
1

Paper 11562-2016

Beyond Best Practice: Grid Computing in the Modern World
Jan Bigalke, Allianz Managed Operation & Services SE

& Gregory S. Nelson, ThotWave Technologies

Architects do not see a single architectural solution, such as SAS® Grid Manager, satisfying the varied
needs of users across the enterprise. Multi-tenant environments need to support data movement
(such as ETL), analytic processing (such as forecasting, predictive modeling) and reporting which can
include everything from visual data discovery to standardized reporting. SAS® users have a myriad of
choices that may seem at odds with one another - such as in–database vs. in–memory or data
warehouses (tightly structured schemes) versus data lakes and event stream processing. Whether fit
for purpose or for potential, these force us as architects to modernize our thinking about the
appropriateness of architecture, configuration, monitoring and management.

This paper will discuss how SAS® Grid Manager can accommodate the myriad use cases and the best
practices used in large scale, multi-tenant SAS environments.

Table of Contents
Introduction .. 2

Understanding Types of Workload in an Enterprise SAS Environment 2

Grid Principles .. 3

How Grid Processing Works ... 4

Processing Inside LSF .. 5

Best Practices .. 7

Grid Configuration related to the characteristic of the workload .. 7

Queue definitions: ... 8

Multi-tenant considerations ... 10

Hints for the developers .. 10

GRID and interaction with other systems (databases / Hadoop) 11

Capacity considerations .. 12

High availability considerations ... 12

Enterprise Grid Orchestrator (EGO) and GRID ... 14

Update and hotfix considerations of a SAS Grid installation.. 17

Conclusion ... 17

Contact Information .. 17

2

Introduction

SAS Grid Manager is a SAS® product offering designed to improve the scalability and flexibility of SAS
environments. Given the proliferation of commodity-based infrastructures (often using x86 technology)
an architecture is needed that can follow the principle of start small and grow as the needs of the user
community grow. This paper will take readers beyond the initial installation of SAS Grid and explore
topics such as optimizing grid environment based on different types of workloads. Some of the
important questions discussed are - how use cases can inform the way people think about the
theoretical limit of their technical environment and how monitoring should be an input to the ongoing
architecture review and change. Detailed topics will include discussion of workload management and
prioritization based on different types of both planned and actual workloads; active monitoring and
high availability; load balancing algorithms; and grid design including host, queues and grid option
sets. Finally, the paper will cover implications of using Kerberos security and ticket delegation across
SAS components and with external data sources like databases and Hadoop.

Understanding Types of Workload in an Enterprise SAS Environment

The modern SAS environment, such as the SAS® Enterprise BI Server, includes several SAS
components from clients that are installed on personal computers like Enterprise Guide® (EG), SAS®
Studio and Data Integration (DI) Studio to those that run in server-based environments and include
components such as the Pooled Workspace Server, OLAP Server, Stored Process Server and the
Workspace Server. The server components are the foundation of other services that are built on top of
the SAS execution servers. The Stored Process and the Pooled Workspace Servers are used from the
web applications whereas the Workspace Servers are utilized mostly by the development clients (such
as EG and DI Studio.)

Each component in the SAS architecture has a fundamentally different runtime characteristic. Online
(real-time, interactive) workload that supports reporting or other web based presentation forms need
fast response times and are usually based on quick analytic or summary tasks. For batch execution,
the ability to parallelize jobs is more important than the immediate response time. Developers, on the
other hand, often will iterate as they do code development and is characterized by iterative executions
that require both fast response time (with smaller datasets) and prioritization so that development
activities can occur.

3

Moving beyond traditional SAS “BI” applications, there is a need to consider evolving strategies such
as in-memory and in-database technologies which serve to complicate the role of the architect in
ensuring service level agreements (SLAs) and planning for optimal (and evolving) architectures. The
following diagram illustrates the competing forces of memory, CPU and I/O.

Based on these general assumptions the following principals can be formulated:

• For online processing avoid everything that increases the latency (I/O Processor and I/O Devices).
In most cases also the data has to be stored in optimized structures to support short response
times

• Analytical workload needs more computing capacity and can benefit from parallelization (CPU)

• Understanding mixed workloads and characterizing the impact to CPU, memory and I/O are a
critical function of the architect1

Understanding these generalized principles is important to evaluate how SAS Grid can be tuned
specifically to address the challenges and tradeoffs. The following sections will introduce the principles
of SAS Grid and what it does well out of the box and then address how elements of the grid
environment can benefit from additional review and optimization.

Grid Principles

SAS Grid was originally designed for large-scale batch workloads. (Think of an environment where lots
and lots of jobs are scheduled to run overnight.) What’s needed in this case is the system to become
its own traffic cop, in terms of which resources are allocated to the jobs, understanding which
resources are required based on the characteristics of the jobs and the ability to prioritize the jobs as
they execute within the schedule window.

The core capability to parallelize the processing of the data allows the computation of huge amount of
data in relatively short times. When SAS Grid Manager was launched, they initially supported only
SAS Sessions. Since then, SAS has added the SAS Workspace Server, Stored Processes, OLAP,
Enterprise Miner, Data Integration jobs and so on.2

The following table gives a quick overview about the SAS versions and the introduced capabilities.

SAS Version new capabilities (key points)
9.4 M22 Grid Manager plug-in for the Environment

Manager

9.4 M12 stored process servers ,

1 https://en.wikipedia.org/wiki/Software_architect
2 http://support.sas.com/documentation/cdl/en/gridref/67371/PDF/default/gridref.pdf

https://en.wikipedia.org/wiki/Software_architect
http://support.sas.com/documentation/cdl/en/gridref/67371/PDF/default/gridref.pdf

4

pooled workspace servers grid-launched

9.4 M02 grid options,
grid-launched workspace servers

9.33 load balancing for stored
process servers, OLAP servers and pooled
workspace servers

9.24 SAS code analyzer
grid-launched batch SAS jobs
load balancing for SAS Workspace Servers

SAS Grid Manager is a SAS product being integrated with Platform Suite for SAS5. Here, the Platform
Suite provides scheduling across distributed servers and load balancing features. The product
included is the Platform LSF6 (Load Sharing Facility) from IBM. The following flow chart shows the
process of submission to Grid as an example with the Enterprise Guide7 starting a Workspace Server.

How Grid Processing Works

Consider, for example, the following grid submission of a Workspace Server: (Note: for a video
demonstration of how this works, please visit: http://thotwave.com/portfolio-item/serving-sas-a-visual-
guide-to-sas-servers/)

The user is starting the Enterprise Guide and connects to the backend server (1+2 in the diagram).
The backend processes are started by the SAS Object Spawner. In the case of a grid submitted
session the SAS Object Spawner creates a process called gridrun, because in a grid scenario the SAS
session can be placed on any of the grid nodes and not only direct on the server where the Object
Spawner is started. The “gridrun” process manages the communication with the LSF components.
First gridrun receives the settings from the metadata (via Grid Options Sets, number 3 in the figure) 8
and passes the setting to LSF. In the example below the OPTION “project=SASApp” is passed from
the metadata server. In the next step (4 in the figure) LSF starts the Workspace Server on the target
grid node. The information about the program to execute is passed to LSF via the COMMAND tag
(see the log below).

3 http://support.sas.com/documentation/cdl/en/gridref/64808/PDF/default/gridref.pdf
4 http://support.sas.com/documentation/cdl/en/whatsnew/62580/PDF/default/whatsnew.pdf
5 http://support.sas.com/rnd/scalability/platform/
6 http://support.sas.com/rnd/scalability/platform/PSS9.1/lsf9.1.3_admin.pdf
7 http://support.sas.com/resources/papers/proceedings14/SAS375-2014.pdf
8 http://support.sas.com/documentation/cdl/en/gridref/67371/PDF/default/gridref.pdf

4

3

SAS Metadata Server

SAS Object Spawner

LSF gridrun
Workspace
Server

SAS Grid Node

LSF
SAS® Enterprise Guide®

1

2

http://thotwave.com/portfolio-item/serving-sas-a-visual
http://support.sas.com/documentation/cdl/en/gridref/64808/PDF/default/gridref.pdf
http://support.sas.com/documentation/cdl/en/whatsnew/62580/PDF/default/whatsnew.pdf
http://support.sas.com/rnd/scalability/platform/
http://support.sas.com/rnd/scalability/platform/PSS9.1/lsf9.1.3_admin.pdf
http://support.sas.com/resources/papers/proceedings14/SAS375-2014.pdf
http://support.sas.com/documentation/cdl/en/gridref/67371/PDF/default/gridref.pdf

5

With the trace log option activated this process is visible in the console log of the Object Spawner.

Output 1 shows the output from the ObjectSpawner_console.log with the Trace option.

2015-10-07T21:09:23,798 INFO (gridrun.c:232) -
2015-10-07T21:09:23,798 INFO (gridrun.c:233) - TKEGRID Proxy Grid Job Runner,
build date: Jul 23 2014 @ 20:33:03
2015-10-07T21:09:23,798 INFO (gridrun.c:234) - Copyright (C) 2013, SAS Institute
Inc., Cary, NC, USA. All Rights Reserved
2015-10-07T21:09:23,798 INFO (gridrun.c:235) -
2015-10-07T21:09:23,798 INFO (gridrun.c:242) - GRIDRUN: Running as testuser
2015-10-07T21:09:23,798 INFO (gridrun.c:243) -
2015-10-07T21:09:23,800 INFO (gridrun.c:467) - commHandler: attempting to
connect to master
2015-10-07T21:09:23,800 INFO (gridrun.c:558) - commHandler: letting master know
initialization is done
2015-10-07T21:09:23,801 INFO (gridrun.c:590) - commHandler: command received is
>[INIT] [PROVNAME]:"Platform" [MODNAME]:"" [SRVHOST]:"sas94-app1-syst.testdomain"
[SRVPORT]:"0" [USERNAME]:"" [PASSWORD]:"" [TIMEOUT]:"0"
[OPTIONS]:<project=SASApp><.
2015-10-07T21:09:23,836 INFO (gridrun.c:609) - commHandler: command response is
>[DONE]<.
2015-10-07T21:09:23,837 INFO (gridrun.c:590) - commHandler: command received is
>[STARTJOB] [JOBNAME]:"SAS Enterprise Guide_SASApp - Workspace Server_4101A009-
6340-2B46-8E08-8DB2933E8182" [RESOURCES]:""
[COMMAND]:</var/opt/data/sas/sas94/configAPP/Lev1/SASApp/WorkspaceServer/Workspac
eServer.sh> [ARGUMENTS]:<-noterminal -noxcmd -netencryptalgorithm AES -metaserver
sas94-meta-syst.testdomain -metaport 8561 -metarepository Foundation -locale
en_US -objectserver -objectserverparms "delayconn sph=hosta.testdomain
protocol=bridge spawned spp=42449 cid=0 pb classfactory=440196D4-90F0-11D0-9F41-
00A024BB830C server=OMSOBJ:SERVERCOMPONENT/A5ZI7NU4.AY0000WN cel=everything lb
recon grid "keepalive=30"" -METAUSER '"testuser@!*(generatedpassworddomain)*!"' -
METAPASS 49944139d506b727d1555D7b1d8E6162 > [OPTIONS]:<> [ARMCORR]:"" [FLAGS]:"0"
[INFILES]:"" [OUTFILES]:"" [HOSTS]:"sas94-app1-syst.testdomain,sas94-app2-
syst.testdomain" [MPIPROCS]:"0" [PROCSHOST]:"0"<.
Job <33707> is submitted to queue <qiSASApp>.

Output 1. Output Object Spawner Console Log

Processing Inside LSF

The last two lines of the console log above show the passing of the parameters to LSF and the JobID
“33707” that is created from LSF to process this job. The following picture describes what happens
inside LSF to create this job.

6

1. Submit the job

gridrun submits the job to a queue. When submitting without a queue, the job is submitted to
the default queue. Jobs are held in a queue waiting to be scheduled are in the PEND state.
LSF assigns each job a unique job ID for each submitted job.

2. Schedule the job

On the master host runs the master batch daemon (mbatchd).

The master batch daemon (mbatchd) looks at jobs in the queue and sends the jobs for
scheduling to the master batch scheduler (mbschd). The look up time interval is defined by the
parameter JOB_SCHEDULING_INTERVAL). The mbschd evaluates jobs and makes
scheduling decisions based on: 1) Job priority, 2 Scheduling policies, and 3) Available
resources. The resource information is updated from the compute hosts in the interval defined
by the SDB_SLEEP_INTERVAL.

mbschd selects the best host where the job can run and sends its decisions back to mbatchd.
Resource information is collected at preset time intervals by the master load information
manager (LIM) from LIMs on server hosts. The master LIM communicates this information to
mbatchd, which in turn sends it to mbschd to support scheduling decisions9.

3. Dispatch the job

When mbatchd receives scheduling decisions, it dispatches the jobs to hosts.

4. Run the job

On the hosts the slave batch daemon (sbatchd) receives the request from mbatchd. The
sbatchd creates a child, the execution environment and starts the job using the remote
execution server (res).

5. Return output

After the execution the status is set DONE for a job without any problems and EXIT if errors
occur.

If JOB_ACCEPT_INTERVAL is set to non-zero value this host will not accept a new job within
JOB_ACCEPT_INTERVAL interval

9 http://support.sas.com/rnd/scalability/platform/PSS9.1/lsf9.1.3_admin.pdf

http://support.sas.com/rnd/scalability/platform/PSS9.1/lsf9.1.3_admin.pdf

7

Based on this information the response time can be calculated. In the worst case, if job slots
are available (less jobs running than the maximum slots defined) and no jobs with higher
priority are in the PEND state.

Response time = 1 (* MDB_SLEEP_TIME)
If MDB_SLEEP_TIME is 5 seconds then the wait time can be 5 seconds. This type of
scheduling is not designed for short response times. Web requests need response times
within seconds for the whole process chain; they cannot spend seconds in the scheduling
process.

But for workload with longer execution time and with the need to find free capacity inside the
grid this approach provides advantages to a round robin distribution of the jobs.

Best Practices

Grid Configuration related to the characteristic of the workload

As mentioned previously, there are a number of use cases (workloads) which illustrate the importance
of having different configurations to handle those various workloads. The grid scheduling process,
introduced in the previous chapter, takes some time and fits well for Batch workload and interactive
analytical sessions like the Workspace Server where the initial session can take a few seconds but is
then persisted for the entire interactive user session (e.g., SAS Enterprise Guide10.) Online workload
like STP’s is directly submitted using a pool of services that are persistent across user sessions.

Configuration of the Workspace Server and the Stored Process Server:

The picture below shows a configuration for an analytical session with the workspace server and an
online session with the Stored Process Server.

SAS
Server

Grid Configuration Properties

SAS
Workspace
Server

10 http://support.sas.com/resources/papers/proceedings14/SAS375-2014.pdf

http://support.sas.com/resources/papers/proceedings14/SAS375-2014.pdf

8

SAS Stored
Process
Server

Pool
Workspace
Server

First the workspace server: The settings for the “grid launched” can be set on the logical workspace
server on the tab load balancing in the SAS Management Console (SMC). Similarly, the Grid
algorithm on the stored process server can be specified so that the distribution of jobs is based on the
information passed back from the SAS Grid Manager. The balancing algorithm is configured on the
logical stored process also on the tab ‘load balancing’ but the Stored process servers are not launched
using grid because of the latency in startup times.

If the online workload should also be able to run on every server in the grid, every server needs a
running instance of the Object Spawner. The Object Spawner instances then distribute the workload
based on the selected balancing algorithm between the servers.

Queue definitions:

Grid jobs are submitted into queues based on the characteristics of a job. If no queue is specified,
then the default queue is used. For the different workload types queues can be configured to handle
the specific workload for that particular use case. That approach has clear advantages. For example,
if DISPATCH_ORDER=QUEUE is set in the master queue, jobs are dispatched according to queue
priorities. The following suggestions can help to create this configuration.

The queue for the Enterprise Guide should have a higher priority than the batch jobs. This is, in part,
because of the interactive and immediate nature of interactive development activities. If these have
lower priorities, then due to serious contention between batch jobs and interactive users may never
get their session started.

9

Another configuration example is the “stop” and “resume” condition based on thresholds11. In the
described environment the online workload has absolute priority. For such situations a stop and
resume condition support the priority for the online workload. If the workload on the nodes increases
then jobs with lower priority will be suspended until the resume condition for this job is met. The
parameter “qjob_limit” can limit the number of jobs per queue; this setting is helpful if one queue
should not be able to use all available job slots in the grid.

The following table highlights some of the most common configurations that can be set for queues.
Note, the examples provided are based off a grid that has 16 cores and 64 job slots.

Parameter Example
(Interactive
Queue)

Example
(Batch Queue)

Definition

PRIORITY PRIORITY=50

PRIORITY=20

The relative priorities as compared to
other queues

NICE NICE=20

NICE=10

Specifies the execution priority
change, based on Linux “nice”
values.

CPULIMIT CPULIMIT=5

CPULIMIT=15

a time limit applied to jobs

UJOB_LIMIT UJOB_LIMIT=5

UJOB_LIMIT=2

the maximum job slots per user in a
queue

PJOB_LIMIT PJOB_LIMIT=10

PJOB_LIMIT=5

the maximum job slots per processor
in a queue.

QJOB_LIMIT QJOB_LIMIT = 120

QJOB_LIMIT = 60

the maximum jobs in a queue.

HJOB_LIMIT HJOB_LIMIT = 4

HJOB_LIMIT = 4

Maximum number of job slots that
this queue can use on any host

CHUNK_JOB_SIZE CHUNK_JOB_SIZE = 4

CHUNK_JOB_SIZE = 4

Specifies the maximum number of
jobs allowed to be dispatched
together in a chunk.

r1m r1m=0.3/1.5

r1m=0.3/1.5

1-minute CPU run queue length
(alias:cpu)

Ut ut=0.2

ut=0.2

1-minute CPU utilization (0.0 to 1.0)

r15s r15s=0.3/1.5

r15s=0.3/1.5

15 second CPU run queue length
(alias:cpu)

It it=10/1 it=10/1 Idle time (minutes) (alias: idle)

11 https://www-
01.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/suspend_conditions_queue_set.html

10

Multi-tenant considerations

A multi-tenant configuration for the grid follows the same principles as the multi-tenant configurations
for non-grid installations12. Each customer has its own SAS application Server context in the SAS
metadata. The running services for the customer on the compute nodes are under EGO (Platform
Enterprise Grid Orchestrator) control. If the customers need different settings for the queue definitions
like possible job slots, separate queues for each customer make sense.

The queues can be protected with additional security so that only the assigned customers can use
their queues. In the queue definition the attribute users can define a group of allowed users. For the
group resolution a custom program called egroup can be created.

Custom queues should than also used from the build in features of the SAS clients. For the EG for
example a macro variable with the queue name in the autoexec_usermods.sas from the
workspace server configuration should be set.

%let _gridjoboptions=queue= queue name;

The resource management inside a shared environment is a key element of multi-tenant configuration.
Each customer should be able to process his workload even if some other customers submit heavy
workload to the grid. In the previous chapter the online workload was excluded from the grid
management. But for the resource management the whole measurement of the workload of each
customer is necessary. For LSF external load indices13 can be defined to handle this requirement.

An option on Linux operating systems to get the resource consumption for each customer is to put all
task of a customer into a dedicated CGROUP. The paper14 from the SGF 2014 shares some thoughts
on the use of CGroups.

Based on this idea the stop and resume conditions of a queue can be enhanced to the utilization of
each customer cguxx. In this case a job is only suspended if the customer is using his own capacity
cguxx>90 and the overall utilization cpuusg is also high (here >95).

stop_cond = select[(cpuusg > 95.0) && (cguxx > 90.0))]
resume_cond = select[(cguxx < 95.0) || (cpuusg < 95.0)]

Hints for the developers

One of the benefits of the SAS Grid Manager is that it should be transparent to the users – and that
includes the developer community that relies on SAS “just working”.

As can be recalled from previous discussion, developers often run very short jobs in parallel. This is
often orthogonal to the design of the grid environment in general as large, parallel batch jobs are often
the norm. The short workload bursts that developers place on the environment generates an often
unnecessary overhead for dispatching the job and instantiating the SAS environment and will often be
more consumptive than the actual job itself.

Switching between compute nodes during the computation of a workload has an impact to the file
cache. The bundle of work that is included in a job should recognize this behavior. Sometimes a
larger job with more tasks is better than to split the work in several small jobs that then run on different
nodes in the grid.

A simple recommendation to the developers: Avoid parallelization for jobs running only a few seconds.

12 http://support.sas.com/resources/papers/proceedings13/494-2013.pdf
13 https://www-01.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/elim_about_lsf.dita
14 http://support.sas.com/resources/papers/proceedings14/SAS289-2014.pdf

http://support.sas.com/resources/papers/proceedings13/494-2013.pdf
https://www-01.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/elim_about_lsf.dita
http://support.sas.com/resources/papers/proceedings14/SAS289-2014.pdf

11

GRID and interaction with other systems (databases / Hadoop)

SAS jobs in the grid can use not only SAS data files stored in the shared filesystem of the servers but
also data accessible via SAS/Access interfaces. The SAS interfaces should have the same
configuration on all nodes in the grid. The recommendation is to store the configuration of the
database clients in the shared files system as well. This approach supports a consistent configuration
for the SAS access modules.

An enterprise scheduler can be integrated with the SAS grid15. In this case the suggestion is to start
the enterprise scheduler agent with EGO. If the Server with the Enterprise Scheduler agent fails, the
agent is automatically restarted on another server inside the cluster. The integration module can wait
until the job inside the grid is finished so that the job results code can be send synchronously to the
enterprise scheduler.

SAS provides also an access engine for Hadoop (SAS ACCESS to Hadoop.) To configure the Hadoop
interface jar files from the Hadoop cluster have to be copied to the SAS installation machine(s)16.
Instead of RDBMS clients that can support databases over version boundaries, the Hadoop interface
is tightly governed and tied to versions of a Hadoop cluster. If there are several Hadoop Clusters on
different versions or different distributions the only option is to install the related jars on different nodes
in the grid. To steer the jobs on the required node “resources” can be used. A resource can be defined
per node and in the job request the resource request has to be included. This approach is described in
the grid documentation3 (look for “Defining and Specifying Resources”).

Connections to Big Data systems like Hadoop are often configured with Kerberos authentication to
support the security model inside the Hadoop system. SAS provides an Access Interface to Hadoop. A
SAS session can be enabled to use the Kerberos protocol for the authentication to Hadoop17. In this
case all the hosts for SAS/ACCES to Hadoop must be enabled for Kerberos. The request flow looks
like the following request chain. The client e.g. the SAS Enterprise Guide connects to the SAS Grid
via IWA (Integrated Windows Authentication). The client request and received a service ticket for the
SAS servers. This ticket is send to the SAS session on the Server for authentication. The SAS
session use this ticket to acquire a new ticket for the Hadoop system. To make this possible the
service principal account that defines the SAS service needs the trusted for delegation right. Details
about this process can be found inside the SAS documentation18 (look for Integrated Windows
Authentication).

15 http://support.sas.com/rnd/scalability/grid/InterfaceEnterpriseScheduler.pdf
16 https://support.sas.com/resources/thirdpartysupport/v94/hadoop/hadoopbacg.pdf
17 http://support.sas.com/resources/papers/Hadoop_Architecture.pdf
18 http://support.sas.com/documentation/cdl/en/bisecag/67045/PDF/default/bisecag.pdf

http://support.sas.com/rnd/scalability/grid/InterfaceEnterpriseScheduler.pdf
https://support.sas.com/resources/thirdpartysupport/v94/hadoop/hadoopbacg.pdf
http://support.sas.com/resources/papers/Hadoop_Architecture.pdf
http://support.sas.com/documentation/cdl/en/bisecag/67045/PDF/default/bisecag.pdf

12

Capacity considerations

The number of jobs that a grid environment can support depends on the available job slots. The slots
can be dynamically calculated e.g. 4 jobs per core or in the LSF configuration a maximum number of
jobs per host can be defined. This configuration can be set in the file lsb.hosts. The variable MXJ
defines the maximum number of jobs per host.

With these values being aggregated over the whole cluster nodes it’s possible to calculate the max
number of concurrent active jobs.

 Jobs(k) = MXJ1 + MXJ2 +..+MXJn

How many jobs can be processed in a timeframe? To calculate this, the following assumptions are
necessary.

JOB_ACCEPT_INTERVAL is 1 and the MBD_SLEEP_TIME is 5 (seconds).

Therefore, Platform LSF dispatches one job to a particular machine and waits for 5 seconds before
dispatching another job to the same machine regardless of how long each job
takes. (JOB_ACCEPT_INTERVAL * MBD_SLEEP_TIME = 1 * 5 = 5). The highest number of jobs
that can be dispatched for a single queue and a given host would be 12 per host in the example. To
calculate this consider

a) Average job duration: 5 seconds

b) JOB_ACCEPT_INTERVAL: 1

c) MBD_SLEEP_TIME: 5

d) 4 cores per host

e) 2 hosts

f) 4 job slots per core

Formula AA for number of jobs per host per minute possible: 60 seconds / (B*C)

Formula BB for number of jobs possible for the grid environment: Formula AA * E

Calculations:

Formula AA = 60/ (1 * 5) = 12 jobs per host per minute

Formula BB = 12 * 2 = 24 jobs per minute for the whole cluster

High availability considerations

Before SAS 9.4 high availability deployments often had been a challenge. Recent enhancements to
components such as Metadata Server made this much simpler. In SAS 9.4 all components can be
clustered19 20. For the cluster configuration itself a shared file system is essential. For higher
availability the introduction of a high available shared file system is a prerequisite. The reason is that
grid installations have a serial dependency to the shared file system and also the metadata server
cluster needs a storage that can be accessed from all members of the cluster.

19 http://support.sas.com/documentation/cdl/en/bisag/68240/PDF/default/bisag.pdf
20 http://support.sas.com/documentation/cdl/en/bimtag/68217/PDF/default/bimtag.pdf

http://support.sas.com/documentation/cdl/en/bisag/68240/PDF/default/bisag.pdf
http://support.sas.com/documentation/cdl/en/bimtag/68217/PDF/default/bimtag.pdf

13

Availability in Series is computed in the following manner:

The combined availably is calculated with the formula:

A = Ax Ay

Availability in parallel with introduction of redundancy can reach higher availability rates.

Parallel availability is calculated with the equation:

A = 1-(1-Ax)2

The starting point for the planning of high availability is the desired availability for the overall system.
Based on the introduced basic formulas and the technical restrictions for each application the number
of needed cluster members for each layer like Web Application, Metadata Server and compute nodes
can be calculated. If the grid system is huge and the intention is not to start all SAS services like
Object Spawner, OLAP servers on every node, EGO can be used to orchestrate the services and the
related node. EGO is a part of the LSF suite embedded from SAS Grid.

In EGO the number of instances of services that should run in the cluster can be defined and if one
node with a running service fails, the service is started automatically on another node in the grid.

Scenario for a high availability configuration with distributed components

Part x Part y

Part x

Part x

Apache
1

Mid
Tier1

Metadat
a1

Metadat
a2

Comput
e1 FS 1

Web Cluster Mid Tier
Cluster

Metadata

Cluster

Compute
Cluster

Shared FS
Cluster

Load B
alancer Apache

2
Mid

Tier2
Metadat

a3

Comput
e2 FS 2

14

Enterprise Grid Orchestrator (EGO) and GRID

At a high level, SAS 9.4 Grid Manager includes Platform Enterprise Grid Orchestrator Software (EGO)
that can be customized to support automatic health check monitoring and automatic restart. SAS and
LSF services can be defined as EGO services for EGO to monitor and restart.

Platform Enterprise Grid Orchestrator is installed as part of LSF but needs to be configured to ensure
that critical services are monitored. EGO will monitor critical services in the grid environment. EGO
can start services if they are not running and restart services on other nodes if a node fails or restart
the component if a service itself fails on a node.

To support a failover for the SAS components some preparation in the SAS Metadata is necessary.
Each SAS component has to be assigned to all hosts in the Metadata. Afterwards an EGO definition
for each service has to be created. In the definition of the service it can be defined on how many
servers on the grid the service has to be started.

The following list gives a high level overview over the necessary steps to introduce EGO for a SAS
Server like the Object Spawner.

1. Enable EGO in lsf.conf (LSF_ENABLE_EGO=Y) if not already turned on

2. Register the service to EGO (e.g., Object Spawner, OLAP Server) copy the template.xml file
for a new service and adjust this file

3. Make EGO aware of the new file. Restart EGO: egosh ego restart $MASTER_HOST, when
the daemons come up again the service is in the service list egosh service list

4. Test the service e.g with “egosh service start service-name” or “egosh service stop service-
name”

For example, let’s say that the goal is to ensure the Object Spawner was started in case it was
stopped on a given server. The flow chart below depicts what should happen in the case of an Object
Spawner not starting up properly.

15

16

The following list provides the necessary steps that are needed to register the service and ensure its
survivability in the case of failure21.

1. Assign the possible Servers to the Object Spawner in the SAS Metadata (SMC: properties of
the Object Spawner, option tab)

2. Check if EGO is enabled in lsf.conf (LSF_ENABLE_EGO=Y)

3. Check if the Object Spawner is working (execute ObjectSpawner.sh start on both
servers and stop the servers if everything works as expected)

4. Create the service definition file in $EGO_CONFDIR/../../eservice/esc/conf/service. Make a
copy of the service definition template file service.xml.TMPL to any name with .xml extension
and adjust the file 21 (page 48)

5. Restart EGO : egosh ego restart all

6. Check the Service exists in the service list: egosh service list

7. Logon to EGO with an administrative user “egosh user logon”. Test the service egosh
service start “service-name from the xml file”,

8. The failover can be tested with the closure of a resource in EGO: egosh resource close
Node2. Details for the failover test are available in the GridHAServices.pdf 21 document (page
46).

As with most environments, a risk assessment should be performed to determine which SAS services
should be monitored. Some applications have “built-in” high availability depending on how they were
configured. For example, SAS Metadata can be installed in a clustered configuration22 which provides
greater resilience against single points of failure. Similarly, the mid-tier services can also be installed in
a clustered configuration23.

The core elements of LSF have built in capability for internal failover. For example, if the master
becomes unavailable, a slave node will take over. When deploying HA objective was to generally
provide failover for the Object Spawners, Metadata Server, PM and GMS. The LSF master host is
chosen dynamically. If the current master host becomes unavailable, another host takes over
automatically. The failover master host is selected from the list defined in LSF_MASTER_LIST in
lsf.conf (specified in install.config at installation). The first available host in the list acts as the master.

Running jobs are managed by sbatchd on each server host. When the new mbatchd starts, it polls the
sbatchd on each host and finds the current status of its jobs. If sbatchd fails but the host is still
running, jobs running on the host are not lost. When sbatchd is restarted it regains control of all jobs
running on the host.24

For the Metadata server the recommendation is to use clustering for both Metadata and mid-tier server
high availability and not EGO. The Object Spawner, OLAP Server and PPM and GMS are candidates
for EGO. Beyond the Metadata Server and Mid-Tier services, candidates for high availability include:

• SAS Object Spawner

• Platform Process Manager

• Platform Grid Management Service

21 https://support.sas.com/rnd/scalability/grid/HA/GridMgrHAServices.pdf
22 http://support.sas.com/documentation/cdl/en/bisag/68240/PDF/default/bisag.pdf (Chapter 17)
23 http://support.sas.com/documentation/cdl/en/bimtag/68217/PDF/default/bimtag.pdf (Chapter 16)
24 http://www-
01.ibm.com/support/knowledgecenter/SSETD4_9.1.2/lsf_foundations/failover_lsf_admin_perspective.
html

https://support.sas.com/rnd/scalability/grid/HA/GridMgrHAServices.pdf
http://support.sas.com/documentation/cdl/en/bisag/68240/PDF/default/bisag.pdf
http://support.sas.com/documentation/cdl/en/bimtag/68217/PDF/default/bimtag.pdf

17

Update and hotfix considerations of a SAS Grid installation

A grid installation has the same need to apply hotfixes and other needed updates like maintenance
updates. For maintenance updates there is nothing that can be influenced. The update process is
defined inside the SDW. The SDW updates the installation and the configuration files. In a grid
environment binaries can be in the shared file system or on the local file systems on each node. The
configuration, data and naturally the SAS code has to be located in the shared file system. If the goal
is to install binaries local on each node, the update of the binaries can be done sequentially. In this
case there is a master that is updated with the SAS update process and from this master the binaries
are synchronized (e.g. with rsync) to the other members of the grid. This process combined with a stop
and start of the SAS processes on the updated nodes allows always some nodes to be available for
computation. As long as there are no updates to the configuration this process allows a rolling update
to the grid servers.

Conclusion

The flexibility of the Grid technology allows configuration for several different use cases. Like high
performance computing (HPC) configurations or also the approach of a consolidation platform in a
multi-tenant approach.

The paper introduces an approach to organize the design decision based on the expected workload
and requirements for capacity, performance and availability of the service. Depending on the type of
the data source systems additional considerations are necessary especially Hadoop has often
additional requirements like the Kerberos enablement of the cluster.

The reader should be aware that the grid technology is not only SAS. The SAS Platform Suite with
LSF has a lot of options and possible configurations. Based on the decisions which use cases and
which security requirements have to be supported for the grid environment the configuration has to be
adjusted.

Contact Information
Comments and questions are valued and encouraged. Contact the authors at:

Jan Bigalke

Allianz Managed Operations & Services SE

jan.bigalke@allianz.com

Greg Nelson

ThotWave Technologies

greg@ThotWave.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies

mailto:jan.bigalke@allianz.com
mailto:greg@ThotWave.com

