

Dr Clays A-level Chemistry

Paper 1 Physical Chemistry Multiple Choice QUESTIONS

Dr Chris Clay http://drclays-alevelchemistry.com/

Q1.There are 392 mol of pure gold in a bar measuring 10 cm by 10 cm by 40 cm. What is the density of gold in kg dm⁻³?

Α	193	0			
В	19.3	0			
С	1.93	0			
D	0.193	0			
					(Total 1 mark)
Q2.lons of	f two isotopes of iron are				
		⁵³ Fe ²⁺	⁵⁶ Fe ²⁺		
Whi	ch statement is correct?				
Α	The ions of both the isotope configuration 1s ² 2s ² 2p ⁶ 3s ² 3		ectronic	0	
В	The ions of both the isotopes contains 26 neutrons		neutrons	0	
С	⁵³ Fe ²⁺ has fewer protons than ⁵⁶ Fe ²⁺			0	
D	After acceleration to the sat will move more slowly than		ergy ⁵⁶ Fe ²⁺	0	

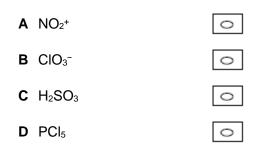
(Total	1	mark)
--------	---	-------

Q3.Refer to the unbalanced equation below when answering this question.

 $\mathsf{K}_2\mathsf{Cr}_2\mathsf{O7} + 3\mathsf{H}_2\mathsf{C}_2\mathsf{O}_4 + _\mathsf{H}_2\mathsf{SO}_4 \longrightarrow \mathsf{Cr}_2(\mathsf{SO}_4)_3 + _\mathsf{H}_2\mathsf{O} + 6\mathsf{CO}_2 + \mathsf{K}_2\mathsf{SO}_4$

In the balanced equation the mole ratio for sulfuric acid to water is

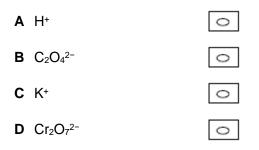
- A 1:4
 Image: Colored state


 B 1:2
 Image: Colored state

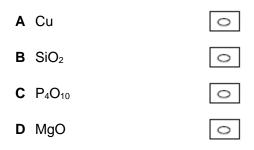
 C 4:7
 Image: Colored state
- D 4:9

(Total 1 mark)

Q4.Which species contains an element with an oxidation state of +4?



Q5.Refer to the unbalanced equation below when answering this question.

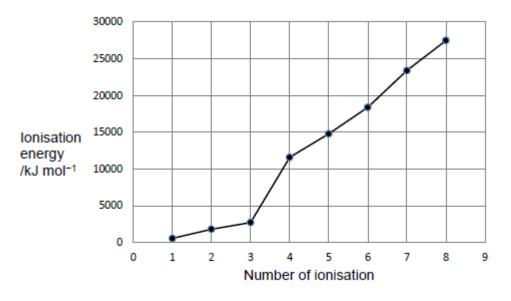

 $\mathsf{K}_2\mathsf{Cr}_2\mathsf{O7} + 3\mathsf{H}_2\mathsf{C}_2\mathsf{O}_4 + _\mathsf{H}_2\mathsf{SO}_4 \longrightarrow \mathsf{Cr}_2(\mathsf{SO}_4)_3 + _\mathsf{H}_2\mathsf{O} + 6\mathsf{CO}_2 + \mathsf{K}_2\mathsf{SO}_4$

What is the reducing agent in this reaction?

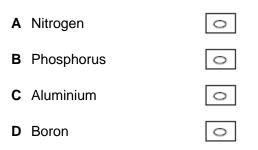
(Total 1 mark)

Q6.Which substance exists as a macromolecule?

Q7. Which compound has the highest boiling point?



Q8.Which molecule has the largest dipole?

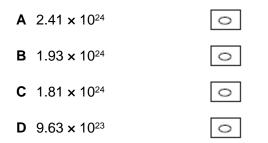

(Total 1 mark)

Q9.The successive ionisation energies for element X are shown in the following graph.

Which element is X?

(Total 1 mark)

Q10.In a car airbag, sodium azide (NaN_3) decomposes to form sodium metal and nitrogen gas.


$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$

The sodium metal then reacts with potassium nitrate to produce more nitrogen gas.

 $10Na(s) + 2KNO_3(s) \longrightarrow N_2(g) + 5Na_2O(s) + K_2O(s)$

If 2.00 mol of sodium azide react in this way, how many molecules of N_2 will be formed?

(The Avogadro constant L = $6.022 \times 10^{23} \text{ mol}^{-1}$)

(Total	1	mark)
--------	---	-------

Q11.Which of the following solutions would react exactly with a solution containing 0.0500 mol sulfuric acid?

Α	50.0 cm ³ of 1.00 mol dm ⁻³ KOH	0
В	100.0 cm ³ of 2.00 mol dm ⁻³ KOH	0
С	100.0 cm ³ of 2.00 mol dm ⁻³ Ba(OH) ₂	0
D	50.0 cm³ of 1.00 mol dm⁻³ Ba(OH)₂	0

Q12.The M_r of hydrated copper sulfate (CuSO₄.5H₂O) is 249.6.

Which of the following is the mass of hydrated copper sulfate required to make 50.0 $\rm cm^3$ of a 0.400 mol dm^-3 solution?

Α	3.19 g	0
В	3.55 g	0
С	3.71 g	0
D	4.99 g	0

(Total 1 mark)

Q13.30 cm³ of xenon are mixed with 20 cm³ of fluorine. The gases react according to the following equation. Assume that the temperature and pressure remain constant.

 $Xe(g) + F_2(g) \rightarrow XeF_2(g)$

What is the final volume of gas after the reaction is complete?

(Total 1 mark)

Q14.Propene can be made by the dehydration of propan-2-ol.

What is the percentage yield when 30 g of propene (M_r = 42.0) are formed from 50 g of propan-2-ol (M_r = 60.0)?

Α	60%	0	
в	67%	0	
С	81%	0	

D 86%

0

Q15.Which of these pieces of apparatus has the lowest percentage uncertainty in the measurement shown?

- A Volume of 25 cm³ measured with a burette with an uncertainty of ±0.1 cm³.
- **B** Volume of 25 cm³ measured with a measuring cylinder with an uncertainty of ±0.5 cm³.
- **C** Mass of 0.150 g measured with a balance with an uncertainty of ±0.001 g.

litn	0	

 $^{\circ}$

0

D Temperature change of 23.2 °C measured with a thermometer with an uncertainty of ±0.1
 °C.

(Total 1 mark)

Q16.A and B react together in this reversible reaction.

A + 3B \rightleftharpoons C + 2D

A mixture of 10 mol of **A** and 10 mol of **B** were left to reach equilibrium. The equilibrium mixture contained 4 mol of **B**.

What is the total amount, in moles, of substances in the equilibrium mixture?

Α	14	0
В	16	0
С	18	0
D	20	0

(Total 1 mark)

Q17.Hydrogen is produced by the reaction of methane with steam. The reaction mixture reaches a state of dynamic equilibrium.

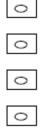
 $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ $\Delta H = +206 \text{ kJ mol}^{-1}$

Which of the following shows how the equilibrium yield of hydrogen and the value of the equilibrium constant are affected by the changes shown?

	Change	Effect on equilibrium yield of H₂(g)	Effect on value of <i>K</i> c	
Α	Increase pressure	decrease	decrease	0
В	Add a catalyst	increase	no effect	0
С	Increase temperature	increase	increase	0
D	Remove CO(g) as formed	increase	increase	0

(Total 1 mark)

Q18.A pale brown mixture of NO₂ and N₂O₄ is allowed to reach equilibrium in a sealed gas syringe according to the following equation.


$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

When the plunger is pushed further into the syringe the pressure increases and the mixture becomes paler in colour.

When the syringe is placed in a hot oven the mixture becomes darker in colour.

Which of the following statements is correct?

- A NO₂ is brown and the forward reaction is exothermic.
- **B** NO₂ is brown and the forward reaction is endothermic.
- **C** NO₂ is colourless and the forward reaction is exothermic.
- **D** NO₂ is colourless and the forward reaction is endothermic.

(Total 1 mark)

Q19.The table below shows data for the four hydrocarbons ethyne, propyne, propene and propane. ΔHc is the standard enthalpy of combustion of these hydrocarbons.

Compound	Name	M ,	−Δ <i>H</i> c [↔] / kJ mol⁻¹	
----------	------	------------	---------------------------------------	--

Paper 1 Physcical	Chemistry	Multiple	Choice Questions	

HC≡CH	ethyne	26	1300
HC≡CCH₃	propyne	40	1940
H ₂ C=CHCH ₃	propene	42	2060
CH ₃ CH ₂ CH ₃	propane	44	2220

The complete combustion of 2.0 g of one of the above hydrocarbons releases exactly 100 kJ of heat energy.

This hydrocarbon is

- A ethyne
- B propyne
- **C** propene
- D propane

(Total 1 mark)

Q20.Hydrogen is produced by the reaction of methane with steam. The reaction mixture reaches a state of dynamic equilibrium.

 $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ $\Delta H = +206 \text{ kJ mol}^{-1}$

Some enthalpy data is given in the table.

Bond	C–H	O–H	H–H	C≡H
Bond enthalpy / kJ mol ⁻¹	413	463	436	To be calculated

0

0

0

0

Use the information in the table and the stated enthalpy change to calculate the missing bond enthalpy.

- **A** 234
- **B** 1064
- **C** 1476
- **D** 1936

Q21.In which one of the following reactions is there a decrease in entropy?

- **A** [Fe(H₂O)₆]³⁺(aq) + 3C₂O^{2−}/₄ (aq) → [Fe(C₂O₄)₃]^{3−}(aq) + 6H₂O(I)
- $\textbf{B} \qquad [Cu(H_2O)_6]^{2+}(aq) + EDTA^{4-}(aq) \rightarrow [Cu(EDTA)]^{2-}(aq) + 6H_2O(I)$
- **C** $[CoCl_4]^{2-}(aq) + 6H_2O(I) \rightarrow [Co(H_2O)_6]^{2+}(aq) + 4Cl^-(aq)$
- **D** Na₂CO₃(s) + 2H⁺(aq) \rightarrow 2Na⁺(aq) + CO₂(g) + H₂O(I)

(Total 1 mark)

Q22.Which one of the following has the most covalent character?

- A MgF₂
- B MgBr₂
- C AIF₃
- D AIBr₃

(Total 1 mark)

Q23.Which one of the following best explains why the lattice enthalpy of magnesium chloride is much larger than that of lithium chloride?

- A Magnesium has a greater electronegativity than lithium.
- **B** Magnesium ions have a greater polarising power than lithium ions.
- **C** Magnesium ions have a greater ionic radius than lithium ions.
- **D** Magnesium ions have a greater charge than lithium ions.

(Total 1 mark)

Q24.Using the information below, answer this question.

 $Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(g) \quad \Delta H = +96 \text{ kJ mol}^{-1}, \ \Delta S = +138 \text{ J K}^{-1} \text{ mol}^{-1}$

Fe ₂ O ₃ (s) H ₂ (g)	Fe(s)
---	-------

∆ <i>H</i> r / kJ mol⁻¹	-822.0	0	0
ΔS ^Φ / J K⁻¹ mol⁻¹	90.0	131.0	27.0

The standard entropy value for steam is

Α	+332 J	اټ∕K	mol ⁻¹

- B +189 J K³¹ mol⁻¹
- C +145 J K³¹ mol⁻¹
- **D** +85 J K⁴¹ mol⁻¹

(Total 1 mark)

Q25.Which one of the equations below represents a reaction that is feasible at all temperatures?

Α	$P(s) \to Q(s) + R(g)$	endothermic
В	$2L(g) + M(g) \rightarrow 2N(g)$	exothermic
С	$S(g) \to 2T(g)$	exothermic
D	$A(g) + B(g) \to C(g)$	endothermic

(Total 1 mark)

Q26.The following cell has an EMF of +0.46 V.

$$Cu | Cu^{2+} | Ag^{+} | Ag$$

Which statement is correct about the operation of the cell?

Α	Metallic copper is oxidised by Ag⁺ ions.	0
в	The silver electrode has a negative polarity.	0
с	The silver electrode gradually dissolves to form Ag+ ions.	0
D	Electrons flow from the silver electrode to the copper electrode via an external circuit.	0

Q27.In this question consider the data below.

	E [↔] / V
$Ag^{(aq)} + e^{-} \rightarrow Ag(s)$	+0.80
$2H^{\scriptscriptstyle +}(aq) + 2e^{\scriptscriptstyle -} \to H_{\scriptscriptstyle 2}(g)$	0.00
$Pb^{2*}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13

The e.m.f. of the cell $Pt(s) | H_2(g) | H^+(aq) || Ag^+(aq) | Ag(s)$ would be increased by

- **A** increasing the concentration of H⁺(aq).
- **B** increasing the surface area of the Pt electrode.
- **C** increasing the concentration of $Ag^{+}(aq)$.
- **D** decreasing the pressure of $H_2(g)$.

(Total 1 mark)

Q28.Use the data in the table below to answer this question.

	E [♥] /∨
$MnO\overline{4}$ (aq) + 8H ⁺ (aq) + 5e ⁻ \rightarrow Mn ²⁺ (aq) + 4H ₂ O(I)	+ 1.52
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(I)$	+ 1.33
Fe³+(aq) + e⁻ → Fe²+(aq)	+ 0.77
Cr³+(aq) + e⁻ → Cr²+(aq)	- 0.41
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	- 0.76

Which one of the following statements is not correct?

- **A** $Fe^{2+}(aq)$ can reduce acidified MnO₄(aq) to Mn²⁺(aq)
- **B** $\operatorname{CrO}_{7}^{2-}(\operatorname{aq})$ can oxidise acidified $\operatorname{Fe}^{2+}(\operatorname{aq})$ to $\operatorname{Fe}^{3+}(\operatorname{aq})$
- **C** Zn(s) can reduce acidified $Cr_2O_7^{2-}$ (aq) to Cr^{2+} (aq)
- **D** Fe²⁺(aq) can reduce acidified $Cr^{3+}(aq)$ to $Cr^{2+}(aq)$

Q29.

$$Cr_{2}O_{7}^{2-}(aq) + 14H^{*}(aq) + 6e^{-} \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(I) \qquad E^{•} = +1.33 \vee Br_{2}(aq) + 2e^{-} \rightarrow 2Br^{-}(aq) \qquad E^{•} = +1.09 \vee E^{•} = +1.09 \vee E^{•} = +1.09 \vee E^{•} = +0.77 \vee V^{-} = +0.77 \vee V^{-} = +0.77 \vee V^{-} = +0.34 \vee V^{-} = +0.34 \vee SO_{4}^{2-}(aq) + 4H^{*}(aq) + 2e^{-} \rightarrow H_{2}SO_{3}(aq) + H_{2}O(I) \qquad E^{•} = +0.17 \vee E^{-} = +0.17 \vee V^{-} = +0.17 \vee E^{-} =$$

Based on the above data, which one of the following could reduce 0.012 mol of bromine to bromide ions?

- **A** 40 cm³ of a 0.10 mol dm⁻³ solution of $Cr_2 O_7^{2-}$ (aq)
- **B** 80 cm³ of a 0.30 mol dm⁻³ solution of Fe³⁺(aq)
- **C** 50 cm³ of a 0.24 mol dm⁻³ solution of V³⁺(aq)
- **C** 50 cm³ of a 0.24 mol dm⁻³ solution of $H_2SO_3(aq)$

(Total 1 mark)

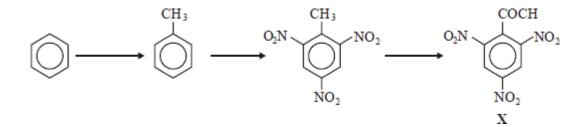
Q30.In this question consider the data below.

$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$2H^{\scriptscriptstyle +}(aq) + 2e^{\scriptscriptstyle -} \to H_{\scriptscriptstyle 2}(g)$	0.00
$Pb^{2*}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13

The e.m.f. of the cell $Ag(s) | Ag^{+}(aq) || Pb^{2+}(aq) | Pb(s)$ is

- **A** 0.93 V
- **B** 0.67 V
- **C** -0.67 V
- **D** -0.93 V

Q31.Refer to the following reaction


$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \qquad \Delta H^{\textcircled{o}} = -11 \text{ kJ mol}^{-1}, \qquad \Delta S^{\textcircled{o}} = +20 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$$

Which one of the following statements is correct?

- **A** This is a redox reaction.
- B The reaction is **not** feasible below 298 K
- **C** At equilibrium, the yield of hydrogen iodide is changed by increasing the pressure.
- **D** At equilibrium, the yield of hydrogen iodide increases as the temperature is increased.

(Total 1 mark)

Q32. This question is based on the reactions and compounds shown in the scheme below.

A 0.100 mol dm⁻³ solution of **X** is found to have a pH of 2.50. The value of K_a in mol dm⁻³ is

- **A** 3.16 × 10⁻²
- **B** 3.16 × 10⁻³
- **C** 1.00 × 10⁻⁴
- **D** 1.00 × 10⁻⁵

(Total 1 mark)

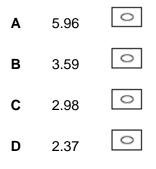
Q33.A solution of sodium ethanoate has a pH of 8.91 at 25 °C. The hydrogen ion and hydroxide ion concentrations in this solution are

- **A** $[H^+] = 1.00 \times 10^{-9} \text{ mol } dm^{-3} [OH^-] = 1.00 \times 10^{-5} \text{ mol } dm^{-3}$
- **B** $[H^+] = 1.00 \times 10^{-9} \text{ mol } dm^{-3} [OH^-] = 8.13 \times 10^{-6} \text{ mol } dm^{-3}$
- **C** $[H^+] = 1.23 \times 10^{-9} \text{ mol } dm^{-3} [OH^-] = 1.00 \times 10^{-5} \text{ mol } dm^{-3}$
- **D** $[H^+] = 1.23 \times 10^{-9} \text{ mol } dm^{-3} [OH^-] = 8.13 \times 10^{-6} \text{ mol } dm^{-3}$

(Total 1 mark)

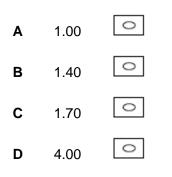
Q34.Use the information below to answer this question.

A saturated solution of magnesium hydroxide, $Mg(OH)_2$, contains 0.1166 g of $Mg(OH)_2$ in 10.00 dm³ of solution. In this solution the magnesium hydroxide is fully dissociated into ions.


Which one of the following is the pH of a solution of magnesium hydroxide containing 4.0×10^{-5} mol dm⁻³ of hydroxide ions at 298 K? ($K_w = 1.0 \times 10^{-14}$ mol² dm⁻⁶ at 298 K)

- **A** 9.6
- **B** 9.5
- **C** 8.6
- **D** 8.3

(Total 1 mark)


Q35.The acid dissociation constant, *K*_s, of a weak acid HA has the value 2.56 × 10^{-₄} mol dm^{-₃}.

What is the pH of a 4.25 x 10-3mol dm-3 solution of HA?

Q36.What is the pH of a 0.020 mol dm⁻³ solution of a diprotic acid which is completely dissociated?

