column’s data type for
numeric sorting, code example, 83

components on a JTabbedPane, code
example, 90–91

Cursor support added to
JInternalFrame objects, 101

DefaultRowSorter subclass, 81
demonstrating drop modes with a JTree,

97–100
displaying the set of selected rows in the

JTable, code example, 84
drag-and-drop support, enhancements

to, 94
drop mode options, 95
dropping items on a JTree, 97
filtering table elements, code example,

85–87
improved support for graphical user

interfaces, 80
JTabbedPane component tabs, 90
JTextComponent subclasses, 91
performing a background operation off

the event dispatch thread, 88

placing components directly on tabs, 90
printing text components, 91–93
RowFilter class, static methods for, 85
RowSorter class, 80
Runnable interface, 88
sorting a JTable, code example, 81–82
Swing components as not threadsafe, 88
Swing Connection website, 57
SwingWorker class, 88
table of package sizes, 58
table sorting and filtering, 80
TableStringConverter class, 101
TransferHandler, canImport() method,

97
TransferHandler, importData() method,

97
TransferHandler.TransferInfo object,

properties of, 101
updating a JProgressBar, code example,

89
using the SwingWorker class, code

example, 89
javax.xml.bind package

generated complex type class, code
example, 124–127

generated enumeration class, code
example, 122–124

generated ObjectFactory class, code
example, 130–132

generated top-level-element class, code
example, 127–130

Java Web Services Developer Pack
(WSDP), 117

Java-to-XML generation, code example,
117–118

Java-to-XML Schema support, 117
JAXB 2.0, function of, 117
Marshaller, function of, 119
marshalling/unmarshalling content,

132
Point class, 117
Unmarshaller, 132
xjc command-line tool, 120, 122
XML Data Binding Specification, first

release of, 117

■INDEX216

6609Index.qxd  6/23/06  1:46 PM  Page 216



XML Schema for a course schedule,
code example, 121

XML Schema mapping annotations,
119–120

@XmlRootElement annotation, 117, 119
javax.xml.crypto package

complete XML signing program, code
example, 137–142

converting the SOAP message to a
DOM, code example, 134–135

Digital Signature Algorithm (DSA) key
pair, 133, 135

framework for signing an XML
document, code example, 133

generating the SOAP message, code
example, 133

generating the XML signature, 135
getting a DOM node from a SOAP

message, 133
Java Web Services Developer Pack

tutorial, 142
signing an XML document and

validating its signature, 133
signing tree, code example, 136
using the javax.xml.soap package, 133
validating the XML signature, code

example, 136
XML-Signature Syntax and Processing

documentation, 135
XMLSignature, validate() method, 136

javax.xml.soap package
Activation Framework DataHandler, 150
creative uses for, 152
key SOAP classes and interfaces,

151–152
MessageFactory, 150
SOAP 1.1 vs. 1.2 message formats, 150
SOAP with Attachments API for Java

(SAAJ) 1.3, 147, 150–151
SOAPEnvelope object, 151
using AttachmentPart type objects, 150

javax.xml.stream package
Cursor API, 143, 146
Cursor API, code example, 144
Iterator API, 143, 145–146
SAX parsing, 143

simple XML document, code example,
143

Streaming API for XML (StAX), 143
XMLEvent, 145
XMLStreamReader interface, 144

javax.xml.ws package
connecting to Google web services,

code example, 153
Java API for XML-Based Web Services

(JAX-WS) 2.0, 147, 150
obtaining information on Google’s APIs,

154
thinking as a consumer (not as a

developer) of web services, 153
Web Services Description Language

(WSDL), 150
JDBC 4.0

accessing the SQL built-in type ROWID,
110

annotation support, 112
BaseQuery interface, 113
client info properties, getter and setter

methods, 108
Connection interface enhancements,

108
creating connections using a

DataSource, 105
DataSet interface, 113
enhanced for loop, 105, 113
enhanced functionality for BLOBs and

CLOBs, 107
exception handling improvements, 105
handling multiple drivers for the same

database connection, 105
java.sql and javax.sql packages, new

features, 103–104
loading and registering database

drivers, 104
looping through SQLException objects,

code example, 106
national character set types, code

example, 109
NClob interface, 108
nontransient SQL exceptions, 107
placing annotated SQL statements in

code, 113

■INDEX 217

Find it faster at http://superindex.apress.com
/

6609Index.qxd  6/23/06  1:46 PM  Page 217



PooledConnection interface, 109
pre-Mustang loading of JDBC drivers,

105
registering a StatementEventListener,

109
requesting a PreparedStatement to be

pooled or not, 109
returning a RowId, code example, 110
@Select annotation, 113
SQL syntax changes when making

SQL/XML queries, 112
SQLException, new constructors for,

106
SQLException, new subclasses of,

105–106
SQLNonTransientException class, 107
SQLTransientException class, 107
SQLXML interface, methods of, 111
Statement interface enhancements, 108
StAX as the Streaming API for XML, 111
transient SQL exceptions, 107
@Update annotation, 113
XML data type support, 110
xmlelement() SQL function, 112
XMLStreamWriter, code example, 111

jrunscript, 181
JSR 105: XML Digital Signature, 114, 132,

142
JSR 173: Streaming API for XML, 111, 114,

143
JSR 181: Web Services Metadata, 147
JSR 199: Java Compiler API, 3, 154–155,

163, 169
JSR 202: Java Class File Specification

Update, 1
JSR 221: JDBC 4.0, 3, 104
JSR 222: JAXB 2.0, 114, 117
JSR 223: Scripting for the Java Platform, 3,

169, 171–182, 
JSR 224: Java API for XML-Based Web

Services (JAX-WS) 2.0, 147
JSR 269: Pluggable Annotation Processing

API, 3, 187, 191
JTabbedPane component tabs, 90

L
Lempel-Ziv-Welch (LZW) compression

algorithm, 75
LinkedBlockingDeque, 22, 24, 26
LocaleServiceProvider class, 10

M
Marshaller, 119
modality

determining whether a particular
modality is supported, 73

Dialog.ModalityType enumeration, four
settings of, 71

pre-Mustang dialog box modality, 71
setting the modality type of a window,

71
Mozilla Rhino JavaScript interpreter,

171–172
Mustang. See Java SE 6

N
national character set support, 104, 109,

114
NavigableMap interface, 30–32
NetworkInterface class, code example,

53–55

O
ObjectFactory, 130–132

P
Pluggable Annotation Processing API, 187
Pnuts, 182
PooledConnection, 109
printing text components, 91–93

R
Reinhold, Mark, 2
Remote Method Invocation (RMI)

libraries, 40
ResourceBundle.Control class, 15, 33
RunnableFuture interface, 15
RunnableScheduledFuture interface, 15

■INDEX218

6609Index.qxd  6/23/06  1:46 PM  Page 218



S
Schema

Java-to-XML Schema support, 117
XML Schema for a course schedule,

code example, 121
XML Schema mapping annotations,

119–120
ScriptContext, 174
ScriptEngine, 172
ScriptEngineFactory, 172
ScriptEngineManager, 172–173
scripting engines

Bean Scripting Framework (BSF), 171
BeanShell scripting language, 182
ECMAScript 1.6 engine, 181
Groovy programming language, 182
jrunscript, 181
Mozilla Rhino JavaScript interpreter,

171–172
Pnuts, availability of, 182

service provider interfaces (SPIs), 104–105
configuring a file for the type of

provider offered, 11
custom locale service providers, 10
custom time zone name provider, code

example, 10–11
customizing internationalization

support, 9
java.text.spi package, 9
java.util.spi package, 9
LocaleServiceProvider class, 10
location of the Java runtime

environment, 11
looking up display names for time

zones, code example, 11–12
SOAPMessage, 133–134, 137–138, 150–153
SOAP with Attachments API for Java

(SAAJ) 1.3, 147, 150–151
splash screen

displaying a progress bar over, 62
packaging splash screens for users, 61
splash screen, closing, 64
splash screen, image formats

supported, 60

splash screen, specifying, 61
SQL 2003 XML data type support, 104,

110–112
SQL ROWID access, 110
SQLException improvements, 105–106
StandardJavaFileManager class, 158–159
Streaming API for XML (StAX), 115, 143
Sun Community Source License (SCSL),

202
Sun Microsystems

applying for the role of jdk.researcher,
207

early access developer program, 2
licensing terms, 201
submitting bug fixes or product

enhancements to, 207
Sun Community Source License (SCSL),

202
Sun Contributor Agreement, 207

SwingWorker class, 88
system tray

creating a system tray that responds to
selection, code example, 69–70

system tray, adding TrayIcon objects
to, 65

system tray, uses for, 64
SystemTray class and the Singleton

pattern, 65
SystemTray class, 64, 67
using a system tray and tray icon, code

example, 65–66

T
table sorting and filtering, 56, 80–88
text component printing, 91–93
TransferHandler class, 97
TrayIcon

associating an ActionListener with
TrayIcon, 69

getTrayIconSize() method, code
example, 71

system tray, adding TrayIcon objects
to, 65

■INDEX 219

Find it faster at http://superindex.apress.com
/

6609Index.qxd  6/23/06  1:46 PM  Page 219



U
URL encoding, 51

W
Web Services Description Language

(WSDL), 150
Web Services Metadata for the Java

Platform, 147
wsgen (web service generator) command-

line tool, 148

X
xjc command-line tool, 120, 122
XML Data Binding Specification, 117
XML Digital Signature, 114, 132, 142
XML Schema

Java-to-XML Schema support, 117
XML Schema for a course schedule,

code example, 121
XML Schema mapping annotations,

119–120
XML. See Extensible Markup Language

(XML); javax.xml.bind package;
javax.xml.crypto package;
javax.xml.soap package;
javax.xml.stream package;
javax.xml.ws package

XMLSignature, 135–136
XMLStreamReader interface, 144

■INDEX220

6609Index.qxd  6/23/06  1:46 PM  Page 220


	Java 6 Platform Revealed
	Contents
	Introduction
	CHAPTER 1 Java SE 6 at a Glance
	CHAPTER 2 Language and Utility Updates
	CHAPTER 3 I/O, Networking, and Security Updates
	CHAPTER 4 AWT and Swing Updates
	CHAPTER 5 JDBC 4.0
	CHAPTER 6 Extensible Markup Language (XML)
	CHAPTER 7 Web Services
	CHAPTER 8 The Java Compiler API
	CHAPTER 9 Scripting and JSR 223
	CHAPTER 10 Pluggable Annotation Processing Updates
	APPENDIX Licensing, Installation, and Participation
	Index




