Paper 2 and Paper 3 Preparation Paper

AQA - Higher Very High Chance Corbettmaths

You will need a calculator

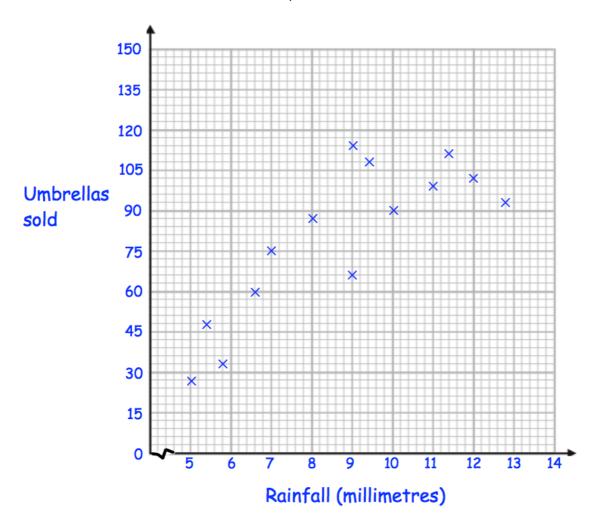
Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser

Guidance

- 1. Read each question carefully before you begin answering it.
- 2. Don't spend too long on one question.
- 3. Attempt every question.
- 4. Check your answers seem right.
- 5. Always show your workings

Revision for this test

www.corbettmaths.com/contents



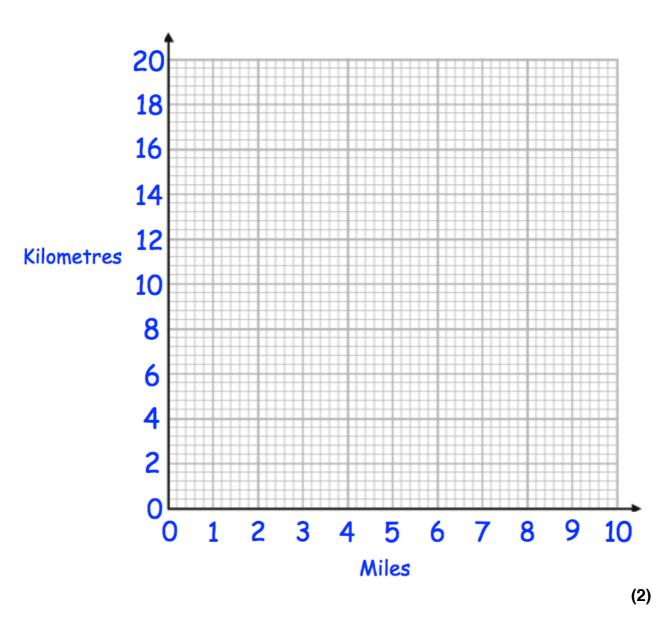
Question	Торіс	Video number
1	Scatter Graphs	165, 166
2	Conversion Graphs	151, 152
3	Constructions	72, 78, 79, 80, 70
4	Loci	75, 76, 77
5	Pie Charts	163, 164
6	LCM/HCF	218, 219
7	Product Rule for Counting	383
8	Changing the Subject	7, 8
9	Drawing Linear Graphs	186
10	Currency	214a
11	Percentages	233, 235
12	Compound Interest	236
13	Error Intervals	377
14	Angles: Parallel Lines	25
15	Bearings	26, 27
16	Angles: Polygons	32
17	Reverse Percentages	240
18	Expanding 3 Brackets	15
19	Pythagoras	257, 259
20	Quadratic Graphs	264
21	Trigonometry	329, 330, 331
22	Rotations	275
23	Circle Theorems	64, 65, 66
24	Travel Graphs	171
25	Speed, Distance, Time	299
26	Density	384
27	Estimated Mean	55
28	Tree Diagrams	252
29	Histograms	157, 158, 159
30	Similar Shapes (Area/Volume)	293a, 293b

Question	Торіс	Video number
31	Limits of Accuracy	183, 184
32	Factorising	117
33	Factorising Quadratics	118, 119, 120
34	Solving Quadratics	266
35	Quadratic Formula	267
36	nth Term	288
37	Quadratic nth term	388
38	Equations	110, 113, 114, 115
39	Graphical Inequalities	182
40	Quadratic inequalities	378
41	Equation of a Circle	12
42	Rates of Change	309a, 309b
43	Algebraic Fractions	21, 22, 23, 24
44	Functions	369, 370
45	Iteration	373
46	Equation of a Tangent	372
47	Sine Rule/Cosine Rule	333
48	1/2abSinC	337
49	Circle Theorems Proofs	66
50	Perpendicular Graphs	196, 197
51	Vectors	353
52	3D Pythagoras	259, 332
53	Volume of Cone/Pyramid/Sphere	359, 360, 361
54	Conditional Probability	247
55	Congruent Triangles	67
56	Algebraic Proof	365
57	Simultaneous Equations (Non-linear)	298

1. A shop sells umbrellas.

The scatter graph shows information about the number of umbrellas sold each week and the rainfall that week, in millimetres.

		(1)
` ,	Describe the relationship between the rainfall and umbrellas sold	


(b) What is the greatest amount of rainfall in one weel	k?
---	----

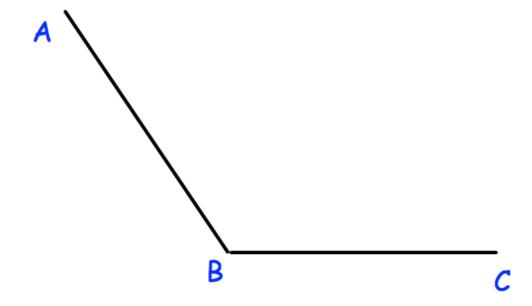
(1)

In another week, there was 6mm of rain.	
(c) Estimate the number of umbrellas sold.	
	(2)
(d) Explain why it may not be appropriate to use your line of best fit to estithe number of umbrellas sold in a week with 25mm of rainfall.	imate
	(1)

2.

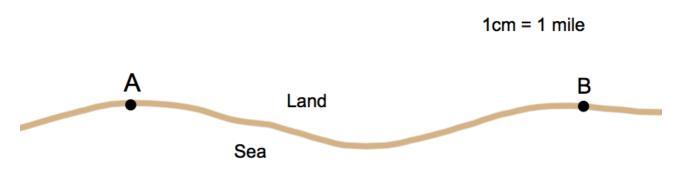
(a) Use the fact 5 miles = 8 kilometres to draw a conversion graph on the grid.

Use your graph to convert


(b) 8 miles to kilometres

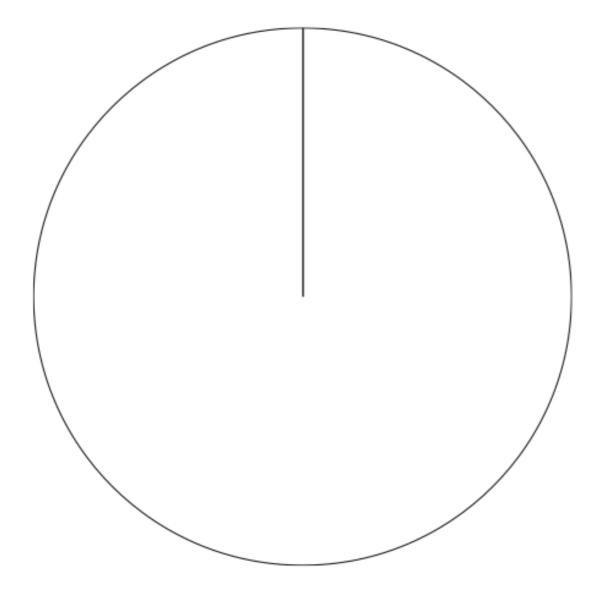
													k	r	Υ	1	
													(1	ľ)	

(c) 6 kilometres to miles


																								r	Y	ı	i	ı	6	9 (9	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•			_	1	_	

3. Using ruler and compasses, construct the bisector of angle ABC.

(2)


The diagram shows two lighthouses.
 A boat is within than 8 miles of lighthouse A.
 The same boat is within 6 miles of lighthouse B.
 Shade the possible area in which the boat could be.

5. The table gives information about the number of students in years 7 to 10.

Year	Frequency
7	200
8	140
9	220
10	160

Draw an accurate pie chart to show this information.

6.	Find the Lowest Common Multiple (LCM) of 60 and 72.	
		(2)
7.	Jim picks a five digit even number. The second digit is less than 8. The fourth digit is a square number The first digit is a cube number. How many different numbers could he pick?	
		(3)

8. Make v the subject of the formula.

$$s = \frac{1}{2}(u+v)t$$

v =**(3)**

9. On the grid, draw x + 2y = 6 for values of x from -2 to 2.

10. James has received two job offers.

A job in Milan which pays €55,000 a year. A job in Boston which pays \$64,000 a year.

The exchange rates were £1 = \$1.42 and £1 = £1.25.

Which job offer has the highest salary? Show working to explain your answer.

11. Terry goes to the Post Office to exchange money.

*Commission Charged

Terry changes \$651 and €161.20 into pounds sterling.
The Post Office deducts their commission and gives Terry £528.

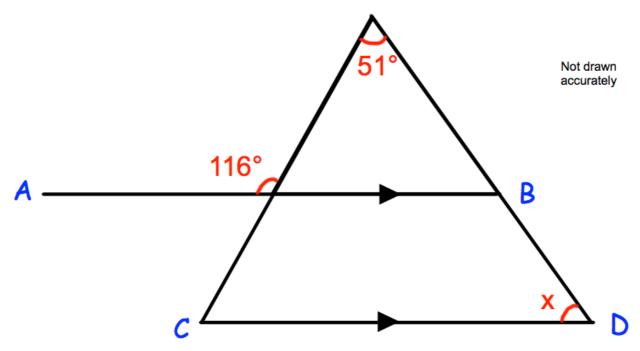
What is the percentage commission?

 	 %
	(4)

12.	Martyn has some money to invest and sees this advert.
	Bank of Maths

The average annual growth for your investment is 4.5%

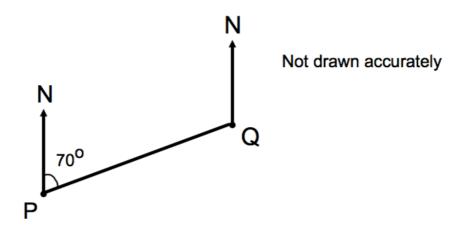
Double your money in 15 years.


Will Martyn double his money in 15 years by investing his money with "Bank of Maths?"
You must show your workings.

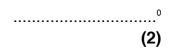
13. Nigel measures the time, t seconds, to complete a race as 15.4 seconds correct to the nearest tenth of a second.

Write down the error interval for t.

	 	()	 2)


14. In the diagram, AB is parallel to CD.

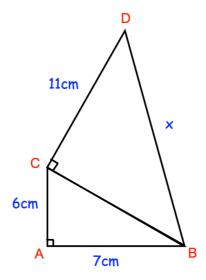
Work out the size of angle x.


You **must** show your workings.

.....° (4) 15. The diagram shows the position of two airplanes, P and Q.

The bearing of Q from P is 070°.

Calculate the bearing of P from Q.

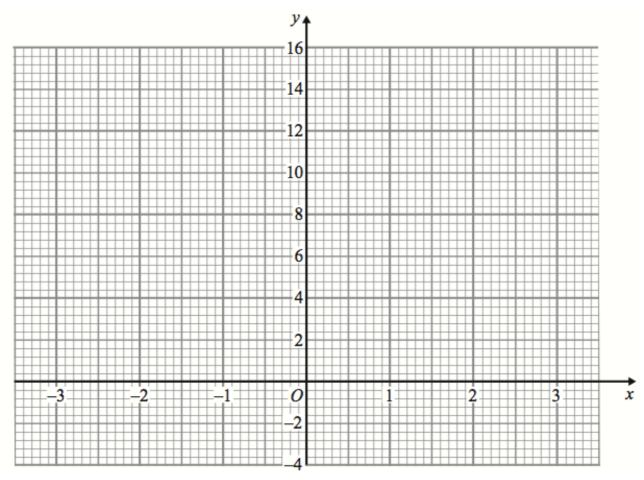


16. The sum of the interior angles in a polygon is 7380°.

Calculate the number of sides the polygon has.

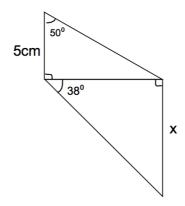
17.	In a sale the price of a sofa is reduced by 70%. The sale price is £255											
	Work out the price before	re the sale.										
			£	(3)								
18.	Expand and simplify	(x-6)(x+1)(x-2)										
				(4)								

19. Below are two triangles, ABC and BCD.

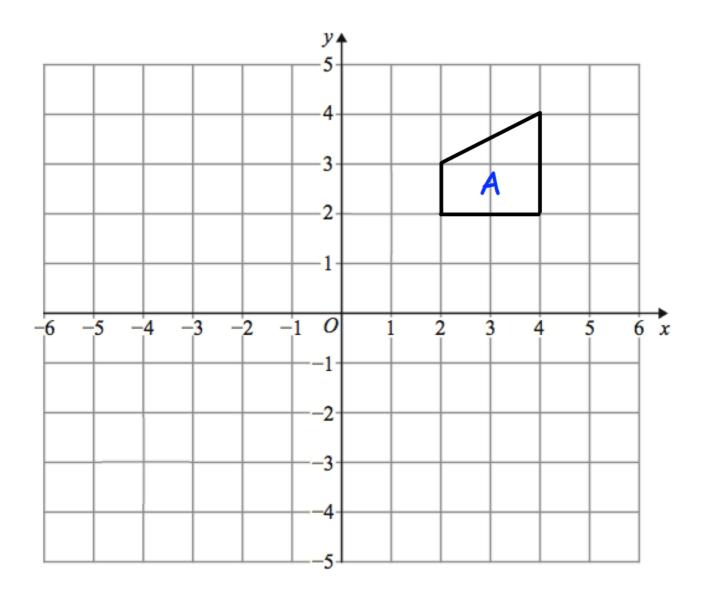

Find x

.....cm **(4)** 20. (a) Complete the table of values for $y = x^2 + 2x + 1$

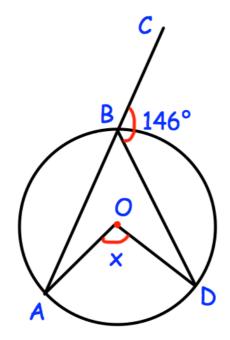
x	-3	-2	-1	0	1	2	3
y							


(2)

(b) On the grid, draw the graph of $y = x^2 + 2x + 1$ for the values of x from -3 to 3.


(2)

21. The diagram shows two right-angled triangles.


Calculate the value of x.

.....cm (5)

Rotate shape A 180° about centre (-1, 2)

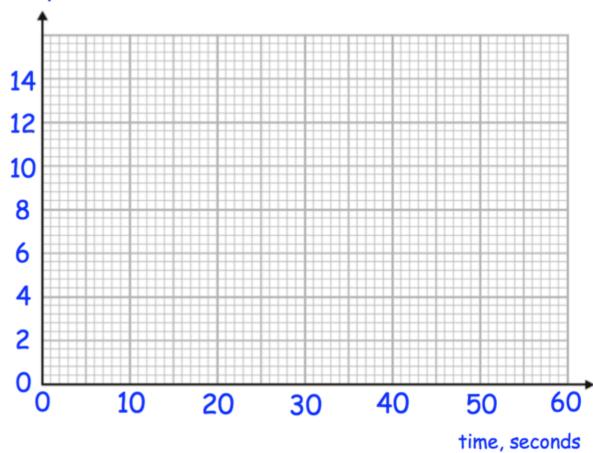
(3)

Shown is a circle with centre O. ABC is a straight line. Angle CBD is 146°

Find the size of angle AOD.

	 											C	2
										(3	3))

24. A remote control car drives in a straight line.

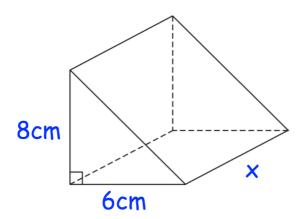

It starts from rest and travels with constant acceleration for 20 seconds reaching a velocity of 12m/s.

It then travels at a constant speed for 20 seconds.

It then slows down with constant deceleration of 4m/s².

(a) Draw a velocity time graph

(b) Using your velocity-time graph, work out the total distance travelled.


								r	n	1
						((2	2))

25.	Lee complete a journey in three stages.
	In stage 1 of his journey, he drives at an average speed of 30km/h for 45 minutes.
	(a) How far does Lee travel in stage 1 of his journey?
	km (2)
	In stage 2 of his journey, Lee drives at an average speed of 50km/h for 2 hours 48 minutes.
	Altogether, over all three stages, Lee drives 200 km in 4 hours.
	What is his average speed, in km/h, in stage 3 of his journey?

.....km/h

(4)

26. The diagram shows a solid triangular prism.

The prism is made from wood and has a mass of 643.8g The density of wood is 1.85g/cm³

Calculate the length of the prism.

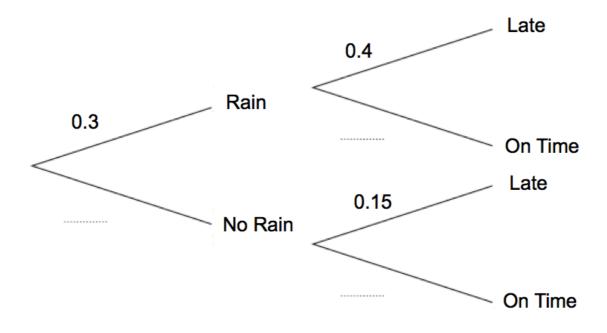
cm	 					
(4)						

27. Timothy weighs the mass of some oranges, in grams.

The table shows some information about his results.

Mass	Frequency
20 < m ≤ 25	12
25 < m ≤ 30	24
30 < m ≤ 35	17
35 < m ≤ 40	15
40 < m ≤ 45	4

Work out an estimate for the mean mass of an orange.

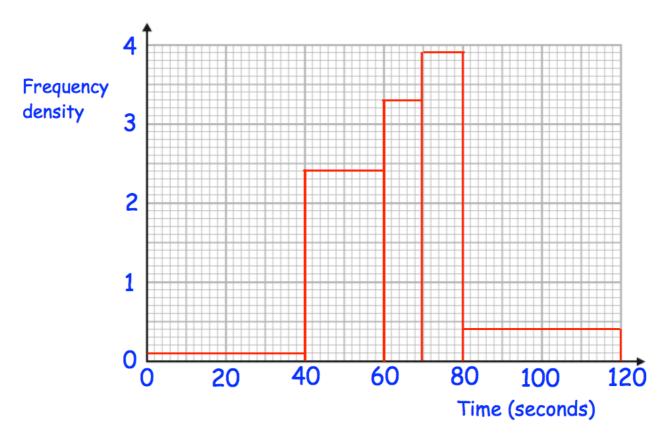

				 			 		g	ır	6	ar	n	S	;
												((4	L))

28. In a small village, one bus arrives a day.

The probability of rain in the village is 0.3.

If it rains, the probability of a bus being late is 0.4. If it does not rain, the probability of a bus being late is 0.15.

(a) Complete the tree diagram



(b) Work out the number of days the bus should be late over a period of 80 days.

(3)

(2)

29. The histograms shows information about the time taken by 140 students to complete a puzzle.

(a) Complete this frequency table.

Time, t seconds	Frequency
0 < † <u><</u> 40	4
40 < t ≤ 60	
60 < † ≤ 70	33
70 < t ≤ 80	
80 < † ≤ 120	16

(b) Calculate an estimate of the median.

(3)

(2)

30. Mrs Hampton is potting plants.

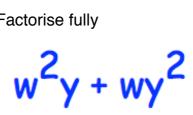
She is using two mathematically similar pots, the smaller is 10cm tall and the larger 14cm tall.

She has two bags of soil, each containing 30 litres of soil.

With the first bag, Mrs Hampton fills 20 small pots using all of the soil in the bag.

How many large pots can be filled completely using the second bag of soil?

(5)


31. Declan ran a distance of 200m in a time of 26.2 seconds.

The distance of 200m was measured to the nearest 10 metres. The time of 26.2 was measured to the nearest tenth of a second.

Work out the upper bound for Declan's average speed.

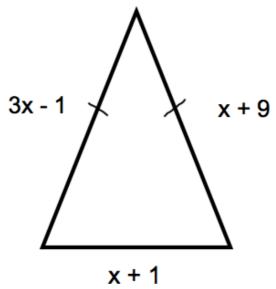
m/s	S
(2	1

32.	Factorise fu	lly
-----	--------------	-----

(2)			
	Factorise x ² + 14x – 51	(a)	33.
(2)	Factorise 2w² – 9w + 4	(b)	
(2)	Factorise x ² – 121	(c)	
(2)			

34.	(a)	Solve $y^2 + 9y + 2 = 8y + 58$		
				(2
	(b)	Solve $5x^2 + 19x - 4 = 0$		
	(-)			
				(2

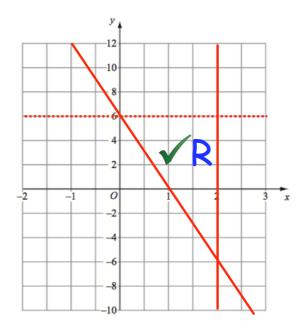
35.	Solve the equation $x^2 - 2x - 9 = 0$												
	Give your answers to two decimal places.												
	x = or x =	(3)											
		(3)											
36.	The <i>n</i> th term of a sequence is 4n - 7												
	(a) Write down the first three terms of the sequence.												
	1 at tarm 2 and tarm 2 and tarm												
	1st term 2nd term 3rd term	(2)											
	(b) What is the difference between the 150th and 151st terms?												
		(4)											
	The least towns of this common is 000	(1)											
	The last term of this sequence is 393.												
	(c) How many terms are there in this sequence?												
		(2)											


37. Here are the first 5 terms of a quadratic sequence

9 17 29 45 65

Find an expression, in terms of n, for the nth term of this quadratic sequence.

(3)

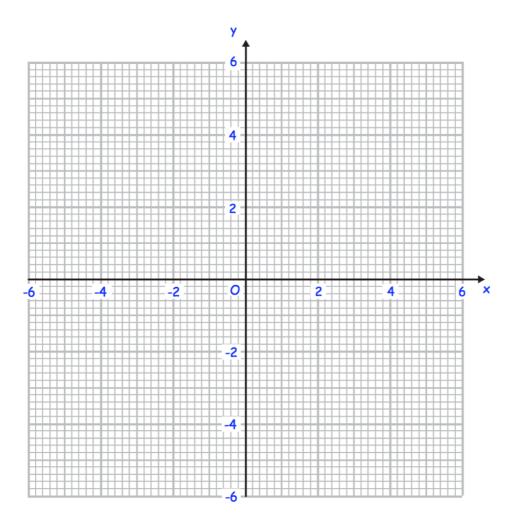

38. Shown below is an isosceles triangle. Each side is measured in centimetres.

Find the perimeter of the triangle

(4)

39.

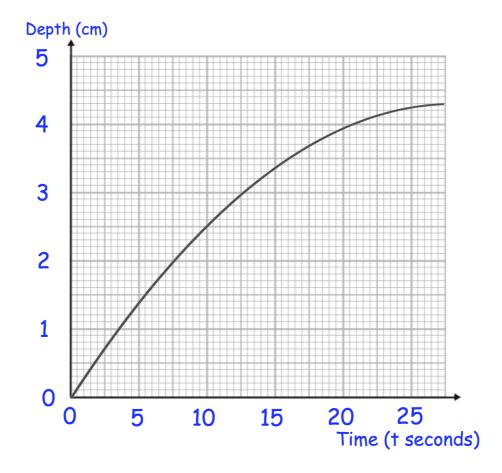
The region labelled R satisfies three inequalities.


State the three inequalities

 	 (3)

40. Solve the inequality $x^2 + 2x - 35 > 0$

									(•	3	١)			


41. Draw the circle with equation $x^2 + y^2 = 16$

(2)

42. Jack is filling a container with water.

The graph shows the depth of the water, in centimetres, t seconds after the start of filling the container.

(a) Calculate an estimate for the gradient of the graph when t = 15 seconds.

(b) Describe fully what your answer to (a) represents

(2)

(c) Explain why your answer to (a) is only an estimate

(1)

43. Solve

$$\frac{1}{x+3} - \frac{1}{x+1} = 2$$

(5)

The functions f(x) and g(x) are given by the following:

$$f(x) = 8 - 3x$$
$$g(x) = 4x$$

(a) Calculate the value of $\,g\!f(3)$

(2)

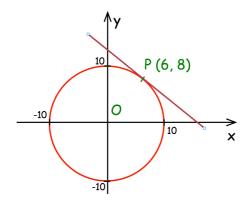
(b) Find $f^{-1}(x)$

(2)

45.

(a) Show that the equation $x^3 + 2x = 1$ has a solution between x = 0 and x = 1

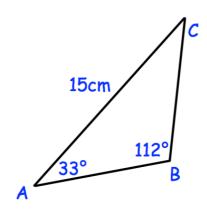
(2)


(b) Show that the equation $x^3 + 2x = 1$ can be rearranged to give $x = \frac{1}{2} - \frac{x^3}{2}$

(1)

(c) Starting with $x_0=0$, use the iteration formula $x_{n+1}=\frac{1}{2}-\frac{x_n^3}{2}$ twice to find an estimate for the solution of $\mathbf{x^3}+2\mathbf{x}=\mathbf{1}$

(3)

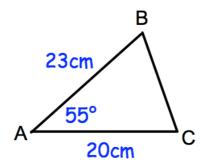

46. Here is a circle, centre O, and the tangent to the circle at the point (6, 8).

Find the equation of the tangent at the point P.

(4)

47. (a)

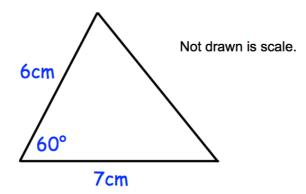
In triangle ABC the length of AC is 15cm.


Angle ABC = 112°

Angle BAC = 33°

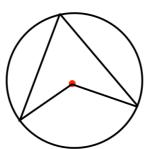
Work out the length of BC.

.....cm (3)

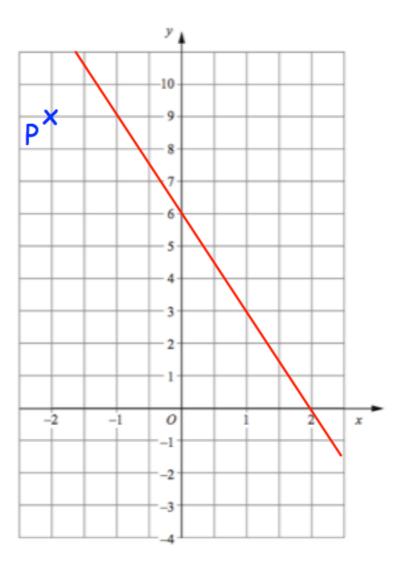

(b)

Calculate the length of BC.

.....cm (3)


48.

Calculate the area of the triangle.


 .cm²
(2)

49.

Prove that the angle at the centre is twice the angle at the circumference.

50. (a)

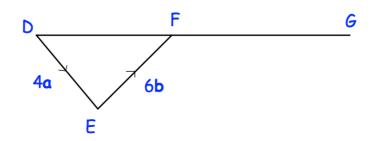
(a) Find the equation of L.

									(3)

The point P has coordinates (-2, 9).

(b) Find an equation of the line that is parallel to L and passes through P.

													(2	2)


(b) The straight line K has equation y = 2x - 5The straight line J is perpendicular to line K and passes through the point (-4, 8).

Find the equation of line J

(3)

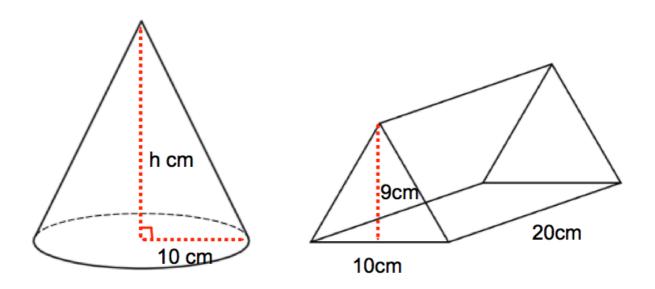
51. DFG is a straight line.

 $\overrightarrow{DE} = 4a$ and $\overrightarrow{EF} = 6b$

(a) Write down the vector **DF** in terms of **a** and **b**

(1)

(b) DF: FG = 2:3


Work out the vector \overrightarrow{DG} in terms of **a** and **b** Give your answer in its simplest form.

.....

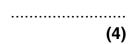
Shown below is a square based pyramid. The apex E is directly over the centre of the base.	
B 26cm C 20cm D	
AD = 20cm CE = 26cm	
(a) Work out the length of AC	
(b) Calculate angle CAE	cm (2)
	° (2)
(c) Work out the height of the pyramid	
(d) Calculate the volume of the pyramid	cm (2)
	cm³ (2)

52.

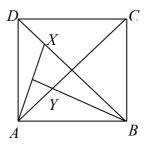
53. Shown is a cone and a triangular prism.

Both solids have the same volume.

Calculate the height of the cone.


 	 	 	 	 	.cm
					(3)

54. There are 8 sweets in a bag.


Three sweets are red, three sweets are blue and two sweets are green.

Three sweets are selected at random without replacement.

Calculate the probability that the sweets are **not** all the same colour.

55. ABCD is a square, X is a point in the diagonal BD and the perpendicular from B to AX meets AC in Y.

Prove that triangles AXD and AYB are congruent.

56. Prove $(2n + 9)^2 - (2n + 5)^2$ is always a multiple of 4

(4)

57. Solve the simultaneous equations

$$2x + y = 5$$

 $2x^2 + y^2 = 11$